

IB-Matlab User Guide

Version 1.91

May 11, 2017

Fully compatible with:

Windows, Linux, Mac OS

IB API versions 9.64 - 9.71

MATLAB releases R2006a - R2016b

© Yair Altman

http://UndocumentedMatlab.com/IB-Matlab

Undocumented Matlab
unbelievable features; unbelievable quality; unbelievable cost effectiveness; unbelievable service

http://undocumentedmatlab.com/IB-Matlab

2 IB-Matlab User Guide

Table of Contents

DISCLAIMER ... 4

1 Introduction ... 5

2 Installation and licensing ... 7
2.1 Licensing and activation ... 10
2.2 Switching activated computers ... 11

3 Using IBMatlab ... 12
3.1 General usage ... 12
3.2 Handling IB errors ... 14
3.3 Contract properties .. 18

4 Querying account and portfolio data .. 19
4.1 Account information... 19
4.2 Portfolio data .. 21

5 Querying current market data ... 24
5.1 Single-quote data .. 24
5.2 Market depth data .. 27
5.3 Scanner data ... 29
5.4 Contract details and options chain .. 34
5.5 Fundamental data .. 37

6 Querying historical and intra-day data .. 41

7 Streaming data... 47
7.1 Streaming quotes .. 47
7.2 Realtime bars .. 52
7.3 Streaming market depth... 55

8 Sending trade orders ... 56
8.1 General usage ... 56
8.2 Close orders .. 60
8.3 Order types .. 61
8.4 Trail orders ... 64
8.5 Financial Advisor (multi-client) orders .. 65

9 Specialized trade orders ... 68
9.1 VWAP (best-effort) orders .. 68
9.2 TWAP (best-effort) orders ... 70
9.3 Bracket orders .. 71
9.4 Automated orders ... 73
9.5 Combo orders ... 75
9.6 Setting special order attributes .. 79
9.7 Exercising and lapsing options .. 81
9.8 Additional IBAlgo orders .. 83

10 Accessing and cancelling open trade orders ... 85
10.1 Retrieving the list of open orders ... 85
10.2 Modifying open orders .. 89
10.3 Cancelling open orders ... 89

3 IB-Matlab User Guide

11 Processing IB events .. 90
11.1 Processing events in IB-Matlab ... 90
11.2 Example ï using CallbackExecDetails to track executions ... 95
11.3 Example ï using CallbackTickGeneric to check if a security is shortable.................... 96
11.4 Example ï using CallbackContractDetails to get a contractôs full options chain 97
11.5 Example ï using CallbackUpdateMktDepth for realtime order-book GUI update 99

12 Tracking trade executions ... 102
12.1 User requests .. 102
12.2 Automated log files .. 105
12.3 Using CallbackExecDetails .. 105

13 TWS connection parameters ... 106

14 Messages and general error handling .. 111

15 Using the Java connector object ... 114
15.1 Using the connector object ... 114
15.2 Programming interface ... 115
15.3 Usage example .. 121

16 Sample strategies/models using IB-Matlab .. 123
16.1 Pairs trading ... 123
16.2 Using RSI technical indicator .. 126

17 Frequently-asked questions (FAQ) .. 131

18 Troubleshooting .. 135

Appendix A ï resources .. 138
A.1 Official IB resources ... 138
A.2 MathWorks webinars... 139
A.3 Additional open-source Matlab resources ... 139

Appendix B ï change log ... 140

4 IB-Matlab User Guide

DISCLAIMER

THIS IB-MATLAB SOFTWARE IS PROVIDED ñAS ISò, WITHOUT WARRANTY OF

ANY KIND, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,

AND/OR NONINFRINGEMENT.

THIS SOFTWARE IS NOT OFFICIALLY APPROVED OR ENDORSED BY ANY

REGULATORY, GOVERNING OR COMMERCIAL BODY, INCLUDING SEC, FINRA,

MATHWORKS AND/OR INTERACTIVE BROKERS.

MUCH EFFORT WAS INVESTED TO ENSURE THE CORRECTNESS, ACCURACY

AND USEFULNESS OF THE INFORMATION PRESENTED IN THIS DOCUMENT

AND THE SOFTWARE. HOWEVER, THERE IS NEITHER A GUARANTEE THAT THE

INFORMATION IS COMPLETE OR ERROR-FREE, NOR THAT IT MEETS THE

USERôS NEEDS. THE AUTHOR AND COPYRIGHT HOLDERS TAKE ABSOLUTELY

NO RESPONSIBILITY FOR POSSIBLE CONSEQUENCES DUE TO THIS DOCUMENT

OR USE OF THE SOFTWARE.

THE FUNCTIONALITY OF THE SOFTWARE DEPENDS, IN PART, ON THE

FUNCTIONALITY OF OTHER SOFTWARE, HARDWARE, SYSTEMS AND SERVICES

BEYOND OUR CONTROL. SUCH EXTERNAL COMPONENTS MAY CHANGE OR

STOP TO FUNCTION AT ANY TIME, WITHOUT PRIOR NOTICE AND WITHOUT

OUR CONTROL. THEREFORE, THERE CAN BE NO ASSURANCE THAT THE

SOFTWARE WOULD WORK, AS EXPECTED OR AT ALL, AT ANY GIVEN TIME.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR

ANY CLAIM, DAMAGES, LOSS, OR OTHER LIABILITY, WHETHER IN ACTION OF

CONTRACT OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH

THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE,

REGARDLESS OF FORM OF CLAIM OR WHETHER THE AUTHORS WERE

ADVISED OF SUCH LIABILITIES.

WHEN USING THIS DOCUMENT AND SOFTWARE, USERS MUST VERIFY THE

BEHAVIOR CAREFULLY ON THEIR SYSTEM BEFORE USING THE SAME

FUNCTIONALITY FOR LIVE TRADES. USERS SHOULD EITHER USE THIS

DOCUMENT AND SOFTWARE AT THEIR OWN RISK, OR NOT AT ALL.

ALL TRADING SYMBOLS AND TRADING ORDERS DISPLAYED IN THE

DOCUMENTATION ARE FOR ILLUSTRATIVE PURPOSES ONLY AND ARE NOT

INTENDED TO PORTRAY A TRADING RECOMMENDATION.

5 IB-Matlab User Guide

1 Introduction

Interactive Brokers (IB, www.interactivebrokers.com) provides brokerage and

financial data-feed services. IB customers can use its services using specialized

applications (so-called ñclientsò) that can be installed on the userôs computer. These

client applications provide a user-interface that enables the user to view portfolio and

market information, as well as to issue trade orders to the IB server. The most widely-

used IB client application is TWS (Trader Work Station).
1

In addition to TWS, IB provides other means of communicating with its server. A

lightweight client application called IB Gateway is installed together with TWS. IB

Gateway has no fancy GUI like TWS but provides exactly the same API functionality

as TWS, while using fewer system resources and running more efficiently.
2

IB also publishes an interface (Application Programming Interface, or API) that

enables user applications to connect to the IB server using one of its client

applications (either IB Gateway or TWS). This API enables user trading models to

interact with IB: send trade orders, receive market and portfolio information, process

execution and tick events etc.

IB provides its API for three target platforms: Windows, Mac and Linux (Mac and

Linux actually use the same API installation).
3
 The API has several variants,

including C++, Java, DDE, and ActiveX (DDE and ActiveX only on Windows).

Matlab is a programming development platform that is widely-used in the financial

sector. Matlab enables users to quickly analyze data, display results in graphs or

interactive user interfaces, and to develop automated, semi-automated and decision-

support trading models.

Unfortunately, IB does not provide an official Matlab API connector. While IBôs Java

connector can be used directly in Matlab, setting up the event callbacks and data

conversions between Matlab and the connector is definitely not easy. You need to be

familiar with both Matlab and Java, at least to some degree.

This is the role of IB-Matlab (http://UndocumentedMatlab.com/IB-Matlab). IB-

Matlab uses IBôs Java API to connect Matlab to IB, providing a seamless interface

within Matlab to the entire set of Java API functionality. Users can activate IBôs API

using simple Matlab commands, without any need to know Java.

Javaôs cross-platform compatibility means that exactly the same IB-Matlab code runs

on all platforms supported by IB and Matlab, namely Windows (both 32 and 64 bit),

Mac and Linux/Unix.

1 http://www.interactivebrokers.com/en/software/tws/twsguide.htm#usersguidebook/getstarted/intro_to_get_started.htm
2 http://www.interactivebrokers.com/en/software/api/apiguide/api/run_the_api_through_the_ib_gateway.htm
3 http://www.interactivebrokers.com/en/software/ibapi.php

http://www.interactivebrokers.com/
http://undocumentedmatlab.com/IB-Matlab
http://www.interactivebrokers.com/en/software/tws/twsguide.htm#usersguidebook/getstarted/intro_to_get_started.htm
http://www.interactivebrokers.com/en/software/tws/twsguide.htm#usersguidebook/getstarted/intro_to_get_started.htm
http://www.interactivebrokers.com/en/software/api/apiguide/api/run_the_api_through_the_ib_gateway.htm
http://www.interactivebrokers.com/en/software/api/apiguide/api/run_the_api_through_the_ib_gateway.htm
http://www.interactivebrokers.com/en/software/ibapi.php
http://www.interactivebrokers.com/en/software/ibapi.php

6 IB-Matlab User Guide

IB-Matlab consists of two parts that provide different ways of interacting with IB:

1. A Java package (IBMatlab.jar) that connects to the TWS/Gateway and

provides full access to IBôs Java API functionality. Matlab users can use a

special connector object in Matlab to invoke the Java API functions directly

from within Matlab.

2. A Matlab wrapper (IBMatlab.p) that provides the most often-used API

functionality in an easy-to-use Matlab function. This wrapper is a pure Matlab

implementation that provides access IBôs most important functionalities,

without needing to know anything about Java or the underlying connector.

Active trading actions (buy, sell, short, close, modify, cancel, exercise, lapse) and

query actions (market, streaming quotes, open orders, historical, account and portfolio

data) can be initiated with simple one-line Matlab code that uses the Matlab wrapper

(IBMatlab.p). Additional trading features (the full range of IBôs Java API) can be

accessed using the connector object that is provided by IB-Matlab .

Users can easily attach Matlab code (callbacks) to IB events. This enables special

operations (e.g., adding an entry in an Excel file, sending an email or SMS) whenever

an order executes, or a specified price is reached, for example.

Professional reviews of IB-Matlab were published in 2011
4
 and 2012

5
 in the

Automated Trader magazine and can be downloaded from IB-Matlabôs web page.
6

This document explains how to install and use IB-Matlab . Depending on the date

that you have installed IB-Matlab , your version may be missing some features

discussed in this document. Whenever you renew your annual license you will

receive the latest IB-Matlab version, including all the functionality detailed here.

4 http://www.automatedtrader.net/articles/software-review/84091/the-virtue-of-simplicity
5 http://www.automatedtrader.net/articles/software-review/107768/mashup
6 http://undocumentedmatlab.com/files/IB-Matlab_Review.pdf, http://undocumentedmatlab.com/files/IB-Matlab_Review2.pdf

http://www.automatedtrader.net/articles/software-review/84091/the-virtue-of-simplicity
http://www.automatedtrader.net/articles/software-review/84091/the-virtue-of-simplicity
http://www.automatedtrader.net/articles/software-review/107768/mashup
http://www.automatedtrader.net/articles/software-review/107768/mashup
http://undocumentedmatlab.com/files/IB-Matlab_Review.pdf
http://undocumentedmatlab.com/files/IB-Matlab_Review.pdf
http://undocumentedmatlab.com/files/IB-Matlab_Review2.pdf

7 IB-Matlab User Guide

2 Installation and licensing

IB-Matlab requires the following in order to run:

1. An active account at IB

IB-Matlab will also work with IBôs Demo account, but this is not

recommended: it is limited in comparison with the functionalities of a live

account. To properly test IB-Matlab , we recommend using the paper-trade

(simulated trading) account that you get when you open an IB account. Paper-

trade accounts resemble a live account more closely than the Demo account.
7

2. An installation of TWS and/or the IB Gateway ï (normally installed together)

3. An installation of Matlab 7.1 (R14 SP3) or a newer release

If you have an earlier release of Matlab, some API functionality may still be

available on your system. Contact Yair (altmany@gmail.com) for details.

The installation procedure for IB-Matlab is as follows:

1. Ensure that you have read and accepted the license agreement. This is required

even for the trial version of IB-Matlab . If you do not accept the license

agreement then you cannot use IB-Matlab .

2. Place the IB-Matlab files (esp. IBMatlab.jar, IBMatlab.p, and IBMatlab.m) in

a dedicated folder (for example: C:\IB-Matlab\). Do not place the files in one

of Matlabôs installation folders.

3. Add the new IB-Matlab folder to your Matlab path using the path tool (in the

Matlab Desktopôs toolstrip, click HOME / ENVIRONMENT / Set pathé and

save). The folder needs to be in your Matlab path whenever you run IBMatlab.

4. Type the following in your Matlab command prompt:

>> edit(' classpath.txt ');

This will open the classpath.txt file for editing in the Matlab editor. This file

includes the Java static classpath that is used in Matlab and is typically located

in the %matlabroot%/toolbox/local/ folder (e.g., C:\Program Files\MATLAB\

R2011b\toolbox\local\).

5. Add the full path to the IBMatlab.jar file into the classpath.txt file (you may

need to repeat this step whenever you install a new Matlab release on your

computer). For example, on a Windows computer if the IB-Matlab files are in

C:\IB-Matlab\, then the new line in the classpath.txt file should be as follows:

C:\IB-Matlab\IBMatlab.jar

You must use the full absolute filepath. So on MacOS, for example, enter

/Users/Yair/IB-Matlab/IBMatlab.jar rather than ~/IB-Matlab/IBMatlab.jar.

Similarly, you cannot use something like $matlabroot/../../IB-Matlab.jar.

7 Note that IB provides limited support for some functional aspects on the paper-trading account compared to the live account:

http://interactivebrokers.com/en/software/am/am/manageaccount/paper_trading_limitations.htm

mailto:altmany@gmail.com
http://interactivebrokers.com/en/software/am/am/manageaccount/paper_trading_limitations.htm

8 IB-Matlab User Guide

When trying to save the classpath.txt file, you might get an error message

saying the file is read-only. To solve this, enable write-access to this file: In

Linux/Unix, run chmod a+w classpath.txt. In Windows, open Windows

Explorer, right-click the classpath.txt file, select ñPropertiesò, and unselect the

ñRead-onlyò attribute. In Windows 7/8/10 you need to run Matlab as

Administrator (right click the Matlab icon and select ñRun as Administratorò)

in order to be able to save the file, even when it is not read-only.

If you cannot get administrator access to modify classpath.txt, place a copy of

it in your Matlab startup folder. This is the folder used when you start Matlab

(type the pwd command at the Matlab command prompt to get it).

Note that placing the modified classpath.txt file in your Matlab startup folder

enables you to run IB-Matlab whenever you use this startup folder ï so if you

ever use a different Matlab startup folder then youôd will need to copy the

classpath.txt file to the new startup folder. Also note that the classpath.txt file

depends on the Matlab release ï it will only work on your current release of

Matlab ï if you try to use a different Matlab release with this same startup

folder, then Matlab itself (not just IB-Matlab) may fail to load. For these

reasons, a much safer approach is to update the classpath.txt file in Matlabôs

default location, namely the %matlabroot%/toolbox/local/ folder.

As an alternative on some Matlab releases, create a javaclasspath.txt file in

the startup folder, which just contains a single line, IBMatlab.jarôs full path.

Note: IB-Matlab cannot receive IB data if Javaôs static classpath is not set.

6. Restart Matlab (no need to restart the computer or to run as administrator)

7. If you are running the Production version of IB-Matlab , then you will need to

activate your license at this point. When you purchase your license you will be

given specific instructions how to do this. See §2.1 below for licensing details.

8. Ensure that either TWS or IB Gateway is working and logged-in to IB.

9. In TWS, go to the main menuôs Edit / Global Configurationé / API / Settings
and make the following changes:

8

a. Enable the ñEnable ActiveX and Socket Clientsò checkbox

b. Validate the Socket port used by TWS for API communication. This

should normally be 7496. It can be changed to another value, but then

you will need to specify the Port parameter when you use IBMatlab

for the first time after each Matlab restart (see §13 below for details).

c. Decide whether to specify a Master ClientID (positive integer number)

that will provide access to all orders created by any API client. You

can then use this in IBMatlab by specifying the ClientId parameter.
9

8 If you do not make these changes, then IB-Matlab will either not be able to connect to IB, or will require popup confirmation

upon each request by IB-Matlab .
9 See §13 below for more details. Note: It has been reported that setting a value in this field may limit the ability to concurrently

access multiple IB accounts, as may be the case for Financial Advisors or if you have child IB accounts.

9 IB-Matlab User Guide

d. Add 127.0.0.1 (=localhost, i.e. the current computer) and

0:0:0:0:0:0:0:1 (the IPv6 loopback address, used by IB-Gateway but

not TWS) to the list of Trusted IP Addresses. If you wish to use IB-

Matlab on a different computer than the one that runs TWS, add IB-

Matlab machineôs IP address to the list of trusted IP addresses.

e. If you have recently upgraded from a 32-bit system (e.g., Windows

XP) to 64 bits (e.g., Windows 7), then if you encounter some problems

running IB-Matlab , this could be due to a 32-64 bit mixup in TWS.
10

10. If you plan to use the IB Gateway, then the configuration is very similar: Go

to the Gatewayôs main menu Configure / Settings / API / Settings and modify

the configuration as for TWS above. The only difference is that the ñEnable

ActiveX and Socket Clientsò checkbox is not available in the Gatewayôs

configuration, because it is always enabled for trusted IPs (which is good).
11

11. You can now run IBMatlab within Matlab. To verify that IB-Matlab is

properly installed, retrieve your current IB account information, using the

following commands (which are explained in §4 below):

>> data = IBMatlab (' action ' , ' account_data ')

>> data = IBMatlab (' action ' , ' portfolio ')

12. If you get an error ñIBMatlab.jar not found in static Java classpath.

Please add IBMatlab.jar to classpath.txtò, then repeat step #5 above carefully,

restart Matlab and retry step #11. If you still get the error, please contact Yair.

10 See http://www.elitetrader.com/vb/showthread.php?threadid=175081 for details on how to solve this.
11 If you forget to add the localhost IP to the list of trusted IP addresses, IBMatlab will complain that it cannot connect to IB

http://www.elitetrader.com/vb/showthread.php?threadid=175081

10 IB-Matlab User Guide

2.1 Licensing and activation

IB-Matlabôs license uses an activation that is specific to the installed computer. This

uses a unique fingerprint hash-code that is reported by the Operating System, which

includes the Windows ID (on Windows systems), computer name, and the list of

MAC addresses used by the computer.

Once the computerôs license is activated, the activation key is stored on the

UndocumentedMatlab.com webserver. This activation key validates online whenever

IB-Matlab connects to IB (i.e., at the beginning of an IB/TWS session), and once

every few hours while connected. Validating the license online only takes a second or

two. Since it is only done at the initial connection to TWS and once every few hours,

it does not affect IB-Matlabôs run-time performance. If you have a special concern

regarding the online activation, please contact us for clarifications.

A corollary of the computer fingerprint is that whenever you modify any component

that affects the fingerprint, IB-Matlab will stop working. This could happen if you

reinstall the operating system (OS), modify the computer name, change network

adapters (e.g., switch between wifi/cellular/wired connection, or use a new USB

networking device), manually modify MAC addresses, or use software that creates

dynamic MACs. In such cases, you might see an error message such as the following

when you try to use IB-Matlab :

Error using IBMatlab/ensureConnected

IBMatlab is not activated on this comp uter .

Some additional information may be presented to help you diagnose the problem.

To fix such cases, simply revert back to the original hardware/networking

configuration, and then IB-Matlab will resume working. If you wish to make the

configuration change permanent, then you can contact us for an activation switch to

the new configuration (see the following section §2.2 for details).

Computer fingerprints are typically stable, and are not supposed to change

dynamically. However, some software programs (especially on MacOS, but also

sometimes on Linux/Windows) create dynamic MAC addresses and/or dynamically

modify the computer name (hostname). This is then reflected in the OS-reported

fingerprint, possibly causing IB-Matlab to stop working. The solution in such cases

is to find a way to keep the MAC addresses and computer name static, with the same

values as the activated fingerprint. The hostname can be set using the OSôs hostname

command, and you can determine the nature of the OS-reported MACs as follows:

>> IBMatlab('license' , 'debug' ,1); % partial sample output below

84A6C8EEAFED - net5 Intel(R) Centrino(R) Wireless - N 2230

B888E3E1EDD4 - eth4 Realtek PCIe GBE Family Controller

Using this output, you can determine which MAC address was changed / added /

deleted, and then take the appropriate action to fix it so that the reported MACs will

match the activated fingerprint. If you decide that the MACs/hostname changes are

permanent, contact us to change the activated fingerprint (see §2.2 below).

11 IB-Matlab User Guide

The standard IB-Matlab license is for a single calendar year from date of purchase.

Additional licensing options are available; contact us for pricing information:

¶ 3 or 6-months usage: these short-term licenses can be repeatedly renewed.

However, if and when you decide to get a full-year license, then you will need

to purchase the full license (i.e., not the annual renewal).

¶ Multi -year license: 3-year, 5-year, 8-year or 20-year extended maintenance.

All these extended maintenance options include bug-fixing support for 3 years

only, but they do not require annual re-licensing and will work for much

longer than the standard license year, as long as you keep your hardware and

software stable and IB continues to provide its API service.

¶ Volume (multi-computer) license: the same license as for a single computer,

but when you purchase multiple licenses at once, you get a volume discount.

¶ Site license: enables to run IB-Matlab on an unlimited number of computers

within the same Windows Domain. This license does not require activation by

end-users, only a single centralized activation. It provides a solution for users

who wish to deply IB-Matlab to a cloud service, where computer hardware

fingerprints often change.

¶ Deployment (compiled) license: enables to use IB-Matlab within a compiled

program that runs on an unlimited number of computers. This license does not

require separate activations by end-users, only a single centralized activation.

¶ Source-code license: unlimited in duration, can be installed on an unlimited

number of computers in the organization, and requires no activation. This is

the most expensive license and requires signing a dedicated agreement.

Since IB-Matlab version 1.66, you can view information about the installed version:

>> IBMatlab('version')

ans =

 Version: 1.66

 Release: '2 3- May- 2015'

 Expiry: '1 - Jun - 2015'

2.2 Switching activated computers

You can switch the IB-Matlab license activation between computers or computer

hardware configurations (i.e., fingerprint hash-code) up to 3 times at no cost. A small

handling fee will be incurred for additional re-activations, following the initial 3.

In order to change the activation fingerprint, simply email us the new configurationôs

fingerprint and we will make the switch on the server-side.

Activation switches can take up to 48 hours, depending on your request time (e.g.,

longer during the weekend), but are normally completed within a few hours during

regular European business hours. You will receive a confirmation email when the

activation switch is complete.

12 IB-Matlab User Guide

3 Using IBMatlab

3.1 General usage

IB-Matlab uses the IB client (either TWS or IB Gateway) to connect to the IB server.

Therefore, to use IB-Matlab , you must first ensure that either TWS or Gateway is

active. If an active IB client is not detected, IB-Matlab will automatically attempt to

start TWS and to connect to it. Note that this may not work for some TWS

installations. You can always start TWS or IB Gateway manually, before running IB-

Matlab . In any case, if an IB connection is unsuccessful, IB-Matlab will error.

IB-Matlabôs Matlab wrapper function is called IBMatlab. This function is contained

within the IBMatlab.p file. Its accompanying IBMatlab.m file provides online

documentation using standard Matlab syntax, e.g.:

>> help IBMatlab

>> doc IB Matlab

The IBMatlab function accepts a variable number of parameters, and returns two

objects: a data object (that contains the returned query data, or the order ID of a sent

trade order), and a connector object that provides full access to the Java API.
12

IBMatlab can accept input parameters in either of two formats:

¶ As name-value pairs ï for example:

>> data = IBMatlab (' action ' , ' accoun t' , ' AccountName ' , ' DU12345') ;

¶ As a pre-prepared struct of parameters ï for example:

>> params = []; % initialize

>> param s.Action = ' account ' ;

>> params.AccountName = ' DU12345' ;

>> data = IBMatlab (params);

These input formats are equivalent. You can use whichever format you feel more

comfortable with.

Note that if you choose to use the struct format and then to reuse this struct for

different IBMatlab commands (by altering a few of the parameters), then the entire

set of struct parameters is used, possibly including some leftover parameters from

previous IBMatlab commands, that may lead to unexpected results. For example:

% 1st IBMatlab command ï buy 10 GOOG at l imit $600.00

>> params = []; % initialize

>> params.Action = ' buy ' ;

>> params.Symbol = ' GOOG' ;

>> params.Quantity = 10;

>> params.Type = ' LMT' ;

>> params.LimitPrice = 600.00;

>> orderId 1 = I BMatlab (params);

12 See §15 below for more details

13 IB-Matlab User Guide

% 2nd IBMatlab command ï sell 10 GOOG at l imit $6 25.00

>> params.Action = ' sell ' ; % reuse the existing params struct

>> params.LimitPrice = 625.00;

>> orderId1 = IBMatlab (params);

The second IBMatlab command will sell all 10 units of GOOG, even if the user

meant to sell just a single unit. This is because the params struct still contains the

Quantity=10 field from the first IBMatlab command. To avoid unexpected results, I

therefore advise to re-initialize the params struct (=[]) for each IBMatlab command.

IBMatlab is quite tolerant of user input: parameter names are case-insensitive

(whereas most IB values are case-sensitive), parameter order does not matter, and in

some cases the inputs can be shortened. For example, the following are all equivalent:

>> data = IBMatlab (' action ' , ' accoun t ' , ' AccountName ' , ' DU12345') ;

>> data = IBMatlab (' action ' , ' account_data ' , ' accountn ame' , ' DU12345') ;

>> data = IBMatlab (' action ' , ' account_data ' , ' AccountName ' , ' DU12345') ;

>> data = IBMatlab (' Action ' , ' Account_Data ' , ' AccountName ' , ' DU12345') ;

>> data = IBMatlab (' ACTION' , ' ACCOUNT_DATA' , ' AccountName ' , ' DU12345') ;

>> data = IBMatlab (' AccountName ' , ' DU12345' , ' action ' , ' account_data ') ;

The full list of acceptable input parameters is listed in the sections below, grouped by

usage classification.

When using IBMatlab, there is no need to worry about connecting or disconnecting

from TWS/Gateway ï IBMatlab handles these activities automatically, without

requiring user intervention. The user only needs to ensure that TWS/Gateway is

active and logged-in when the IBMatlab command is invoked in Matlab.

IBMatlab automatically connects to whichever TWS is currently active. If you

logged-in to TWS using a paper-trading login then IBMatlab will work on the

simulated account, whereas if you logged-in to your live account then IBMatlab will

connect to that account. In other words, the TWS account type is transparent to

IBMatlab: the only way to control whether IBMatlab will use simulated or live

trading is to login to TWS using the appropriate username/password. Refer to §13

below for additional details.

14 IB-Matlab User Guide

3.2 Handling IB errors

Much of IBMatlabôs functionality relates to a specific security that you choose to

query or trade. IB is not very forgiving if you do not provide the exact security

specifications (a.k.a. contract) that it expects: in such a situation, data is not returned,

and an often-cryptic error message is displayed in Matlabôs Command Window:
13

>> data = IBMatlab (' action ' , ' query ' , ' symbol ' , ' EUR')

[API.msg2] No security definition has been fo und for the request {153745243, 200}

data =

 reqId: 153745243

 reqTime: ' 13- Feb- 2012 21:25:42 '

 dataTime: ''

 dataTimestamp: - 1

 ticker: ' EUR'

 bidPrice: - 1

 askPrice: - 1

 open: - 1

 close: - 1

 low: - 1

 high: - 1

 lastPrice: - 1

 volume: - 1

 tick: 0.01

Unfortunately, IB is not very informative about what exactly was wrong with our

request; we need to discover this ourselves. It turns out that in this specific case, we

need to specify a few additional parameters, since the defaults (localSymbol=symbol,

SecType='STK', Exchange='SMART') are invalid for this security:

>> data = IBMatlab (' action ' , ' query ' , ' symbol ' , ' EUR' , ...

 ' localSymbol ' , ' EUR.USD' , ' secType ' , ' cash ' , ...

 ' exchange ' , ' idealpro ')

data =

 reqId: 153745244

 reqTime: ' 13- Feb- 2012 21:28:51 '

 dataTime: ' 13- Feb- 2012 21:28:52 '

 dataTimest amp: 734912.895051898

 ticker: ' EUR'

 bidPrice: 1.32565

 askPrice: 1.32575

 open: - 1

 close: 1.3197

 low: 1.32075

 high: 1.32835

 lastPrice: - 1

 volume: - 1

 tick: 5e - 005

 bidSize: 26000000

 askSize: 20521000

13 The error messages can be suppressed using the MsgDisplayLevel parameter, and can also be trapped and processed using the

CallbackMessage parameter ï see §14 below for more details

15 IB-Matlab User Guide

In other cases, we may need to specify the Currency (default='USD'). For example,

the Russell 2000 index (RUT) is listed on the Toronto Stock Exchange (TSE) and

trades in CAD currency. Likewise, the USD.JPY currency pair trades in Yens (JPY

currency), not USD.
14

 Similarly, when Exchange='SMART' and Symbol='IBM' then

Currency must be explicitly specified since IBM can trade in either GBP or USD.

Because of these potential ambiguities, it is a good idea to always specify Currency.

For options/future we also need to specify the Expiry , Strike and Right parameters.

In some cases, specifying the Expiry in YYYYMM format is ambiguous because the

underlying security has several separate futures/options expiring in the same month:
>> data = IBMatlab (' action ' , ' query ' , ' symbol ' , ' TNA' , ' secType ' , ' opt ' , ...

 ' expiry ' , ' 201202 ' , ' strike ' ,47, ' right ' , ' CALL')

[API.msg2] The contract description specified for TNA is ambiguous;

you must specify the multiplier. {149386474, 200}

The solution is to specify the exact Expiry in YYYYMMDD format (i.e., specifying

the full date rather than just the month), or to specify the Multiplier parameter.

If you are unsure of a securityôs contract details, try using different parameter values.

Alternatively, right-click the ticker in TWS and select ñContract Info / Descriptionò:

Contract descriptions for USD.JPY and an IBM option, as reported in TWS

This specific example shows that the LocalSymbol for the IBM OCT12 PUT option

is óIBM 121020P00100000ô (Symbol is óIBMô). This LocalSymbol has multiple

spaces
15

. For this reason it is best to copy-paste the value directly from the window.

14 http://www.interactivebrokers.com/en/index.php?f=2222&ns=T&exch=ibfxpro
15 as per the OSI specification: http://interactivebrokers.com/download/ociguide.pdf, http://en.wikipedia.org/wiki/Option_symbol

http://www.interactivebrokers.com/en/index.php?f=2222&ns=T&exch=ibfxpro
http://interactivebrokers.com/download/ociguide.pdf
http://en.wikipedia.org/wiki/Option_symbol

16 IB-Matlab User Guide

Alternatively, use your TWS paper-trade (simulated trading) account to buy a virtual

unit of the security, then use IB-Matlab to read the portfolio (see §4 below) and

check the reported contract data. For example:

>> data = IBMatlab (' action ' , ' portfolio ') ;

>> data(3)

ans =

 symbol: ' EUR'

 localSymbol: ' EUR.USD'

 exchange: ' IDEALPRO'

 secType: ' CASH'

 currency: ' USD'

 right: ' 0'

 ...

As a last resort, contact IBôs API customer support help-desk (see Appendix A.1

below) to request the necessary parameters for a particular security.

Here are some examples of IB symbols:
16

Symbol Type Description

CO Stock Cisco Corporation, NASDAQ

GE Stock General Electric, NYSE

VOD-LSE Stock Vodafone Group, London Stock Exch.

ESM1-GLOBEX-FUT Future Emini ES Jun 2011 futures, Globex

QQQFJ-CBOE-OPT Option Jun 2004, 36.0 CALL option QQQFJ

SPX-CBOE-IND Index S&P-500 Index, CBOE

INDU-NYSE-IND Index Dow Jones Industrials Index, NYSE

YM JUN 11-ECBOT-FUT Future

YM Jun 2011 future, ECBOT

Note: 3 spaces between the symbol and

month,1 space between month and year

QMN5-NYMEX-FUT Future
QM (Crude) June 2005 future contract,

NYMEX

FGBL DEC 11-DTB-FUT-

EUR
Future German Dec 2011 Bund future

XAUUSD-SMART-CMDTY Commodity London Gold Spot

EUR.USD-IDEAL-CASH Cash Forex EURUSD currency pair, IDEAL

EUR.USD-IDEALPRO-CASH Cash Forex EURUSD currency pair, IDEALPRO

Traders who wish to get the full option chain list are referred to §5.4 and §11.4 below.

16 http://www.amibroker.com/ib.html (scroll down to the SYMBOLOGY section)

http://www.amibroker.com/ib.html

17 IB-Matlab User Guide

Important : The IB server limits the rate of messages sent to the IB server, to 50

messages / second. If you exceed this rate, you will receive an error message from IB:

[API.msg2] Max rate of messages per second has been exceeded: max=50 rec=55

A common cause of confusion is due to specifying numeric values as strings or vice

versa. For example, specifying 12 rather than ñ12ò, or ñ0ò rather than 0 or false. See

the following section for additional details. Each IB parameter expects a value of a

specific data type, which is listed in the parameter tables in this user guide. In many

cases, IB-Matlab is smart enough to automatically convert to the correct data type,

but you should not rely on this: it is better to always use the correct data type.

Another cause of confusion is Matlabôs default use of the ñshortò format, which

rounds numbers displayed in the Matlab console (Command Window) to 4 digits after

the decimal. The data actually has higher precision, so when we use it in a calculation

the full precision is used, but this is simply not displayed in the console.

IB-Matlab does not truncate/round/modify the IB data in any manner!

To display the full numeric precision in the Matlab console, change your Matlabôs

Command Windowôs Numeric Format from ñshortò to ñlongò (or ñlong gò) in

Matlabôs Preferences window, or use the ñformat long ò Matlab command:

>> data = IBMat lab (' action ' , 'query' , 'localsymbol' , 'EUR.USD' , ...) ;

>> data.askPrice % short format

ans =

 1.0727

>> format long g % long format

>> data.askPrice

ans =

 1.07265

18 IB-Matlab User Guide

3.3 Contract properties

The following contract (security/ticker) properties can be specified in IBMatlab:
17

Parameter Data type Default Description

Symbol string (none) The symbol of the underlying asset

LocalSymbol string '' The local exchange symbol of the underlying
asset. When left empty, IB sometimes tries to
infer it from Symbol and the other properties.

SecType string 'STK' One of:
¶ 'STK' ï stock equity and ETF (default)
¶ 'OPT' ï option
¶ 'FUT' ï future
¶ 'IND' ï index
¶ 'FOP' ï option on future
¶ 'CASH' ï Forex
¶ 'WAR' ï warrant
¶ 'BOND' ï bond
¶ 'FUND' ï mutual fund
¶ 'CFD' ï contract for difference
¶ 'IOPT' ï structured product
¶ 'SSF' ï single-stock future
¶ 'CMDTY' ï commodity
¶ 'BAG' ï combo-legs (see §9.5 below)

Exchange string 'SMART' The exchange that should process the request.
18

SMART uses IBôs SmartRouting to optimize
order execution time and cost.

19
 To specify the

primary exchange, use the : or / separator,
20

 for

example: 'SMART:ISLAND' or 'SMART/TSE'.

Currency string 'USD' The trading currency. This field can often be
specified to avoid ambiguities (see §3.2 above).

Multiplier number [] The contract multiplier (for options)

Expiry string '' 'YYYYMM ' or 'YYYYMMDD ' format
Note: indicates last trading date not expiry date

Strike number 0.0 The strike price (for options)

Right string '' One of: óPô, óPUTô, óCô, óCALLô (for options)

IncludeExpir ed
integer or

logical flag
0=false If true, expired options/futures are considered,

otherwise they are not.

Important : Numbers should not be enclosed with quote marks when specifying

parameter values. Therefore, we should specify IBMatlab(... , ' Strike ' ,5 . 20) and

not IBMatlab(... , ' Strike ' , ' 5. 20') . Otherwise, Matlab might get confused when

trying to interpret the string ' 5. 20' as a number, and very odd results might happen.

17 This list closely mirrors IBôs Java API list of contract details. Some of the Java API properties mentioned in the online list

(http://www.interactivebrokers.com/en/software/api/apiguide/java/contract.htm) are not supported by IBMatlab, but they can
still be accessed via IB-Matlabôs Java connector object, as described in Ä15 below.

18 IBôs API uses ISLAND for NASDAQ requests; you can specify either NASDAQ or ISLAND in your IB-Matlab call (IB-

Matlab versions 1.80+; earlier versions should specify ISLAND). Other exchange names are the same in TWS, IB-Matlab .
19 http://www.interactivebrokers.com/en/p.php?f=smartRouting
20 This is supported by TWS 942 or newer: http://www.interactivebrokers.com/en/?f=/en/software/apiReleaseNotes/api970.php.

This syntax is sometimes not accepted by IB. As an alternative, use the m_primaryExchange field as explained in §9.6 below.

http://www.interactivebrokers.com/en/software/api/apiguide/java/contract.htm
http://www.interactivebrokers.com/en/p.php?f=smartRouting
http://www.interactivebrokers.com/en/?f=/en/software/apiReleaseNotes/api970.php

19 IB-Matlab User Guide

4 Querying account and portfolio data

4.1 Account information

IB user accounts have numerous internal properties/parameters, ranging from the

account currency to cash balance, margin information etc. You can retrieve this

information in Matlab using the following simple command:

>> data = IBMatlab (' action ' , ' account_data ') % or: 'action' ,'account'

data =

 AccountCode: ' DU12345'

 accountName: ' DU12345'

 AccountReady: ' true '

 AccountType: ' INDIVIDUAL '

 AccruedCash: [1x9 struct]

 AccruedCash_C: [1x1 struct]

 AccruedCash_S: [1x1 struct]

 AccruedDividend: [1x1 struct]

 AccruedDividend_C: [1x1 struct]

 AccruedDividend_S: [1x1 struct]

 AvailableFunds: [1x1 struct]

 (and so on ... ï dozens of different account parameters)

As can be seen, the returned data object is a simple Matlab struct, whose fields match

the IB account properties. To access a specific field use standard Matlab dot notation:

>> myDividends = data. AccruedDividend

myDividends =

 value: 12345.67

 currency: 'AUD'

When the account has information in various currencies, the corresponding data field

is an array of Matlab structs.
21

 For example:

>> data.AccruedCash(1) % A Matlab struct of a specific currency

ans =

 value: 1040

 currency: 'AUD'

>> data.AccruedCash(2) % A Matlab struc t of a specific currency

ans =

 value: 1039

 currency: 'BASE'

>> [data.AccruedCash.value] % A numeric array of all currency values

ans =

 1040 1039 0 0 0 - 7 0 0 0

>> {data.AccruedCash.currency} % A corres ponding Matlab cell array

ans =

 'AUD' 'BASE' 'CAD' 'CHF' 'DKK' 'NOK' 'NZD' 'SEK' 'USD'

21 IB-Matlab versions prior to Oct 20, 2014 did not make a distinction between various currencies, so the reported value might

be misleading if your account holds values in various currencies.

20 IB-Matlab User Guide

Some account data fields have several variants, for example, AccruedCash,

AccruedCash_C and AccruedCash_S. Until you trade a commodity,

AccruedCash_C=0 and AccruedCash_S=AccruedCash. After trading a commodity,

AccruedCash_C holds the value for commodities, AccruedCash_S for securities, and

AccruedCash for the total. Several other fields also have these _S and _C variants.

If your TWS account is linked to multiple IB accounts (as is common for financial

advisors), then you should specify the AccountName input parameter, so that IB

would know which IB account to access:
22

>> data = IBMatlab (' action ' , ' account ' , ' AccountName ' , ' DU12345') ;

To get data for all accounts in a consolidated manner, set AccountName to 'All' :
23

>> data = IBMatlab (' action ' , ' account ' , ' AccountName ' , ' All ')

data =

 DF12344 : [1x1 struct]

 DU12345: [1x1 struct]

 DU12346: [1x1 struct]

 SummaryData: [1x1 struc t]

 ManagedAccounts: {'DF12 344 ' 'DU1 2345 ' 'DU12 346 '}

where the returned struct fields contain the account data for each specific account, as

shown at the beginning of this section, plus a SummaryData struct field for all accounts.

The final field, ManagedAccounts , is a cell array of all the managed account names.

Note: IB has changed the behavior for AccountName='All' in 2015. The description

above is accurate as of November 2015, but with your IB accounts you might still see

the previous behavior, receiving a single unified data struct, as for a single account.

The AccountName parameter is only used when managing multiple accounts. If you

manage just a single account, then the AccountName parameter is ignored - you will

always receive the detailed data struct for the account, as shown at the beginning of

this section, even if you specify an invalid AccountName, or omit it altogether.

In some cases, IB might return empty data in response to account requests. Two

workarounds have been found for this, although they might not cover all cases. The

workarounds are to simply re-request the information, and to force a programmatic

reconnection to IB (more on the Java connector in §15 below):

data = IBMatlab (' action ' , ' account ');

if isempty(data) % empty data ï try to re - request the same data

 [data, ibConnectionObject] = IBMatlab (' action ' , ' account ');

end

if isempty(data) % still empty data ï try to disconnect/reconnect

 ibConnectionObject.disconnectFromTWS; % disconnect from IB

 pause (1); % let IB cool down a bit

 data = IBMatlab (' action ' , ' account '); % will automatically reconnect

end

22 If you donôt specify the AccountName, you will get stale or empty account data.
23 TWS/IB-Gateway API setting "Master API Client ID" may need to be empty (even if correct) for this to work (see installation

step 9d in §2 above).

21 IB-Matlab User Guide

4.2 Portfolio data

To retrieve an IB accountôs portfolio (list of held securities), use 'portfolio' action:

>> data = IBMatlab (' action ' , ' por tfolio ')

data =

1x12 struct array with fields:

 symbol

 localSymbol

 exchange

 secType

 currency

 right

 expiry

 strike

 position

 marketValue

 marketPrice

 averageCost

 contract

This returns a Matlab array of structs, where each struct element in the array

represents a different security held in the IB account. For example:

>> data(2)

ans =

 symbol: ' AMZN'

 localSymbol: ' AMZN'

 exchange: ' NASDAQ'

 secType: ' STK'

 currency: ' USD'

 right: ' 0'

 expiry: ''

 strike: 0

 position: 9200

 marketValue: 1715800

 marketPrice: 186.5

 averageCost: 169.03183335

 contract: [1x1 struct]

The marketPric e value is reflected in TWSôs Quote Monitor as the ñMark Priceò. It is

defined as the last price, clamped to ask (if ask<last) or bid (if bid>last) as needed.
24

It is highly advisable for robustness to compare the accountôs StockMarketValue
25

 to

the sum of non-cash portfolio marketValue s. Be careful to sum only non-cash

securities (i.e., ~strcmpi(data.secType, ' cash ')). Shorted securities will appear with

a negative marketValue in the portfolio struct array, while long securities will have a

positive value. The sum of these values, which should be equal to the accountôs

StockMarketValue , may be positive or negative, indicating whether the overall

portfolio is long or short. If you are only interested in the total monetary value of the

24 http://www.interactivebrokers.com/en/software/tws/usersguidebook/thetradingwindow/price-based.htm

25 As reported by the IBMat lab(' action ' , ' account ') command ï see §4.1 for details

http://www.interactivebrokers.com/en/software/tws/usersguidebook/thetradingwindow/price-based.htm

22 IB-Matlab User Guide

security positions (i.e., their absolute marketValue s), then the sum in this case should

equal the accountôs GrossPositionValue . Note that there may be small differences

between the portfolio marketValue sums and the account StockMarketValue or

GrossPositionValue , due to market changes that occurred between the time that the

account data was collected, and the time that the portfolio data was requested. If you

run these requests immediately one after another, then in the vast majority of the

cases the data will match exactly.

In the returned data struct, the contract field is itself a struct, which contains basic

information about the security.
26

 The only important piece of information that is not

already included in the main struct is the contract Id stored in data.c ontract .m_conId :
>> data (2).contract

ans =

 m_conId: 3691937

 m_symbol: 'AMZN'

 m_secType: 'STK'

 m_currency: ' USD'

 m_primaryExch : ' NASDAQ'

 ...

As with account data requests,, if multiple IB accounts are connected to our IB login,

then we need to ensure that we request data for the correct account. Many frustrations

can be avoided by specifically stating the AccountName parameter whenever we use

IBMatlab in a multi-account environment. If you are unsure of the account name, set

AccountName to 'All' (read the related discussion at the end of §4.1):
>> data = IBMatlab (' action ' , ' portfolio ' , ' AccountName ' , ' All ')

data =

 DF12344: [0 x0 struct]

 DU12345: [1x 7 struct]

 DU12346: [1x3 struct]

As with account data requests, IB might return empty data in response to portfolio

requests. Two workarounds have been found for this, although they might not cover

all cases.
27

 The workarounds are to simply re-request the information, and to force a

programmatic reconnection to IB (more on the Java connector in §15 below):
data = IBMat lab (' action ' , ' portfolio ');

if isempty(data) % empty data ï try to re - request the same data

 [data, ibConnectionObject] = IBMatlab (' action ' , ' portfolio ');

end

if isempty(data) % still empty data ï try to disconnect/reconnect

 ibConnectionObject.disc onnectFromTWS; % disconnect from IB

 pause (1); % let IB cool down a bit

 data = IBMatlab (' action ' , ' portfolio '); % will automatically reconnect

end

In some cases, even with the retry workaround above, IB still returns empty portfolio

data. A more reliable (and much faster) mechanism for retrieving portfolio data is to

limit the request only to the portfolio positions, by setting the Type parameter to

26 Use §5.4 below to retrieve detailed contract information
27 For example, the IB API has a known limitation that it does not return the portfolio position if the clearing house is not IB

23 IB-Matlab User Guide

'positions'. IB will return the data much faster and more reliably, except for the

marketValue , marketPrice , and averageCost fields, which are returned empty:

>> data = IBMatlab (' action ' , ' portfolio ' , ' type ' , ' positions ') ;

>> data(5)

ans =

 symbol: 'ZL'

 localSymbol: 'ZL DEC 15'

 exchange: ''

 secType: 'F UT'

 currency: 'USD'

 right: ''

 expiry: '20151214'

 strike: 0

 position: - 1

 marketValue: []

 marketPrice: []

 averageCost: []

 contract: [1x1 struct]

In this example, we have a short position of -1 for the ZL 12/2015 future, and no

market information is included in the returned data.

Here is a short Matlab code example showing how to retrieve the position (number of

portfolio shares) of a specific security ('GOOG' in this example):

portfolio Data = IBMat lab (' action ' , ' portfolio ' , ' type ' , ' positions ') ;

symbols = { portfolioD ata .localSymbol};

idx = strcmpi('GOOG', symbols);

position = portfolioD ata (idx).position;

if isempty(position)

 position = 0;

end

The position information is often sufficient. For example, an automated trading

algorithm may need to determine if a position is currently open, and to compute the

trade-order quantity required to open/reverse/close it. In such cases, limiting the

portfolio request to position-only data is advisable. If you also need market data, you

can use a standard portfolio request, or to retrieve the market data in a separate query.

Finally, note that IB will only send Forex (cash) position in the portfolio data if the

relevant option is selected in the API settings:

24 IB-Matlab User Guide

5 Querying current market data

5.1 Single-quote data

Let us start with a simple example where we retrieve the current market information

for Google Inc., which trades using the GOOG symbol on IBôs SMART exchange

(the default exchange), with USD currency (the default currency):

>> data = IBMatlab (' action ' , ' query ' , ' symbol ' , ' GOOG')

data =

 reqId: 22209874

 reqTime: ' 02- Dec- 2010 00:47:23 '

 dataTime: ' 02- Dec- 2010 00:47:24 '

 dataTimestamp: 734474.032914491

 lastEventTime : 734474.03291 4512

 ticker: ' GOOG'

 bidPrice: 563.68

 askPrice: 564.47

 open: 562.82

 close: 555.71

 low: 562.4

 high: 571.57

 lastPrice: - 1

 volume: 36891

 tick: 0.01

 bidSize: 3

 askSize: 3

 lastSize: 0

 contract: [1x1 struct]

contractDetails: [1x1 struct]

Here is another example, this time for a future asset:

>> data = IBMatlab('action' , 'query' , 'LocalSymbol' , 'YI JUL 17' , . . .

 'SecType' , 'FUT' , 'Exchange' , 'NYSELIFFE')

data =

 reqId: 727929834

 reqTime: '11 - May- 2017 10:23:11'

 dataTime: '11 - May- 2017 10:23:12'

 dataTimestamp: 736826.432780035

 lastEventTime: 736826.432780521

 ticker: ''

 bidPrice: 16.263

 askPrice: 16.271

 open: 16.197

 close: 16.207

 low: 16.18

 high: 16.285

 lastPrice: 16.285

 volume: 25

 tick: 0.01

 bidSize: 3

 askSize: 3

 lastSize: 1

25 IB-Matlab User Guide

As can be seen, the returned data object is a Matlab struct whose fields are self-

explanatory. To access any specific field, use the standard Matlab notation:

>> price = data.bidPrice; %=563.68 in this specific case

Note: reqTime , dataTime , dataTimestamp and lastEventTime fields reflect local time.

If lastPrice is returned with valid data (not -1) then it is usually accompanied by a

lastTimestamp field that reflects the server time in Java units (seconds since midnight

1/1/1970
28

 as a string, for example: ó1348563149ô). We can convert lastTimestamp

into Matlab format by converting the string into a number using Matlabôs datestr and

datenum functions:
29

>> datestr(dat enum([1970 1 1 0 0 str2num(data .lastTimestamp)]))

ans =

25- Sep- 2012 08:52:29

To retrieve live and historic market data, several pre-conditions must be met:

1. The IB account is subscribed to the information service for the stated security

2. The specified security can be found on the specified exchange using the

specified classification properties (a.k.a. contract)

3. The security is currently traded (i.e., its market is currently open)

4. There is no other TWS with live data running on a different computer
30

5. If you manage several accounts, they should be associated with the main

account for live data, using the Manage Accounts window in TWS.

If any of these conditions is not met, the information returned by IB will be

empty/invalid (the data fields will have a value of -1 or []). In some cases, IB-

Matlab automatically attempts to re-fetch the data from IB, to ensure that the data is

in fact missing. If condition 3 is not met, the empty data will not be accompanied by

any error message; if condition 1 and/or 2 (but not 3) is not met, an error message will

be displayed in the Matlab command window,
31

 as the following examples illustrate:

>> data = IBMatlab (' action ' , ' query ' , ' symbol ' , ' GOOG');

[API.msg2] Requested market data is not subscribed.Error&BEST/STK/Top

{153745220, 35 4}

28 http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Date.html (note the units [seconds/milliseconds] ï this can be trickyé)
29 http://www.mathworks.com/support/solutions/en/data/1-9B9H2S/
30 IB only sends live/historic data to a single computer, so retrieving such data requires IB-Matlab to be connected to the TWS

that gets the live data, not to another TWS on a different computer. So if you connect TWS to your live account on computer

A, and another TWS to your paper-trading account on computer B, then IB-Matlab can retrieve data only via computer A.
31 The error messages can be suppressed using the MsgDisplayLevel parameter, and can also be trapped and processed using the

CallbackMessage parameter ï see §14 below for more details

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Date.html
http://www.mathworks.com/support/solutions/en/data/1-9B9H2S/

26 IB-Matlab User Guide

data =

 dateTime: {1x0 cell}

 open: []

 high: []

 low: []

 close: []

 volume: []

 count: []

 WAP: []

 hasGaps: []

This illustrates a situation where we are not subscribed to data for this specific

security type and/or exchange. A similar yet different message is returned when we

try to get historical data for a security type or exchange that is not subscribed:

>> data = IBMatlab (' action ' , ' history ' , ' symbol ' , ' GOOG') ;

[API.msg2] Historical Market Data Service error message:

No market data permissions for ISLAND STK {153745241, 162}

If we specify an incorrect security name or classification properties, then the data is

similarly not returned, and an error message is displayed (see discussion in §3.2).

In some cases, querying a contract may return some invalid (<0) field values. For

example, querying the NIFTY50 index only returns valid close and lastPrice fields;

other fields return -1. The reason is that NIFTY50 is not a tradable security by itself,

so it has no bid/ask/open/high/low/volume values. Only NIFTY50 futures are tradable

securities, and these indeed return valid field values. Another common reason for

receiving -1 field values is querying when the market is closed. To prevent IB-

Matlab from waiting a long time for the missing fields, set the Timeout parameter.

Additional market data about a security can be retrieved using IBôs Generic Tick List

mechanism, which is accessed via the GenericTickList parameter. This parameter is

a string (default='' =empty) that accepts comma-separated integers such as ó100,101ô

or ó236ô.
32

 Note that the value should be a string (ó236ô), not a number (236).

>> data = IBMatlab (' action ' , ' query ' , ' symbol ' , ' GOOG' , ...

 ' GenericTickList ' , ' 236 '); % Note: ' 236 ' , not 236

One of the useful tick-types is 236, which returns information about whether or not

the specified security is shortable. Only some securities and exchanges support this

feature (mainly US stocks), and only for streaming quotes
33

 (not for regular market

queries). When the feature is supported, an additional shortable field is returned with

basic information about the securityôs shortability.
34

32 http://www.interactivebrokers.com/en/software/api/apiguide/tables/generic_tick_types.htm
33 See §7 for details on streaming quotes
34 See §11.3 for details about the shortable mechanism, with a full working example that uses callbacks

http://www.interactivebrokers.com/en/software/api/apiguide/tables/generic_tick_types.htm

27 IB-Matlab User Guide

5.2 Market depth data

For some exchanges and security types, and possibly also depending on your IB

account subscription, IB enables the user to retrieve market depth (order book)

information. In IB-Matlab , this information can either be retrieved as a one-time data

snapshot, or in continuous streaming mode. To get snapshot data, set the

QuotesNumber parameter to 1 (=default); to get streaming data set QuotesNumber

to a larger value. This section describes the one-time data snapshot mechanism; see

§7.3 below for a description of the streaming data mechanism, and §11.5 for a usage

example of a continuously-updating order-book GUI.

In general, retrieving market depth is very similar to retrieving single-quote data, the

only difference being that for market depth, the NumberOfRows parameter should

be set to a positive number between 2-5 (i.e., 2, 3, 4 or 5).
35

Here is a simple example of retrieving the top 3 rows of the EUR.USD order-book:

>> data Struct = IBMatlab (' action ' , ' query ' , ' symbol ' , ' EUR' , ...

 'LocalSymbol' ,' EUR.USD', 'SecType' , 'CASH' , ...

 'Exchange' , 'IDE ALPRO', 'NumberOfRows' ,3)

data Struct =

 reqId: 464868253

 reqTime: ' 16- Dec- 2014 14:03:48'

 lastEventDateNum: 735949.585989664

 lastEventDateTime: '16 - Dec- 2014 14:03:49 '

 symbol: 'EUR'

 localSymbol: 'EUR.USD'

 isActive: 0

 quotesReceived: 6

 quotesToReceive: 6

 bid: [1x3 struct]

 ask: [1x3 struct]

 contract: [1x1 stru ct]

>> data Struct .bid(1)

ans =

 price: 1.25345

 size: 1000000

 marketMaker: ''

 dateNum: 735949.585989618

 dateTime: '16 - Dec- 2014 14:03:49'

>> data Struct .ask(1)

ans =

 price: 1.2535

 size: 8320000

 marketMaker: ''

 dateNum: 735949.585989653

 dateTime : '16 - Dec- 2014 14:03:49'

35 The default value of NumberOfRows (=1) in indicates a single-quote query rather than a market-depth query.

28 IB-Matlab User Guide

Note that in this case, 6 quotes were received, corresponding to the requested 3 rows

for both the bid and the ask sides. You can request up to 10 market-depth rows (some

exchanges may limit the number of available market-depth rows to a lower number).

Note that in some cases, the market depth of the bid/ask sides may not be the same.

For example, it is possible that at some time there are 5 bid rows, but only 4 ask rows.

Naturally, data Struct .bid(1) is the highest bid, data Struct .a sk (1) is the lowest ask:

>> [data Struct .bid.price]

ans =

 1.25345 1.2534 1.25335

>> [data Struct .ask.price]

ans =

 1.2535 1.25355 1.2536

In some cases (again, depending on the market, security and your IB subscription

level), Level 2 market-data may be available. In such cases, the marketMaker field will

contain the name of the exchange hosting the order for that row.

As noted above, market depth is not always available. In such cases, you may receive

an applicable error message from the IB server, and the returned data will be empty:

>> data = IBMatlab('A ction' , 'query' , 'Symbol' , ' IBM' , 'NumberOfRows' ,3)

[API.msg2] Deep market data is not supported for this combination of

security type/exchange {464879606, 10 092}

data =

 reqId: 464879606

 reqTime: '16 - Dec- 2014 14:22:06'

 lastEventDateNum: - 1

 lastEventDateTime: ''

 symbol: 'IBM '

 localSymbol: ''

 isActive: 1

 quotesReceived: 0

 quotesToReceive: 6

 bid: [0x0 struct]

 ask: [0x0 struct]

 contract: [1x1 struct]

29 IB-Matlab User Guide

5.3 Scanner data

IBôs scanner data functionality returns a list of securities that match the specified scan

criteria. IB provides a long list of predefined scanners,
36

 including MOST_ACTIVE,

TOP_PERC_GAIN, HOT_BY_VOLUME, HOT_BY_PRICE etc. The scan can be

limited to security type and trading location,
37

 as well as to a variety of criteria on the

security attributes (price, volume, maturity date, market cap, Moody/S&P rating,

coupon rate etc.).
38

 This is an extensive list, which covers much of the demand.

Note: IB scanners are only limited to the predefined scanner types and options above.

We cannot define a generic scan criteria based on attributes that are not on the

predefined list. In such cases, we would need to use other means to scan the markets.

For example, consider using finviz.com, which provides a very detailed online

scanner (free for online browsing; premium service to download CSV data file).
39

Many additional screeners are available online.
40

To use IBôs market scanner in IB-Matlab , set the Action parameter to 'Scanner', and

either use the default criteria values (see table below) or override them. For example,

to return the current most active stock in NASDAQ (the default criteria):

>> data Struct = IBMatlab(' action ' , ' scanner ')

data Struct =

 EventName: ' scannerData '

 reqId: 349661732

 rank: 0

 contractDetails: [1x1 struct]

 dist ance: []

 benchmark: []

 projection: []

 legsStr: []

 symbol: ' QQQ'

 localSymbol: ' QQQ'

 contract: [1x1 struct]

Additional information about the returned security (QQQ in this case) can be seen in

the contract and contractDetails fields of the returned data structure.

By default, IB-Matlab only returns the top single security matching the scan criteria.

We can change this using the NumberOfRows parameter. IB limits the amount of

returned data, so it is quite possible that we will receive fewer results than requested:

36 http://www.interactivebrokers.com/en/software/api/apiguide/tables/available_market_scanners.htm
37 http://www.interactivebrokers.com/en/software/api/apiguide/tables/instruments_and_location_codes_for_market_scanners.htm
38 http://www.interactivebrokers.com/en/software/api/apiguide/java/scannersubscription.htm
39 http://finviz.com/screener.ashx
40 For example: http://nasdaq.com/reference/stock-screener.aspx, http://caps.fool.com/Screener.aspx,

http://google.com/finance/stockscreener, http://screener.finance.yahoo.com/stocks.html,
http://stockscreener.us.reuters.com/Stock/US/index, http://marketwatch.com/tools/stockresearch/screener

http://www.interactivebrokers.com/en/software/api/apiguide/tables/available_market_scanners.htm
http://www.interactivebrokers.com/en/software/api/apiguide/tables/instruments_and_location_codes_for_market_scanners.htm
http://www.interactivebrokers.com/en/software/api/apiguide/java/scannersubscription.htm
http://finviz.com/screener.ashx
http://nasdaq.com/reference/stock-screener.aspx
http://caps.fool.com/Screener.aspx
http://google.com/finance/stockscreener
http://screener.finance.yahoo.com/stocks.html
http://stockscreener.us.reuters.com/Stock/US/index
http://marketwatch.com/tools/stockresearch/screener

30 IB-Matlab User Guide

>> data Struct = IBMatlab(' Action ' , ' scanner ' , ' NumberOfRows' ,100)

data Struct =

1x23 struct array with fields:

 EventName

 reqId

 rank

 contractDetails

 distance

 benchmar k

 projection

 legsStr

 symbol

 localSymbol

 contract

>> data Struct (end)

ans =

 EventName: ' scannerData '

 reqId: 349662602

 rank: 22

 contractDetails: [1x1 struct]

 distance: []

 benchmark: []

 projection: []

 legsStr: []

 symbol: ' AMZN'

 localSymbol: ' AMZN'

 contract: [1x1 struct]

The most important parameters for scanner requests are Instrument (default value:

'STK'), LocationCode (default value: óSTK.NASDAQô) and ScanCode (default

value: óMOST_ACTIVEô). Additional parameters are listed at the end of this section.

Note: You will only receive scan data that corresponds to your paid IB market

subscription. For example, if you are only subscribed to NASDAQ data but not to

NYSE or other exchanges, then you will only receive NASDAQ scan results,

regardless of your specified LocationCode. In other words, scanner parameters only

narrow down (filter) scan results; they cannot be used to provide unsubscribed data.

IBôs documentation about the possible scanner parameter values is quite limited and

incomplete. If you are unsure of the parameter values that are required for a specific

scan, contact IBôs customer service and ask them for the specific set of ñAPI

ScannerSubscription parametersò that are required for your requested scan.

One feature that could help in determining the possible parameter values is an XML

document that the IB server provides which describes the possible combinations. We

can retrieve this document by specifying Type='parameters' in IB-Matlab :

31 IB-Matlab User Guide

>> xmlStr = IBMatlab(' Action ' , ' scanner ' , ' Type ' , ' parameters ')

xmlStr =

<?xml version= " 1.0 " encoding= " UTF- 8" ?>

<ScanParameterResponse>

 <InstrumentList varName= " instrumentList " >

 <Instrument>

 <name>US Stocks</name>

 <type>STK</type>

<filters>PRICE,PRICE_USD,VOLUME,VOLUME_USD,AVGVOLUME,AVGVOLU

ME_USD,HALTED,... ,FIRSTTRADEDATE,HASOPTIONS</filters>

 <group>STK.GLOBAL</group>

 <shortName>US</shortName>

 </Instrument>

 <Instrument>

 <name>US Futures</name>

 <type>FUT.US</type>

 <secType>FUT</secType>

<filters>PRICE,PRICE_USD,VOLUME,VOLUME_USD,PRODCAT,LEADFUT,C

HANGEPERC,CHANGEOPENPERC,OPENGAPPERC,PRICERANGE,TRADERATE</f

ilter s>

 <group>FUT.GLOBAL</group>

 <shortName>US</shortName>

 </Instrument>

 ... (~20K additional lines!)

This XML string is quite long (~1MB, ~20K lines). We can store it in a *.xml file and

open this file in an XML reader (for example, a browser). Alternatively, we can ask

IB-Matlab to parse this XML and present us with a more manageable Matlab struct

that we can then process in Matlab. This is done by setting ParametersType='struct'.

Note that this XML parsing could take a long time (a full minute or even longer):

>> params = IBMatlab(' Action ' , ' scanner ' , ' Type ' , ' parameters ' , ...

 ' ParametersT ype ' , ' str uct ') %may take a long time!

params =

 Name: ' ScanParameterResponse '

 Instrume ntList: [1x1 struct]

 LocationTree: [1x1 struct]

 ScanTypeList: [1x2 struct]

 SettingList: [1x1 struct]

 FilterList: [1x2 struct]

 ScannerLayoutList: [1x1 struct]

 InstrumentG roupList: [1x1 struct]

 SimilarProductsDefaults: [1x1 struct]

 MainScreenDefaultTickers: [1x1 struct]

 ColumnSets: [1x1 struct]

 SidecarScannerDefaults: [1x1 struct]

>> params.InstrumentList

ans =

 Name: ' InstrumentLi st '

 Attributes: [1x1 struct]

 Instrument: [1x23 struct]

32 IB-Matlab User Guide

>> params.InstrumentList.Instrument(2)

ans =

 Name: ' Instrument '

 name: ' US Futures '

 type: ' FUT.US'

 filters: [1x108 char]

 group: ' FUT.GLOBAL'

 shortName: ' US'

 secType: ' FUT'

 nscanSecType: []

 permSecType: []

>> params.InstrumentList.Instrument(2).filters

ans =

PRICE,PRICE_USD,VOLUME,VOLUME_USD,PRODCAT,LEADFUT,CHANGEPERC,CHANGEOPEN

PERC,OPENGAPPERC,PRICERANGE,TRADERATE

The parameters that affect scanner data retrieval closely mirror those expected by

IBôs Java API:
41

Parameter
Data

type
Default Description

Type string 'Scan' One of:

¶ 'Scan' ï scanner data

(default)

¶ 'Parameters' ï possible

scanner param values

ParametersType string 'XML ' One of:

¶ 'XML ' (default)

¶ 'struct' ï Matlab struct

AbovePrice number 0.0 Filter out contracts with a price

lower than this value

AboveVolume integer 0 Filter out contracts with a

volume lower than this value

AverageOptionVolume

Above

integer 0 Filter out contracts with avg.

options volume lower than this

BelowPrice number Inf Filter out contracts with a price

higher than this value

CouponRateAbove number 0.0 Filter out contracts with a

coupon rate lower than this

CouponRateBelow number Inf Filter out contracts with a

coupon rate higher than this

ExcludeConvertible string ''

(empty string)

Filter out convertible bonds

41 http://www.interactivebrokers.com/en/software/api/apiguide/java/scannersubscription.htm

http://www.interactivebrokers.com/en/software/api/apiguide/java/scannersubscription.htm

33 IB-Matlab User Guide

Parameter
Data

type
Default Description

Instrument string 'STK' Defines the instrument type
42

LocationCode string 'STK.NASDAQ' Defines the scanned markets
43

MarketCapAbove number 0.0 Filter out contracts with a

market cap lower than this

MarketCapBelow number Inf Filter out contracts with a

market cap above this value

MaturityDateAbove string ''

(empty string)

Filter out contracts with a

maturity date earlier than this

MaturityDateBelow string ''

(empty string)

Filter out contracts with a

maturity date later than this

MoodyRatingAbove string ''

(empty string)

Filter out contracts with a

Moody rating below this value

MoodyRatingBelow string ''

(empty string)

Filter out contracts with a

Moody rating above this value

NumberOfRows integer 1 The maximal number of rows

of data to return for the query

ScanCode string 'MOST_ACTIVE' A long list... - see the API doc
44

ScannerSettingPairs string ''

(empty string)

For example, a pairing of

óAnnual, trueô used on the ñTop

Option Implied Vol % Gainersò

scan returns annualized

volatilities

SPRatingAbove string ''

(empty string)

Filter out contracts with an

S&P rating below this value

SPRatingBelow string ''

(empty string)

Filter out contracts with an

S&P rating above this value

StockTypeFilter string 'ALL ' One of:

¶ 'ALL ' (default)

¶ 'CORP'

¶ 'ADR'

¶ 'ETF'

¶ 'REIT'

¶ 'CEF'

42 http://www.interactivebrokers.com/en/software/api/apiguide/tables/instruments_and_location_codes_for_market_scanners.htm

(note: this is only a partial list!)
43 http://www.interactivebrokers.com/en/software/api/apiguide/tables/instruments_and_location_codes_for_market_scanners.htm

(note: this is only a partial list!)
44 http://www.interactivebrokers.com/en/software/api/apiguide/tables/available_market_scanners.htm

http://www.interactivebrokers.com/en/software/api/apiguide/tables/instruments_and_location_codes_for_market_scanners.htm
http://www.interactivebrokers.com/en/software/api/apiguide/tables/instruments_and_location_codes_for_market_scanners.htm
http://www.interactivebrokers.com/en/software/api/apiguide/tables/available_market_scanners.htm

34 IB-Matlab User Guide

5.4 Contract details and options chain

Contract details for any security can be retrieved using the parameters Action='query'

with Type='contract'. If the security is well-defined, then IB-Matlab will return a

data struct containing various details on the contract, which is basically a merge of

the contract and contractDetails structs that are returned by the single-quote query

(§5.1). For example:

>> dataStruct = IBMatlab('action' , 'contract' , 'symbol' , 'IBM')

dataStruct =

 m_conId: 8314

 m_symbol: 'IBM'

 m_secType: 'STK'

 m_expiry: []

 m_strike: 0

 m_right: []

 m_multiplier: []

 m_exchange: 'SMART'

 m_currency: 'USD'

 m_localSymbol: 'IBM'

 m_primaryExch: 'NYSE'

 m_includeExpired: 0

 m_secIdType: []

 m_secId: []

 m_comboLegsDescrip: []

 m_comboLegs: [0 java.util.Vector]

 m_underComp: []

 m_summary: [1x1 com.ib.client.Contract]

 m_marketName: 'IBM'

 m_tradingClass: 'IBM'

 m_minTick: 0.01

 m_priceMagnifier: 1

 m_orderTypes: 'ACTIVETIM,ADJUST,ALERT,ALGO,ALLOC,AON,

AVGCOST,BASKET,COND,CONDORDER,DARKPOLL,DAY,DEACT,DEACTDIS,DEACTEOD,DIS,

GAT,GTC,GTD,GTT,HID,IBDARK,ICE,IMB,IOC,LIT,LMT,LOC,MIT,MKT,MOC,MTL,...'

 m_validExchanges: 'SMART,NYSE,CBOE,ISE,CHX,ARCA,ISLAND,VWAP,

IBSX,DRCTEDGE,BEX,BATS,EDGEA,LAVA,CSFBALGO,JEFFALGO,BYX,IEX,TPLUS2,PSX'

 m_underConId: 0

 m_longName: 'INTL BUSINESS MACHINES CORP'

 m_contractMonth: []

 m_industry: 'Technology'

 m_category: 'Computers'

 m_subcategory: 'Computer Services'

 m_timeZoneId: 'EST'

 m_tradingHours: '20150325:0400 - 2000;20150326:0400 - 2000'

 m_liquidHours: '20150325:0930 - 1600;20150326:0 930 - 1600'

 ...

(many additional data fields, some of them empty)

Note that the data is returned even outside market trading hours, unlike the single-

quote query that typically returns empty pricing data outside trading hours. Also note

that no pricing information is returned, only the contract information.

35 IB-Matlab User Guide

Retrieving the options chain of an underlying security uses the same mechanism. In

this case, when we have SecType='OPT' (standard options) or 'FOP' (futures option),

then multiple contracts are returned (in an array of data structs similar to the above),

based on those options that correspond to our request.

For example, to retrieve all futures options for the 10-year US Treasury Note (ZN),

which have a contract month of December 2015:

>> dataStruct = IBMatlab('action' , 'contract' , 'symbol' , 'ZN' , ...

 ' secType' , 'FOP' , 'expiry' , '201512' , ...

 'exchange','ecbot')

dataStruct =

224x1 struct array with fields:

 m_conId

 m_symbol

 .. .

>> dataStruct(1)

ans =

 m_conId: 168043528

 m_symbol: 'ZN'

 m_secType: 'FOP'

 m_expiry: '20151120'

 m_strike: 128.5

 m_right: 'P'

 m_multiplier: '1000'

 m_exchange: 'ECBOT'

 m_currency: 'USD'

 m_localSymbol: 'P OZN DEC 15 12850'

 ...

>> dataStruct(2)

ans =

 m_conId: 168043533

 m_symbol: 'ZN'

 m_secType: 'FOP'

 m_expiry: '20151120'

 m_strike: 131

 m_right: 'P'

 m_multiplier: '1000'

 m_exchange: 'ECBOT'

 m_currency: 'USD'

 m_localSymbol: 'P OZN DEC 15 13100'

 ...

Note: we need to specify the SecType and Exchange for options, since IB cannot find

the security using the default parameter values ('STK' and 'SMART', respectively):

>> dataStruct = IBMatlab('action' , 'contract' , 'symbol' , 'ZN' , ...

 ' secType' , 'FOP' , 'expiry' , '201512')

[API.msg2] No security definition has been found for the request

{494601749, 200}

dataStruct =

 []

36 IB-Matlab User Guide

Also note that the reported m_expiry field is the last trading date for the contract (in

this case, November 20, 2015), not the contractôs actual expiration date (Decô 2015).

We can limit the results by specifying a combination of the Expiry , Strike,

Multiplier and/or Right parameters. For example, to limit ZN options only to Calls:

>> dataStruct = IBMatlab('action' , 'co ntract' , 'symbol' , 'ZN' , ...

 ' secType' , 'FOP' , 'expiry' , '201512' , ...

 'exchange','ecbot' , ' right ' , ' Call ')

dataStruct =

112x1 struct array with fields:

 m_conId

 m_symbol

 m_secType

 ...

Similarly, to get all options (Calls & Puts), in all expiry dates, that have Strike=$130:

>> dataStruct = IBMatlab('action' , 'contract' , 'symbol' , 'ZN' , ...

 ' secType' , 'FOP' , ' strike ' , 130 , ...

 'exchange','ecbot')

dataS truct =

22x1 struct array with fields:

 m_conId

 m_symbol

 m_secType

 ...

To retrieve the full options-chain without any filtering, we can just remove the

limiting parameters. Note that it takes a few seconds for all the thousands of possible

contract details to be sent from IB:

>> dataStruct = IBMatlab('action' , 'contract' , 'symbol' , 'IBM ' , ...

 'secT ype' , ' OPT' , 'exchange',' CBOE2')

dataStruct =

900x1 struct array with fields:

 m_conId

 m_symbol

 m_secType

 .. .

Note that the options are not necessarily ordered in any way: you should test the field

values, not rely on the order of the contracts in the returned dataStruct.

A different way of retrieving the options chain is explained in §11.4 below, using IB

event callabacks. The difference between the mechanism here and in §11.4 is that the

the command here is synchronous (i.e., Matlab waits for all the data to be received

from IB before returning a unified dataStruct). In §11.4, the contracts data are

received and processed in parallel (asynchronously) to the main Matlab program.

Finally, note that it is not possible to receive the entire list of option prices in a single

command (each market price requires a separate request with a specific

LocalSymbol). We can only extract the full option chain list of contract names and

details in a single command, as shown above.

37 IB-Matlab User Guide

5.5 Fundamental data

IBôs fundamental data functionality returns Reuters global fundamental data for

stocks. You must have a subscription to Reuters Fundamental set up in your IB

Account Management before you can receive most of the reports. The following data

reports are available using this functionality:
45

¶ ReportSnapshot (company overview)

¶ ReportsFinSummary (financial summary)

¶ ReportRatios (financial ratios)

¶ ReportsFinStatements (financial statements)

¶ RESC (analyst estimates)

¶ CalendarReport (company calendar)

¶ Ratios (fundamental ratios ï different from other reports: see below)

Note: Fundamental data is only available for stocks, not for any other security type.

To use IBôs market scanner in IB-Matlab , set the Action parameter to 'Fundamental',

and the Type parameter to one of the report names above, and specify the requested

contract information (Symbol, Exchange, Currency etc.). For example:

>> xmlStr = IBMatlab(' Action ' , ' fundamental ' , 'Type' , 'ReportSnapshot' ,...

 'Symbol' , 'IBM')

xmlStr =

<?xml version="1.0" encoding="UTF - 8"?>

<ReportSnapshot Major="1" Minor="0" Revision="1">

 <CoIDs>

 <CoID Type="RepNo">4741N</CoID>

 <CoID Type="CompanyName">International Business Machines

Corp.</CoID>

 <CoID Type="IRSNo">130871985</CoID>

 <CoID Type="CIKNo">0000051143</CoID>

 </CoIDs>

 <Issues>

 <Issue ID="1" Type="C" Desc="Common Stock" Order="1">

 <IssueID T ype="Name">Ordinary Shares</IssueID>

 <IssueID Type="Ticker">IBM</IssueID>

 <IssueID Type="CUSIP">459200101</IssueID>

 <IssueID Type="ISIN">US4592001014</IssueID>

 <IssueID Type="RIC">IBM</IssueID>

 <IssueID Type="SE DOL">2005973</IssueID>

 <IssueID Type="DisplayRIC">IBM.N</IssueID>

 <IssueID Type="InstrumentPI">261483</IssueID>

 <IssueID Type="QuotePI">1090370</IssueID>

 <Exchange Code="NYSE" Country="USA">New York Stock

Exchange</Exch ange>

 <MostRecentSplit Date="1999 - 05- 27">2.0</MostRecentSplit>

 </Issue>

45 https://www.interactivebrokers.com/en/software/api/apiguide/java/reqfundamentaldata.htm

https://www.interactivebrokers.com/en/software/api/apiguide/java/reqfundamentaldata.htm

38 IB-Matlab User Guide

 <Issue ID="2" Type="P" Desc="Preferred Stock" Order="1">

 <IssueID Type="Name">Preference Shares Series A</IssueID>

 <IssueID Type="Ticker">IBMPP</ IssueID>

 <IssueID Type="CUSIP">459200200</IssueID>

 <IssueID Type="ISIN">US4592002004</IssueID>

 <IssueID Type="RIC">IBMPP.PK^C06</IssueID>

 <IssueID Type="InstrumentPI">1883112</IssueID>

 <IssueID Type="QuotePI">25 545447</IssueID>

 <Exchange Code="OTC" Country="USA">Over The Counter</Exchange>

 </Issue>

 </Issues>

 <CoGeneralInfo>

 <CoStatus Code="1">Active</CoStatus>

 <CoType Code="EQU">Equity Issue</CoType>

 <LastModified>2016 - 06- 29</LastModified>

 <LatestAvailableAnnual>2015 - 12- 31</LatestAvailableAnnual>

 <LatestAvailableInterim>2016 - 03- 31</LatestAvailableInterim>

 <Employees LastUpdated="2015 - 12- 31">377757</Employees>

 <SharesOut Date="2016 - 03- 31"

TotalFloat="95 9386999.0">959961852.0</SharesOut>

 <CommonShareholders Date="2015 - 12- 31">444582</CommonShareholders>

 <ReportingCurrency Code="USD">U.S. Dollars</ReportingCurrency>

 <MostRecentExchange Date="2016 - 07- 07">1.0</MostRecentExchange>

 </CoGene ralInfo>

 <TextInfo>

 <Text Type="Business Summary" lastModified="2016 - 04-

21T03:03:49">International Business Machines Corporation (IBM) is a

technology company. ..

...

The fundamental data is returned as an XML string by default, as shown above. This

XML string can be quite long, depending on the requested report and security. We

can store this string in a *.xml file and open this file in an XML reader (for example, a

browser). Alternatively, we can ask IB-Matlab to parse this XML and return a simple

Matlab struct by setting ParametersType='struct'. Note: this XML parsing could take

a long time (a full minute or even longer in some cases, such as long RESC reports):

>> data = IBMatlab(' Action ' , ' fundamental ' , 'Type' , 'ReportSnapshot' ,...

 'Symbol' , 'IBM' , ' ParametersT ype ' , ' str uct ')

data =

 Name: 'ReportSnapshot'

 Attributes: [1×1 struct]

 CoIDs: [1×1 struct]

 Issues: [1×1 struct]

 CoGeneralInfo: [1×1 struct]

 TextInfo: [1×1 struct]

 contactInfo: [1×1 struct]

 webLinks: [1×1 struct]

 peerInfo: [1×1 struct]

 officers: [1×1 struct]

 Ratios: [1×1 struct]

 ForecastData: [1×1 struct]

39 IB-Matlab User Guide

>> data.Issues.Issue(2).IssueID(4)

ans =

 Name: 'IssueID'

 Attributes: [1×1 struct]

 Data: 'US4592002004'

>> data.Issues.Issue(2).IssueID(4).Attributes

ans =

 Type: 'ISIN'

In some cases, some of the fundamental reports may not be available for a certain

security for some reason, while other reports for the same security may be available:

>> data = IBMatlab('Action' , 'fundamental' , 'Symbol' , 'IBM' , ...

 'Type' , 'ReportRatios')

[API.msg2] We are sorry, but fundamentals data for the security

specified is not available. failed to fetch {636 789740, 430}

data =

 []

>> data = I BMatlab('A ction' , 'fundamental' , ' Symbol' , 'IBM' , ...

 ' Type' , 'CalendarReport')

[API.msg2] We are sorry, but fundamentals data for the security

specified is not available. Not allowed {636789744, 430}

data =

 []

The fundamental ratios report (Type = 'Ratios') differs from the other reports in

several aspects: it does not require a Reuters subscription; it is always returned in

struct (not XML) format regardless of the ParametersType value; and it is only

available when the security trades. The reason for this is that this report uses IBôs

internal mechanism for reporting fundamental ratios of streaming quotes (see section

§7.1 below) with a GenericTickList of '258', rather than Reuters data.
46

 For a

description of the various data fields, refer to IBôs documentation.
47

>> data =IBMatlab(' Action' , 'fundamental' , 'Symbol' , 'IBM' , 'Type' , 'Ratios')

data =

 TTMNPMGN: 16.03988

 NLOW: 116.901

 REVTRENDGR: - 3.92708

 TTMEPSXCLX: 13.27684

 QTANBVPS: - 24.7614

 TTMPRCFPS: 17.78968

 TTMGROSMGN: 49.38146

 TTMCFSHR: 15.23175

 QCURRATIO: 1.37385

 PRICE2BK: 9.93472

 MKTCAP: 148275.7

 ...

 (and so on: dozens of different fields)

46 https://www.interactivebrokers.com/en/software/api/apiguide/tables/generic_tick_types.htm
47 https://www.interactivebrokers.com/en/software/api/apiguide/tables/tag_values_for_fundamental_ratios_ticktype.htm

https://www.interactivebrokers.com/en/software/api/apiguide/tables/generic_tick_types.htm
https://www.interactivebrokers.com/en/software/api/apiguide/tables/tag_values_for_fundamental_ratios_ticktype.htm

40 IB-Matlab User Guide

The parameters that affect fundamental data retrieval closely mirror those expected

by IBôs Java API (for the contract properties, see section §3.3 above):
48

Parameter Data type Default Description

Type string 'Ratios' One of:

¶ 'Ratios' (default) ï fundamental ratios

¶ 'ReportSnapshot' ï company overview

¶ 'ReportsFinSummary' ï

 financial summary

¶ 'ReportRatios' ï financial ratios

¶ 'ReportsFinStatements' ï

 financial statements

¶ 'RESC' ï analyst estimates

¶ 'CalendarReport' ï company calendar

ParametersType string 'XML' One of:

¶ 'XML' (default)

¶ 'struct' ï Matlab struct

48 https://www.interactivebrokers.com/en/software/api/apiguide/java/reqfundamentaldata.htm

https://www.interactivebrokers.com/en/software/api/apiguide/java/reqfundamentaldata.htm

41 IB-Matlab User Guide

6 Querying historical and intra-day data

Historical data can be retrieved from IB, subject to your accountôs subscription rights,

and IBôs lengthy list of pacing violation limitations.
49

 Note that these are IB server

limitations, not IB-Matlab limitations. As of Nov 2015, these limitations include:

1. Historical data is limited by default to 2000 results (data bars). You may have

access to more results depending on your IB subscription level. If you request

more results than your limit, the entire request is dropped.

2. Historical data is limited by default to the past year. If you purchase additional

concurrent real-time market data-lines from IB you can access up to 5 years of

history. If you request data older than your limit, the entire request is dropped.

3. Historical data requests that use a bar size of 30 seconds or less can only go

back six months. If older data is requested, the entire request is dropped.

4. Requesting identical historical data requests within 15 seconds is prohibited.

IB-Matlab will automatically return the previous results in such a case.

5. Requesting 6+ historical data requests for the same contract, exchange and

tick type within 2 seconds is prohibited ï the entire request will be dropped.

6. Requesting 60+ historical data requests of any type within 10-minutes is

prohibited ï the entire request will be dropped.

7. Only certain combinations of Duration and BarSize are supported:
50

49 http://www.interactivebrokers.com/en/software/api/apiguide/tables/historical_data_limitations.htm
50 Note: ñ1 secsò, not ñ1 secò. Note the distinction from ñ1 minò, ñ1 hourò, and ñ1 dayò.

http://www.interactivebrokers.com/en/software/api/apiguide/tables/historical_data_limitations.htm

42 IB-Matlab User Guide

Other Duration values (that are not specified in the table) are sometimes, but not

always, accepted by IB. For example, 60D (=60 days) is accepted, but 61D is not. In

such cases, you can always find a valid alternative (3M instead of 61D, for example).

IB-Matlab does not prevent you from entering invalid Durations and BarSizes ï it

is up to you to verify that your specified parameters are accepted by IB. If they are

not, then IB will report an error message in the Matlab command window:

[API.msg2] Error validating request: - 'qd' : cause - Historical data

bar size setting is inval id. Legal ones are: 1 secs, 5 secs, 10 secs ,é

Another limitation is that retrieving historical data must be done from the same

computer (IP) as the trading TWS:

[API.msg2] Historical Market Data Service error message: Trading TWS

session is connected from a different IP address {527921821, 162}

Of course, you must have an IB subscription for data from the requested exchange:

[API.msg2] Historical Market Data Service error message: No market

data permissions for NYSE STK {527921824, 162}

Also note that historical data retrieval is subject to the same pre-conditions as for

retrieving the current live market data (see §5.1). If any of these limitations is not

met, then an error message will be displayed and no data returned.

Subject to these limitations, retrieving information in IB-Matlab is quite simple. For

example, to return the 1-hour bars from the past day:

>> data = IBMatlab (' action ' , ' history ' , ' symbol ' , ' IBM' , ...

 ' barSize ' , ' 1 hour ' , ' useRTH' ,1)

data =

 dateN um: [1x7 double]

 dateTime: {1x7 cell}

 open: [161.08 160.95 161.66 161.17 161.57 161.75 162.07]

 high: [161.35 161.65 161.70 161.60 161.98 162.09 162.34]

 low: [160.86 160.89 161.00 161.13 161.53 161.61 161.89]

 close: [160.93 161 .65 161.18 161.60 161.74 162.07 162.29]

 volume: [5384 6332 4580 2963 4728 4465 10173]

 count: [2776 4387 2990 1921 2949 2981 6187]

 WAP: [161.07 161.25 161.35 161.31 161.79 161.92 162.14]

 hasGaps: [0 0 0 0 0 0 0]

As can be seen, the returned data object is a Matlab struct whose fields are:
51

¶ dateN um ï a numeric array of date/time values in Matlabôs numeric format
52

¶ dateTime ï a cell-array of date strings, or a numeric array of date values in IB

format (see the FormatDate parameter, explained below). Intra-

day bars use local timezone; daily bars use exchange timezone.

¶ open ï the barôs opening price

51 http://www.interactivebrokers.com/en/software/api/apiguide/java/historicaldata.htm#HT_historicalDataw
52 http://www.mathworks.com/help/matlab/ref/datenum.html

http://www.interactivebrokers.com/en/software/api/apiguide/java/historicaldata.htm#HT_historicalDataw
http://www.interactivebrokers.com/en/software/api/apiguide/java/historicaldata.htm#HT_historicalDataw
http://www.mathworks.com/help/matlab/ref/datenum.html

43 IB-Matlab User Guide

¶ high ï the high price during the time covered by the bar

¶ low ï the low price during the time covered by the bar

¶ close ï the barôs closing price

¶ volume ï the trading volume during the time covered by the bar

¶ count ï number of trades that occurred during the time covered by the bar

Note: only valid when WhatToShow='Trades' (see below)

¶ WAP ï the weighted average price during the time covered by the bar

¶ hasGaps ï whether or not there are gaps (unreported bars) in the data

The fields are Matlab data arrays (numeric arrays for the data and cell-arrays for the

timestamps). To access any specific field, use the standard Matlab notation:

>> data.dateTime

ans =

 ' 20110225 16:30:00 ' ' 20110225 17:00:00 ' ' 20110225 18:00:00 '

 ' 20110225 19:00:00 ' ' 20110225 20:00:00 ' ' 20110225 21:00:00 '

 ' 20110225 22:00:00 '

>> lastOpen = data.open(end); % =162.07 in this specific case

The following parameters affect historical data retrieval:
53

Parameter Data type Default Description

EndDateTime string ''

(empty string),

meaning now

'YYYYMMDD hh:mm:ss TMZ' format

(the TMZ time zone is optional
54

)

BarSize string '1 min' Size of data bars to be returned (within

IB/TWS limits). Valid values include:

¶ 1 sec, 5/10/15/30 secs

¶ 1 min (default)

¶ 2/3/5/10/15/20/30 mins

¶ 1 hour, 2/3/4/8 hours

¶ 1 day, 1 w, 1 m

DurationValue integer 1 Together with DurationUnits this

parameter specifies the historical data

duration, subject to the limitations on

possible Duration /BarSize

DurationUnits string 'D' One of:

¶ 'S' (seconds)

¶ 'D' (days ï default)

¶ 'W' (weeks)

¶ 'M' (months)

¶ 'Y' (years)

53 http://www.interactivebrokers.com/en/software/api/apiguide/java/reqhistoricaldata.htm
54 The list of time zones accepted by IB is listed in §9.1 below

http://www.interactivebrokers.com/en/software/api/apiguide/java/reqhistoricaldata.htm

44 IB-Matlab User Guide

Parameter Data type Default Description

WhatToShow string (case

insensitive)

'Trades' Determines the type of data to return:

¶ 'Trades' (default; invalid for Forex)

¶ 'Midpoint'

¶ 'Bid'

¶ 'Ask'

¶ 'Bid_Ask' (see usage note below
55

)

¶ 'Historical_Volatility' (STK/ETF/IND)

¶ 'Option_Implied_Volatility' (as above)

UseRTH integer or

logical flag

0 = false Determines whether to return all data

available during the requested time span,

or only data that falls within regular

trading hours. Valid values include:

¶ 0 or false (default): all data is

returned even where the market was

outside of its regular trading hours

¶ 1 or true: only data within regular

trading hours is returned, even if the

requested time span falls partially or

completely outside of the RTH.

FormatDate integer 1 Determines the date format applied to

returned data bars. Valid values include:

1) strings: óyyyymmdd hh:mm:ddô (the

time part is omitted if barSize>=1d)

2) dates are returned as a long integer

(# of seconds since 1/1/1970 GMT).

Only supported for BarSize < 1 day.

Timeout number Inf =

unlimited

Max # of secs to wait for an IB response

to a request. The timeout is ignored after

partial data has been received.

IncludeExpired integer or

logical flag

0=false If true, expired contracts are considered,

otherwise they are not.

Note that if IncludeExpired is set to 1 (or true), the historic data on expired contracts

is limited to the last year of the contractôs life, and is initially only supported by IB

for expired futures contracts (IBMatlab imposes no limitation, but IB may indeed).

Also note that some securities and exchanges do not support certain historical

parameter combinations. For example, FOREX (currency) historical data requests on

the IDEALPRO exchange do not support WhatToShow='Trades', only 'Midpoint'. IB

displays a very cryptic error message in such cases, and we are only left with the

option of guessing what parameter value to modify, or ask IBôs customer support.

55 For Bid_Ask, the time-weighted average bid prices are returned in the open field, and the ask prices in the close field.

45 IB-Matlab User Guide

Refer to IBôs documentation
56

 for the latest information on the allowed parameter

values for historical data requests. Here is a table listing the allowed WhatToShow

values for various SecTypes, valid as of 11/2015:

Also note that some exchanges, while returning the requested historical data, may not

provide all of the historical data fields listed above. For example, in the case of

FOREX on IDEALPRO again, the volume, count and WAP fields are not returned,

and appear as arrays of -1 when returned to the user in the data struct:

>> data = IBMatlab (' action ' , ' history ' , ' symbol ' , ' EUR' , ...

 ' localSymbol ' , ' EUR.USD' , ' secType ' , ' cash ' , ...

 ' exchange ' , ' idealpro ' , ' barSize ' , ' 1 day ' , ...

 ' DurationValue ' ,3, ' WhatToShow' , ' midpoint ')

data =

 dateN um: [734909 734910 734913]

 dateTime: { ' 20120210 ' ' 20120211 ' ' 20120214 ' }

 open: [1.32605 1.3286 1.32095]

 high: [1.3321 1.329075 1.328425]

 low: [1.321625 1.315575 1.320275]

 close: [1.328575 1.319825 1.325975]

 volume: [- 1 - 1 - 1]

 count: [- 1 - 1 - 1]

 WAP: [- 1 - 1 - 1]

 hasGaps: [0 0 0]

In this example, historical daily (BarSize = '1 day') data from the past 3 days was

requested on 2012-02-13 (Monday). Data was received for 2012-02-09 (Thursday),

2012-02-10 (Friday) and 2012-02-13 (Monday). Data was not received for 2012-02-

11 and 2012-02-12 because the specified security was not traded during the weekend.

56 http://www.interactivebrokers.com/en/software/api/apiguide/tables/historical_data_limitations.htm

http://www.interactivebrokers.com/en/software/api/apiguide/tables/historical_data_limitations.htm

46 IB-Matlab User Guide

Another oddity is that the dates were reported with an offset of 1 (2012-02-10 instead

of 2012-02-09 etc.). The reason is that the information is collected on a daily basis

and reported as of the first second after midnight, i.e., on the following date. This is

indeed confusing, so if you rely on the reported historical data dates in your analysis,

then you should take this into consideration. This 1-day offset only occurs when

UseRTH=0 (which is the default value): if you set UseRTH=1, then the correct dates

will be reported, since regular trading hours end within the same day, not at midnight.

It is possible to specify BarSize larger than duration. For example, on July 14, if we

specify a duration of 3 weeks, and BarSize='1w', weôd get the results for all Fridays

(=end of trading week) in the past 21 days. If we set BarSize='1m', weôd get two

results: for June 30 (=end of last trading month) and July 14.

IBôs historical data mechanism enables retrieving data as recent as a minute ago, or as

old as a year (or more, if you purchase this option from IB). Some software vendors

differentiate between intra-day and historical information, but as far as IB and IB-

Matlab are concerned, this is merely a semantic difference and there is no actual

difference. Subject to the available options in the Duration -vs.-BarSize table at the

beginning of this section, we can select any date/time window that we wish.

In some cases, users may be tempted to use the historical data mechanism to retrieve

real-time data. This is relatively easy to set-up. For example, implement an endless

Matlab loop that sleeps for 60 seconds, requests the latest historical data for the past

minute and then goes to sleep again (advanced Matlab users would improve this by

implementing a recurring timer object that wakes up every minute). In such cases, the

user should consider using the streaming quotes or realtime bars mechanisms, rather

than historical quotes. Streaming data is the subject of the following section.

One user has reported that in some cases IB returns empty data for historical index

(SecType='Ind') queries. RestartingTWS/Gateway and re-querying when the

exchange is active appears to solve this problem.

47 IB-Matlab User Guide

7 Streaming data

Streaming data is a near-real-time mechanism, where IB sends ongoing information

to IB-Matlab about quote ticks (bids and asks) and aggregated real-time bars.

7.1 Streaming quotes

The streaming quotes mechanism has two distinct parts:

1. Request IB to start sending the stream of quotes for a specified security. This

is done by using Action='query' and QuotesNumber with a positive >1 value.

The requestôs ID (a scalar integer) is returned.

2. Later, whenever you wish to read the latest quote(s), simply use

Action='query' and QuotesNumber= -1 (minus one). This will return the

latest information (a data struct), without stopping the background streaming.

For example, letôs request 100 streaming quotes for EUR.USD:

>> reqId = IBMatlab (' action ' , ' query ' , ' symbol ' , ' EUR' , ...

 ' localS ymbol ' , ' EUR.USD' , ' currency ' , ' USD' , ...

 ' secT ype ' , ' cash ' , ' exchange ' , ' idealpro ' , ...

 ' QuotesNumber ' ,100)

reqId =

 147898050

This causes IB to start sending quotes to IB-Matlab in the background, up to the

specified QuotesNumber, without affecting normal Matlab processing. This means

that you can continue to work with Matlab, process/display information etc.

QuotesNumber can be any number higher than 1 for streaming to work (a value of 1

is the standard market-query request described in §5.1). To collect streaming quotes

endlessly, simply set QuotesNumber to the value inf . Note that in Matlab, inf is a

number not a string so do not enclose it in quotes (' inf ') when submitting requests.

Also note that the request to start streaming quotes returns the request ID, not data.

The quotes are collected into an internal data buffer in IB-Matlab . A different buffer

is maintained for each contract (or rather, combination of LocalSymbol, SecType

and Expiry). The buffer size can be controlled using the QuotesBufferSize

parameter, which has a default value of 1. This means that by default only the latest

streaming quote of each type (bid/ask) is stored, along with high/low/close data.

If you set a higher value for QuotesBufferSize,
57

 then up to the specified number of

latest bid quotes will be stored (note: only bid quotes are counted here):

>> reqId = IBMatlab (' action ' , ' query ' , ' symbol ' , ' GOOG' , ...

 ' QuotesNumber ' ,100 , ' QuotesBufferSize ' ,500)

57 QuotesBufferSize is a numeric parameter like QuotesNumber, so donôt enclose the parameter value within string quotes (óô)

48 IB-Matlab User Guide

Note that using a large QuotesBufferSize increases memory usage, which could have

an adverse effect if you use a very large buffer size (many thousands) and/or

streaming for a large number of different securities.
58

Subsequent requests to retrieve the latest accumulated quotes buffer data, without

stopping the background streaming, should use QuotesNumber = -1 (minus one).

These requests return a Matlab data struct similar to this:

>> dataStruct = IBMatlab (' action ' , ' query ' , ...

 ' localS ymbol ' , ' EUR.USD' , ...

 ' QuotesNumber ' , - 1)

dataStruct =

 reqId: 147898050

 symbol: ' EUR'

 localSymbol: ' EUR.USD'

 isActive: 1

 quotesReceived: 6

 quotesToReceive: 10

 quotesBufferSize: 1

 genericTickList: ''

 data: [1 x1 struct]

 contract: [1x1 com.ib.client.Contract]

Streaming quotes are stored using a combination of the LocalSymbol, SecType, and

Expiry date values that were specified in the initial request for the streaming quotes.

In most cases (as in the example above), we only need to specify the

Symbol/LocalSymbol and the QuotesNumber in the subsequent requests.
59

Specifying all the other parameters is normally unnecessary, since IB-Matlab already

knows about this symbolôs parameters from the initial streaming request. We would

only need to specify the SecType and possibly also the Expiry when there is a

potential conflict between distinct streaming quotes (e.g., streaming quotes of both

the underlying asset and some Futures index of it).

This is useful and easy to use, but also means that you cannot have two simultaneous

streams for the same combination of LocalSymbol, SecType and Expiry , even if

using different other parameters.

In the returned dataStruct , we can see the following fields:

¶ reqId ï this is the request ID (scalar integer) for the original streaming

request, the same ID that was returned by IBMatlab in our initial request.

¶ symbol , localSymbol ï the security whose data is being streamed.

58 Quotes use about 1.5KB of Matlab memory. So, if QuotesBufferSize=1500, then for 20 symbols IB-Matlab would need

20*1500*1.5KB = 45MB of Matlab memory when all 20 buffers become full (which could take a while).
59 IB-Matlab versions since 2012-01-15 only need to use LocalSymbol; earlier versions of IB-Matlab used Symbol to store the

streaming data. This means that the earlier versions cannot stream EUR.USD and EUR.JPY simultaneously, since they both
have the same symbol (EUR). In practice, for most stocks, Symbol = LocalSymbol so this distinction does not really matter.

49 IB-Matlab User Guide

¶ isActive ï a logical flag indicating whether quotes are currently being

streamed for this security. When QuotesNumber bid quotes have been

received, this flag is set to false (0).

¶ quotesReceived ï number of streaming bid quotes received for this security.

¶ quotesToReceive ï total number of streaming bid quotes requested for the

security (using the QuotesNumber parameter). When quotesReceived >=

quotesToReceive , streaming quotes are turned off and isActive is set to false

(0). Note that it is possible that quotesReceived > quotesToReceive , since it

takes a short time for the streaming quotes cancellation request to reach IB,

and during this time a few additional real-time quotes may have arrived.

¶ quotesBufferSize ï size of the data buffer (=QuotesBufferSize parameter).

¶ genericTickList ï any GenericTickList requested in the initial request will

be kept here for possible reuse upon resubscribing to the streaming quotes (see

the ReconnectEvery parameter described below).

¶ contract ï a Java object that holds the definition of the security, for possible

reuse upon resubscribing to the streaming quotes.

¶ Data ï this is a sub-struct that holds the actual buffered quotes data.

To get the actual quotes data, simply read the data field of this dataStruct :

>> dataStruct.data

ans =

 dataTimestamp: 734892.764653854

 high: 1.3061

 highTimestamp: 734892.762143183

 low: 1.29545

 lowTimestamp: 734892.762143183

 close: 1.30155

 closeTimestamp: 734892.762143183

 bidPrice: 1.2986

 bidPriceTimestamp: 734892.764653854

 bidSize: 1000000

 bidSizeTimestamp: 734892.764653854

 askPrice: 1.29865

 askPriceTimestamp: 734892.764499421

 askSize: 18533000

 askSizeTimestamp: 734892.764653854

Note that each data item has an associated timestamp, because different data items are

sent separately and independently from IB server. You can convert the timestamps

into human-readable string by using Matlabôs datestr function, as follows:

>> datestr(dataStruct.data.dataTimest amp)

ans =

24- Jan - 2012 23:56:32

50 IB-Matlab User Guide

The dataTimestamp field currently holds the same information as bidPriceTimestamp .

Future versions of IB-Matlab may modify this to indicate the latest timestamp of any

received quote, not necessarily a bid quote.

If instead of using QuotesBufferSize=1 (which is the default value), we had used

QuotesBufferSize=3, then we would see not the latest quote but the latest 3 quotes:

>> reqId = IBMatlab (' action ' , ' query ' , ' symbol ' , ' EUR' , ...

 ' localS ymbol ' , ' EUR.USD' , ' currency ' , ' USD' , ...

 ' secT ype ' , ' cash ' , ' exchange ' , ' idealpro ' , ...

 ' QuotesNumber ' ,10, ' QuotesBufferSize ' , 3);

% now at any following point in time run the following command to get

the latest 3 quotes:

>> dataStruct = IBMatlab (' action ' , ' query ' , ...

 ' localS ymbol ' , ' EUR.USD' , ...

 ' QuotesNumber ' , - 1);

>> dataStruct.data

ans =

 dataTimestamp: [734892.99760235 734892.99760235 734892.99775607 6]

 high: 1.3061

 highTimestamp: 734892.99740162

 low: 1.29545

 lowTimestamp: 734892.99740162

 bidPrice: [1.30355 1.3035 1.30345]

bidPriceTimestamp: [734892.99760235 734892.99760235 734892.997756076]

 bidSize: [2000000 4000000 4000000]

 bidSizeTimestamp: [734892.997756076 734892.997756076 734892.997756076]

 askPrice: [1.30355 1.3036 1.30355]

askPriceTimestamp: [734892.997667824 734892.997667824 734892.997756076]

 askSize: [3153000 2153000 4153000]

 askSizeTimestamp: [73489 2.997756076 734892.997756076 734892.997756076]

 close: 1.30155

 closeTimestamp: 734892.997407037

Note that the high, low and close fields are only sent once by the IB server, as we

would expect. Only the bid and ask information is sent as a continuous stream of data

from IB. Also note how each of the quote values has an associated timestamp.

To stop collecting streaming quotes for a security, simply send the request again, this

time with QuotesNumber=0. The request will return the dataStruct with the latest

data that was accumulated up to that time.

Another parameter that can be used for streaming quotes in IB-Matlab attempts to

bypass a problem that sometimes occurs with high-frequency streams. In such cases,

it has been reported that after several thousand quotes, IB stops sending streaming

quotes data, without any reported error message. The ReconnectEvery numeric

parameter (default=5000) controls the number of quotes (total of all streaming

securities) before IB-trade automatically reconnects to IB and re-subscribes to the

streaming quotes. You can specify any positive numeric value, or inf to accept

streaming quotes without any automated reconnection.

51 IB-Matlab User Guide

Here is a summary of the IBMatlab parameters that directly affect streaming quotes:

Parameter Data type Default Description

QuotesNumber integer 1 One of:

¶ inf ï continuous endless streaming

quotes for the specified security

¶ N>1 ï stream only N quotes

¶ 1 ï get only a single quote (i.e., non-

streaming snapshot) ï (default)

¶ 0 ï stop streaming quotes

¶ -1 ï return the latest accumulated

quotes data while continuing to

stream new quotes data

QuotesBufferSize integer 1 Number of streaming quotes stored in a

cyclic buffer. Once this number of quotes has

been received, the oldest quote is discarded

whenever a new quote arrives.

GenericTickList string '' Used to request additional (non-default)

information: volume, last trade info, etc.
60

ReconnectEvery integer 5000 Number of quotes (total of all securities)

before automated reconnection to IB and re-

subscription to the streaming quotes.

¶ inf ï accept streaming quotes without

automated reconnection

¶ N>0 ï automatically reconnect and re-

subscribe to streaming quotes after N

quotes are received.

LocalSymbol string '' Used to identify and store streamed quotes.

SecType string 'STK' Used to identify and store streamed quotes.

Expiry string '' Used to identify and store streamed quotes.
Notes:

¶ IB does not send óflatô ticks (quotes where price does not change). Also, IB
streaming data is NOT tick-by-tick, but rather snapshots of the market (every
5ms for Forex, 10ms for Options, and 250ms for all other security types).

¶ By default, IB limits the streaming to 100 concurrent requests (contracts).
Users can purchase additional 100-contract blocks (ñQuote Boosterò) from IB.

¶ IBôs messages rate limitation (50/sec, as explained in §3.2) does not directly
affect streaming quotes, only messages sent to the IB server. There is no
known IB limitation on streamed messages rate. However, a practical
limitation is ~50-100 quotes/sec due to your client computer processing time.

¶ Streaming data retrieval is subject to the same pre-conditions as for retrieving
the current live market data (see §5.1).

60 http://www.interactivebrokers.com/en/software/api/apiguide/tables/generic_tick_types.htm

http://www.interactivebrokers.com/en/software/api/apiguide/tables/generic_tick_types.htm

52 IB-Matlab User Guide

7.2 Realtime bars

The realtime bars mechanism is similar to streaming quotes in the sense that it

enables the user to receive information about a security every several seconds, until

the specified QuotesNumber of bars have been received. The mechanism is also

similar to historical data in the sense that the bars information is aggregated. Each bar

contains the OHLCV information just as for historical data bars (see §6 for details).

Similarly to streaming quotes, the realtime bars mechanism has two distinct parts:

1. Request IB to start sending the stream of bars for a specified security. This is

done by using Action='realtime_bars' and QuotesNumber with a positive

(>0) value. If QuotesNumber=1 (the default value), then the data for the

single bar is returned immediately; Otherwise, only the request ID is returned.

2. Later, whenever you wish to read the latest bar(s) data, simply use

Action='realtime_bars' and QuotesNumber= -1 (minus one). This will return

the latest information without stopping the background streaming.

Like streaming quotes, the streamed bars are stored based on a unique combination of

their LocalSymbol, SecType and Expiry . As with streaming quotes, there is the

ability to automatically reconnect to IB after every specified number of received bars.

Note that IB currently limits the realtime bars to 5-second bars only.
61

 Also, only

some combinations of securities, exchanges and data types (the WhatToShow

parameter) are supported. If you have doubts about whether a specific combination is

supported, ask IB customer service (the limitation is on the IB server, not IBMatlab).

Users can process realtime bars in one of two ways:

¶ use a Matlab timer to query the latest accumulated bars data (via

QuotesNumber = -1), or:

¶ use the CallbackRealtimeBar parameter to set a dedicated Matlab callback

function that will be invoked whenever a new bar is received (every 5 secs).
62

Here is a simple example of using realtime bars for a single (snapshot) bar

(QuotesNumber = 1), representing the previous 5 seconds:

>> data = IBMatlab(' action ' , ' realtime ' , ' symbol ' , ' IBM')

data =

 date Num: 735551.017997 685

 dateTime: { ' 13- Nov- 2013 00:25:55 ' }

 open: 183

 high: 183

 low: 183

 close: 183

 volume: 0

 WAP: 183

 count: 0

61 http://www.interactivebrokers.com/en/software/api/apiguide/java/reqrealtimebars.htm
62 See §11 for details about setting up callback functions to IB events

http://www.interactivebrokers.com/en/software/api/apiguide/java/reqrealtimebars.htm

53 IB-Matlab User Guide

And here is a slightly more complex example, with QuotesNumber=3. The data

struct that is returned in this case is correspondingly more complex:

>> reqId = IBMatlab(' action ' , ' realtime ' , ' symbol ' , ' AMZN' , ...

 ' QuotesNumber ' ,3 , ' QuotesBufferSize ' ,10) ;

reqId =

 345327051

(now wait 15 seconds or more for the 3 bars to be receive d)

>> data Struct = IBMatlab(' action ' , ' realtime ' , ' symbol ' , ' AMZN' ,

 ' QuotesNumber ' , - 1) ;

data Struct =

 reqId: 345327051

 symbol: ' AMZN'

 localSymbol: ''

 isActive: 0

 quotesReceived : 3

 quotesToRe ceive: 3

 quotesBufferSize: 10

 whatToShow: ' TRADES'

 useRTH: 0

 data: [1x1 struct]

 contract: [1x1 com.ib.client.Contract]

>> data Struct .data

ans =

 dateN um: [735551.008912037 7355 51.008969907 735551.009027778]

 dateTime: {1x 3 cell}

 open: [349.97 349.97 349.97]

 high: [349.97 349.97 349.97]

 low: [349.97 349.97 349.97]

 close: [349.97 349.97 349.97]

 volume: [0 0 0]

 WAP: [349.97 349.97 3 49.97]

 count: [0 0 0]

>> data Struct .data.dateTime

ans =

 ' 13- Nov- 2013 00:12:50 ' ' 13- Nov- 2013 00:12:55 ' ' 13- Nov- 2013 00:13:00 '

You may sometimes see warning messages of the following form:

[API.msg2] Can ' t find EID with tickerId:345313582 {345313 582, 300}

These messages can safely be ignored. They represent harmless requests by IBMatlab

to IB, to cancel realtime bar requests that were already cancelled on the IB server.

Realtime bar requests are subject to both historical data pacing limitations (see §6 for

details) and streaming data pacing limitations (§7.1). You may be able to loosen the

limitations by purchasing additional data slots from IB. Discuss your alternatives with

IB customer service, if you encounter pacing violation messages:

[API.ms g2] Invalid Real - time Query: Historical data request pacing

violation {8314, 420}

54 IB-Matlab User Guide

Here is a summary of the IBMatlab parameters that directly affect realtime bars:

Parameter Data type Default Description

Action string '' Needs to be 'realtime_bars' for this feature
QuotesNumber integer 1 One of:

¶ inf ï continuous endless streaming
bars for the specified security

¶ N>1 ï stream only N bars
¶ 1 ï get only a single bar (i.e., non-

streaming snapshot) ï (default)
¶ 0 ï stop streaming quotes
¶ -1 ï return latest accumulated bars

data while continuing to stream data
QuotesBufferSize integer 1 Controls the number of streaming bars

stored in a cyclic buffer. Once this number
of bars has been received, the oldest bar is
discarded whenever a new bar arrives.

GenericTickList string '' Used to request additional (non-default)
information: volume, last trade info, etc.

63

LocalSymbol string '' Used to identify and store streamed bars.
SecType string 'STK' Used to identify and store streamed bars.
Expiry string '' Used to identify and store streamed bars.
WhatToShow string (case

insensitive)
'Trades' Determines the nature of data being

extracted. Valid values include:
¶ 'Trades' (default)
¶ 'Midpoint'
¶ 'Bid'
¶ 'Ask'

UseRTH integer or
logical flag

0 =
false

Determines whether to return all data in the
requested time span, or only data that falls
within regular trading hours:
¶ 0 or false (default): all data is returned,

even outside of regular trading hours
¶ 1 or true: only data within the regular

trading hours is returned, even if the
requested time span falls outside RTH.

ReconnectEvery integer 5000 Number of quotes (total of all securities)
before automated reconnection to IB and re-
subscription to the realtime bars.
¶ inf ï accept realtime bars without

automated reconnection
¶ N>0 ï automatically reconnect and

re-subscribe to realtime bars after N
bars are received.

63 http://www.interactivebrokers.com/en/software/api/apiguide/tables/generic_tick_types.htm

http://www.interactivebrokers.com/en/software/api/apiguide/tables/generic_tick_types.htm

55 IB-Matlab User Guide

7.3 Streaming market depth

The streaming market depth mechanism
64

 is also similar to streaming quotes in the

sense that it enables the user to receive information about a security every several

seconds, until the specified QuotesNumber have been received. In fact, the only

difference between streaming market depth data and streaming quotes data is that for

market depth, the NumberOfRows parameter is set to an integer value between 2-5

(i.e., 2, 3, 4, or 5), and a slightly-different returned dataStruct:

>> reqId = IBMatlab (' action ' , ' query ' , ' symbol ' , ' EUR' , ...

 ' localS ymbol ' , ' EUR.USD' , ' currency ' , ' USD' , ...

 ' secT ype ' , ' cash ' , ' exchange ' , ' idea lpro ' , ...

 'NumberOfRows' ,3, ' QuotesNumber ' ,1 000)

reqId =

 464879608

>> dataStruct = IBMatlab (' action ' , ' query ' , ' localS ymbol ' , ' EUR.USD' , ...

 'NumberOfRows' ,3, ' QuotesNumber ' , - 1)

dataStruct =

 reqId: 464879608

 reqTime: '16 - Dec- 2014 14:46:47'

 lastEventDateNum: 735949.615954282

 lastEventDateTime: '16 - Dec- 2014 14:46:57'

 symbol: 'EUR'

 localSymbol: 'EUR.USD'

 isActive: 1

 quotesReceive d: 362

 quotesToReceive: 1000

 bid: [1x3 struct]

 ask: [1x3 struct]

 contract: [1x1 com.ib.client.Contract]

>> data Struct .bid(1)

ans =

 price: 1.2546

 size: 6560000

 marketMaker: ''

 dateNum: 735949.615954271

 dateTime: '16 - Dec- 2014 14:46:57'

Note that market-depth quotes are sent from the IB server at a much higher rate than

streaming quotes. For EUR.USD at a specific date-time, there were 2-3 streaming

quotes per second, compared to 30-50 market-depth updates per second.

As with streaming quotes, the streamed market-depth update events can be trapped in

IB-Matlab using the CallbackUpdateMktDepth and CallbackUpdateMktDepthL2

parameters. See §11.5 for a usage example of a continuously-updating order-book

GUI, which uses these callbacks.

64 See §5.2 above for a description of the market depth mechanism and its reported data fields.

56 IB-Matlab User Guide

8 Sending trade orders

8.1 General usage

Four order types are supported in IB-Matlab : Buy, Sell, Short, Close, which use the

following values for IBMatlabôs Action parameter: óBuyô, óSellô, óSShortô, óCloseô.
65

Several additional IBMatlab parameters affect trade orders. The most widely-used

properties are Type (default='LMT'), Quantity and LimitPrice . Additional properties

are explained below. Here is a simple example for buying and selling a security:

orderId = IBMatlab (' action ' , ' BUY' , ' symbol ' , ' GOOG' , ' quantity ' ,100, ...

 ' type ' , ' LMT' , ' limitPrice ' ,600);

orderId = IBMatlab (' action ' , ' SELL' , ' symbol ' , ' GOOG' , ' quantity ' ,100, ...

 ' type ' , ' LMT' , ' limitPrice ' ,600);

In this example, we have sent an order to Buy/Sell 100 shares of GOOG on the

SMART exchange, using an order type of Limit and limit price of US$600. IBMatlab

returns the corresponding orderId assigned by IB ï we can use this orderId later to

modify open orders, cancel open orders, or follow-up in TWS or in the trade logs.

Important : The IB server accepts up to 50 messages per second. If you exceed this

rate, you will receive an error message from IB. This is important when submitting

multiple orders to IB in a loop (baskets are not currently supported by the IB API).

IBMatlab always returns an orderId (positive integer number) if the order is

successfully created. This does not mean that the order is accepted: it may be rejected

or held by the IB server or exchange. In such cases, a followup error message is sent

from the IB server and appears as a red message in the Matlab console. For example:

[API.msg2] The following order "ID:662631663" size exceeds the Size

Limit of 500. Restriction is specified in Precau tionary Settings of

Global Configuration/Presets. {662631703, 451}

[API.msg2] Order Message:

SELL 12 GOOG NASDAQ.NMS

Warning: your order will not be placed at the exchange until

2016 - 10- 06 09:30:00 US/Eastern {662631843, 399}

The orderôs Type parameter is described in detail below (§8.3). In addition to

specifying the Symbol, Type, Quantity and LimitPrice , several other parameters

may need to be specified to fully describe the order.

All the order parameters listed below are optional, except for Action and Quantity .
66

Depending on the order Type, additional parameters may also be mandatory (e.g.,

LimitPrice and AuxPrice). Here is a summary of order parameters in IBMatlab:
67

65 SSHORT is only used by non-cleared iBroker accounts: since their orders are not being cleared by IB, they need to distinguish

between shorting a position or selling. This is typically relevant only for large institutional users. In most cases, your orders
are being cleared by IB so you would only specify SELL for both shorting and selling.

66 Quantity should only be omitted if Action='close' or FAMethod='PctChange' ï see §8.2 and §8.5 below.
67 Also see the corresponding API documentation: http://www.interactivebrokers.com/en/software/api/apiguide/java/order.htm,

http://www.interactivebrokers.com/en/software/api/apiguide/tables/extended_order_attributes.htm

http://www.interactivebrokers.com/en/software/api/apiguide/java/order.htm
http://www.interactivebrokers.com/en/software/api/apiguide/tables/extended_order_attributes.htm

57 IB-Matlab User Guide

Parameter Type Default Description

Action string (none) One of: 'Buy', 'Sell', 'SShort' (note the double-

S in SShort)
68

 or 'Close' (see §8.2 below)

Quantity integer 0 Number of requested shares. Must be > 0.

Type string 'LMT' Refer to the order-types table in §8.3 below

LimitPrice number 0 Limit price used in Limit order types

AuxPrice number 0 Extra numeric data used by some order types

(e.g., STP and TRAIL)

TrailingPercent number 0 Trailing percent for TRAIL order types (§8.4)

TrailStopPrice number 0 The stop price used when Type='Trail Limit'

TIF string 'GTC' Time-in-Force. Not all TIFs are available for

all orders. Can be one of:

¶ 'Day' ï Good until end of trading day
¶ 'DTC' ï Day Till Cancelled
¶ 'GTC' ï Good Till Cancelled (default)
¶ 'GTD' ï Good Till Date (uses the

GoodTillDate parameter below)
 69

¶ 'GAT' ï Good After Time/date (uses

GoodAfterTime parameter below)
 70

¶ 'IOC' ï Immediate or Cancel
¶ 'FOK' ï Fill or Kill

71

¶ 'OPG' ï Open Price Guarantee
72

¶ 'AUC' ï Auction, submitted at the

Calculated Opening Price
73

GoodTillDate string '' Format: 'YYYYMMDD hh:mm:ss TMZ'

(TMZ is optional
74

)

GoodAfterTime string '' Format: 'YYYYMMDD hh:mm:ss TMZ'

(TMZ is optional
75

)

68 SSHORT is only used by non-cleared iBroker accounts: since their orders are not being cleared by IB, they need to distinguish

between shorting a position or selling. This is typically relevant only for large institutional users. In most cases, your orders
are being cleared by IB so you would only specify SELL for both shorting and selling.

69 GTD requires enabling Advanced Time In Force Attributes in TWS / IB Gatewayôs preferences:

(http://interactivebrokers.com/en/software/webtrader/webtrader/orders/advanced%20time%20in%20force%20attributes.htm)
70 GAT requires enabling Advanced Time In Force Attributes in the Preferences page of TWS / IB Gateway

(http://interactivebrokers.com/en/software/webtrader/webtrader/orders/advanced%20time%20in%20force%20attributes.htm).

For additional information see http://interactivebrokers.com/en/software/tws/usersguidebook/ordertypes/good_after_time.htm
71 FOK is not listed in IBôs API doc (http://interactivebrokers.com/en/software/api/apiguide/tables/supported_order_types.htm).

FOK requires the entire order to be filled, as opposed to IOC that allows a partial fill. For additional information on FOK see

http://www.interactivebrokers.com/en/software/tws/usersguidebook/ordertypes/fill_or_kill.htm
72 OPG is not listed in IBôs API doc (http://interactivebrokers.com/en/software/api/apiguide/tables/supported_order_types.htm).

An OPG is used with a Limit order to indicate a Limit-on-Open order, or with a Market order to indicate a Market-on-Open

order (http://www.interactivebrokers.com/en/software/webtraderguide/webtrader/orders/creating_an_order.htm)
73 AUC is not listed in IBôs API doc (http://interactivebrokers.com/en/software/api/apiguide/tables/supported_order_types.htm).

For additional information on AUC see http://interactivebrokers.com/en/software/tws/usersguidebook/ordertypes/auction.htm
74 The list of time zones accepted by IB is listed in §9.1 below
75 The list of time zones accepted by IB is listed in §9.1 below

http://interactivebrokers.com/en/software/webtrader/webtrader/orders/advanced%20time%20in%20force%20attributes.htm
http://interactivebrokers.com/en/software/webtrader/webtrader/orders/advanced%20time%20in%20force%20attributes.htm
http://interactivebrokers.com/en/software/tws/usersguidebook/ordertypes/good_after_time.htm
http://interactivebrokers.com/en/software/api/apiguide/tables/supported_order_types.htm
http://www.interactivebrokers.com/en/software/tws/usersguidebook/ordertypes/fill_or_kill.htm
http://interactivebrokers.com/en/software/api/apiguide/tables/supported_order_types.htm
http://www.interactivebrokers.com/en/software/webtraderguide/webtrader/orders/creating_an_order.htm
http://interactivebrokers.com/en/software/api/apiguide/tables/supported_order_types.htm
http://interactivebrokers.com/en/software/tws/usersguidebook/ordertypes/auction.htm

58 IB-Matlab User Guide

Parameter Type Default Description

OutsideRTH integer or

logical

flag

0=false ¶ 0 or false: order should not execute

outside regular trading hours

¶ 1 or true: order can execute outside

regular trading hours if required

Hold integer or

logical

flag

0=false ¶ 0 or false: order is sent to IB immediately

¶ 1 or true: order will be prepared but not

sent to IB. The user can them modify the

order properties before sending to IB. See

§9.6 below for additional details.

AccountName string '' The specific IB account used for this trade.

Useful when you manage multiple IB

accounts, otherwise leave empty.

FAProfile string '' Financial Advisor profile for trades allocation

(§8.5). Only relevant for Financial Advisor

accounts, otherwise leave empty.

FAGroup string '' Financial Advisor account group for trades

allocation (§8.5). Only relevant for Financial

Advisor accounts, otherwise leave empty.

FAMethod string '' Method by which trades allocate within the

stated FAGroup (§8.5). Only relevant for

Financial Advisor accounts, else leave empty.

FAPercentage number 0 Percentage of position change used when

FAMethod='PctChange' (§8.5). Relevant for

Financial Advisor accounts, else leave as-is.

OrderId integer (auto-

assigned)

If specified, and if the specified OrderId is

still open, then the specified order data will be

updated, rather than creating a new order.

This enables users to modify the order Type,

LimitPrice and other important parameters of

existing open orders (see §10 below).

ParentId integer 0 Useful for setting child orders of a parent

order: these orders are only active when their

parent OrderId is active or gets triggered. This

is used in hedged- and bracket orders (see

§9.3 below), but can also be used otherwise.

BracketTypes cell array

of 2

strings

Buy:

{'STP',

'LMT'}

Sell:

{'LMT',

'STP'}

Types of child bracket orders. The first string

in the cell array defines the order type for the

lower bracket; the second string defines the

order type for the upper bracket. See related

BracketDelta parameter above, and §9.3

below for additional details.

59 IB-Matlab User Guide

Parameter Type Default Description

BracketDelta number []=empty Price offset for stop-loss and take-profit

bracket child orders (see §9.3 below).

Note: BracketDelta may be a single value or

a [lowerDelta,upperDelta] pair of values

Note: value(s) must be positive:

- low bracket will use limitPrice ï lowerDelta

- high bracket will use limitPrice + upperDelta

OCAGroup string '' One-Cancels-All group name. This can be

specified for several trade orders so that

whenever one of them gets cancelled or filled,

the others get cancelled automatically.
76

OCAType integer 2 One of (where allowed/applicable):

¶ 1 = Cancel on fill with block

¶ 2 = Reduce on fill with block

¶ 3 = Reduce on fill without block

HedgeType string '' One of:
77

¶ 'D' ï Delta (parent option, child stock)
¶ 'B' ï Beta
¶ 'F' ï FX
¶ 'P' ï Pair

Relevant only for hedge orders, otherwise

leave empty (or do not specify at all).

Note: hedge orders must be child orders

(ParentId>0) with Quantity=0.

HedgeParam number []=empty Beta = x for Beta hedge orders (0=unused);

Ratio = y for Pair hedge orders.

Relevant only for Beta/Pair hedge orders,

otherwise leave empty (or do not specify).

TriggerMethod integer 0 One of:
78

¶ 0=Default
¶ 1=Double-Bid-Ask
¶ 2=Last
¶ 3=Double-Last
¶ 4=Bid-Ask
¶ 7=Last-or-Bid-Ask
¶ 8=Mid-point

76 http://www.interactivebrokers.com/en/index.php?f=617,

http://www.interactivebrokers.com/en/software/api/apiguide/tables/extended_order_attributes.htm
77 http://www.interactivebrokers.com/en/software/tws/usersguidebook/ordertypes/attached_orders.htm
78 http://www.interactivebrokers.com/en/software/tws/usersguidebook/configuretws/modify_the_stop_trigger_method.htm

http://www.interactivebrokers.com/en/index.php?f=617
http://www.interactivebrokers.com/en/software/api/apiguide/tables/extended_order_attributes.htm
http://www.interactivebrokers.com/en/software/tws/usersguidebook/ordertypes/attached_orders.htm
http://www.interactivebrokers.com/en/software/tws/usersguidebook/configuretws/modify_the_stop_trigger_method.htm

60 IB-Matlab User Guide

8.2 Close orders

When setting the Action parameter to óCloseô, IBMatlab retrieves the current

portfolio position for the specified Symbol or LocalSymbol, and issues a trade order

that would liquidate this position.

For example, if we have 130 shares of GOOG in our portfolio, then the following two

commands are equivalent (internally, the first command is automatically converted

into the second command before being sent to IB):

orderId = IBMatlab (' action ' , ' CLOSE' , ' symbol ' , ' GOOG' , ...

 ' type ' , ' LMT' , ' limitPrice ' ,600);

orderId = IBMatlab (' action ' , ' SELL' , ' symbol ' , ' GOOG' , ' quantity ' ,1 30, ...

 ' type ' , ' LMT' , ' limitPrice ' ,600);

The main benefit of using Action=ôCloseô is that you do not need to know the exact

number of shares in the portfolio. If IBMatlab does not find the specified contract in

the portfolio, then the command simply returns with an orderId of -1.

Naturally, when Action=ôCloseô, any user-specified Quantity value is ignored ï the

order quantity is determined based on the actual portfolio position.

Financial advisors should note that Action=ôCloseô commands are not supported for

multiple accounts at once, only for a single account at a time. If you try to issue the

command for multiple accounts (as shown in §4.1, §4.2), then an error will be thrown

asking you to specify the AccountName parameter to a single account. Alternatively,

use the PctChange FAMethod to close the open positions (as shown in §8.5). If you

only manage a single IB account, then the AccountName parameter is ignored and

you do not need to worry about this limitation.

61 IB-Matlab User Guide

8.3 Order types

IB supports many order types. Some of these may not be available on your TWS

and/or the requested exchange and security type.
79

 Also, some order types are not

supported by IB on paper-trading accounts, only live accounts.
80

 You need to

carefully ensure that the order type is accepted by IB before using it in IBMatlab.

Here is the list of order types supported by IBMatlab, which is a subset of the list in

IBôs documentation:
81

Class
Order type

full name

Order type

abbreviation
Description

L
im

it
 r

is
k

Limit LMT Buy or sell a security at a specified price or better.

Market-to-

Limit
MTL

A Market-To-Limit order is sent as a Market order to

execute at the current best price. If the entire order

does not immediately execute at the market price, the

remainder of the order is re-submitted as a Limit

order with the limit price set to the price at which the

market order portion of the order executed.

Market with

Protection
MKT PRT

A Market With Protection order is sent as a Market

order to execute at the current best price. If the entire

order does not immediately execute at the market

price, the remainder of the order is re-submitted as a

Limit order with the limit price set by Globex to a

price slightly higher/lower than the current best price

Stop STP

A Stop order becomes a Market order to buy (sell)

once market price rises (drops) to the specified

trigger price (the AuxPrice parameter).

Stop Limit STP LMT

A Stop Limit order becomes a Limit order to buy

(sell) once the market price rises (drops) to the

specified trigger price (the AuxPrice parameter).

79 http://www.interactivebrokers.com/en/index.php?f=4985
80 http://interactivebrokers.com/en/software/am/am/manageaccount/paper_trading_limitations.htm
81 http://www.interactivebrokers.com/en/software/api/apiguide/tables/supported_order_types.htm

https://www.interactivebrokers.com/en/index.php?f=4985
http://interactivebrokers.com/en/software/am/am/manageaccount/paper_trading_limitations.htm
http://www.interactivebrokers.com/en/software/api/apiguide/tables/supported_order_types.htm

62 IB-Matlab User Guide

Class
Order type

full name

Order type

abbreviation
Description

L
im

it
 r

is
k

Trailing

Limit if

Touched

TRAIL LIT

A Trailing Limit-If -Touched sell order sets a trigger

price at a fixed amount (AuxPrice parameter) or %

(TrailingPercent parameter) above the market price.

If the market price falls, the trigger price falls by the

same amount; if the market price rises, the trigger

price remains unchanged. If the market price rises all

the way to the trigger price the order is submitted as

a Limit order.

(and vice versa for buy orders)

Trailing

Market If

Touched

TRAIL MIT

A Trailing Market-If -Touched sell order sets a

trigger price at a fixed amount (AuxPrice parameter)

or % (TrailingPercent parameter) above the market

price. If the market price falls, the trigger price falls

by the same amount; if it rises, the trigger price

remains unchanged. If the market price rises all the

way to the trigger price, the order is submitted as a

Market order.

(and vice versa for buy orders)

Trailing

Stop
TRAIL

A Trailing Stop sell order sets the stop trigger price

at a fixed amount (AuxPrice parameter) or %

(TrailingPercent parameter) below the market price.

If the market price rises, stop trigger price rises by

the same amount; if it falls, the trigger price remains

unchanged. If market price falls all the way to trigger

price, the order is submitted as a Market order.

(and vice versa for buy orders)

(see details and usage example in §8.4 below)

Trailing

Stop Limit

TRAIL

LIMIT

A Trailing Stop Limit sell order sets the stop trigger

price at a fixed amount (AuxPrice parameter) or %

(TrailingPercent parameter) below market price. If

the market price rises, the stop trigger price rises by

the same amount; if the market price falls, the trigger

price remains un-changed. If the price falls all the

way to the trigger price, the order is submitted as a

Limit order (see usage example below).

(and vice versa for buy orders)

(see details and usage example in §8.4 below)

63 IB-Matlab User Guide

Class
Order type

full name

Order type

abbreviation
Description

E
x
e

c
u

ti
o

n
 s

p
e

e
d

Market MKT

An order to buy (sell) a security at the offer (bid)

price currently available in the marketplace. There is

no guarantee that the order will fully or even

partially execute at any specific price.

Market-if -

Touched
MIT

A Market-if -Touched order becomes a Market order

to buy (sell) once the market price drops (rises) to the

specified trigger price.

Market-on-

Close
MOC

Market-on-Close executes as a Market order during

closing time, as close to the closing price as possible.

Pegged-to-

Market
PEG MKT

A Limit order whose price adjusts automatically

relative to market price using specified offset amount

Relative REL

An order whose price is dynamically derived from
the current best bid (offer) in the marketplace. For a
buy order, the price is calculated by adding the
specified offset (or %) to the best bid. A limit price
may optionally be entered to specify a cap for the
amount you are willing to pay.

(and vice versa for sell orders)

P
ri
c
e

 i
m

p
ro

v
e

m
e

n
t

Box Top BOX TOP
A Market order that automatically changes to Limit

order if it does not execute immediately at market.

Limit -on-

Close
LOC

Limit -on-close will execute at the market close time,

at the closing price, if the closing price is at or better

than the limit price, according to the exchange rules;

Otherwise the order will be cancelled.

Limit if

Touched
LIT

A Limit -if -Touched order becomes a Limit order to

buy (sell) once the market price drops (rises) to the

specified trigger price.

Pegged-to-

Midpoint
PEG MID

A Limit order whose price adjusts automatically

relative to midpoint price using specified offset amt.

TWAP -

best efforts
TWAP

Achieves the Time-Weighted Average Price on a

best-effort basis (see details in §9.2 below).

VWAP -

best efforts
VWAP

Achieves the Volume-Weighted Average Price on a

best-effort basis (see details in §9.1 below).

VWAP ï

guaranteed

Guarrante-

edVWAP

The VWAP for a stock is calculated by adding the
dollars traded for every transaction in that stock
(ñpriceò x ñnumber of shares tradedò) and dividing
the total shares traded. By default, a VWAP order is
computed from the open of the market to the market
close, and is calculated by volume weighting all
transactions during this time period. IB allows you to
modify the cut-off, expiration times using Time in
Force (TIF) and Expiration Date fields respectively.

64 IB-Matlab User Guide

8.4 Trail orders

Here is a usage example for sending a TRAIL order:
82

 In this case, we have

previously purchased 100 shares of IBM at an average price of $139.156 and wish to

lock in a profit and limit our loss. We set a trailing stop order with the trailing amount

$0.20 below the current market price of $139.71. To do this, create a sell order, with

Type='TRAIL' and AuxPrice=0.20 (the trailing amount):

orderId = IBMatlab (' action ' , ' SELL' , ' symbol ' , ' IBM' , ' quantity ' ,100, ...

 ' type ' , ' TRAIL ' , ' aux Price ' ,0 .2 0);

The trigger (stop) price will follow (trail) market movements upwards, and remains

stable when the market falls. The trigger (stop) price is initially set to $139.71 - $0.20

= $139.51, and rises with the market. When the market price reaches $139.89, the

corresponding stop price is updated to $139.89 - $0.20 = $139.69. When the market

price then falls to $139.73, the stop price remains stable at $139.69:

When the market price drops all the way to the stop price, the order is submitted as a

Market order, which immediately fills (depending on market fluidity).

It should be noted that we can specify the trailing offset as either a fixed amount

(AuxPrice parameter) or a percentage (TrailingPercent parameter).

As a related usage example, we can use a TRAIL LIMIT order:
83

 Here we wish to use

a Limit rather than a Market order when the market price drops to the trigger (stop)

price. We therefore need to provide the limit offset price in addition to the trailing

amount (or trailing %). We do this using the TrailStopPrice parameter.

In our example, when the market (last) price was $168.38 we set AuxPrice=0.10 and

TrailStopPrice=168.32 and LimitPrice =168.35, i.e. a limit offset of $-0.03:

orderId = IBMatlab (' action ' , ' SELL' , ' symbol ' , ' IBM' , ' quantity ' ,1, ...

 ' type ' , ' TRAIL LIMIT ' , ' aux Price ' ,0 .1 0, ...

 'TrailStopPrice' , 168.32, 'LimitPrice' , 168.50);

As long as the market rises and last price >= Tr ailStopPrice + AuxPrice, both the

trigger (stop) price and limit price will rise. Once the price drops to the latest stop

price ($168.39, which is $0.10 below the highest market price up to now: $168.49),

the order will change into a LMT order with a limit price of $168.39+$0.03=$168.42

and marked as triggered (Status field in TWS will change from to).

Note: IBôs API changed the meaning of TrailStopPrice in 2016, so test carefully!

82 http://www.interactivebrokers.com/en/index.php?f=605
83 http://www.interactivebrokers.com/en/index.php?f=606

http://www.interactivebrokers.com/en/index.php?f=605
http://www.interactivebrokers.com/en/index.php?f=606

65 IB-Matlab User Guide

8.5 Financial Advisor (multi-client) orders

Financial Advisor (FA, or ñmulti-clientò) accounts in IB have the ability to manage

multiple individual accounts under a single parent account. IB does not expose FA

functionalities to individual-account holders ï such users should skip this section.

When sending a trade order to an FA account, we need to tell IB which sub-

account(s) should be affected by the order. The possible alternatives are:

¶ Execute the trade order in a specific sub-account.

¶ Execute the trade order in multiple sub-accounts, using an Allocation Profile

(that was previously-defined in TWS
84

).

¶ Execute the trade order in multiple sub-accounts, using an Account Group

(that was previously-defined in TWS
85

) and a specified allocation method.

We can also set-up a default allocation in TWS,
86

 avoiding the need to specify the

allocation separately for each trade order. The following discussion assumes that such

a default allocation is not used, or that it is overridden on a per-trade basis.

For example, assume that our parent account is called DF1230 and it has three sub-

accounts (DU1231, DU1232, and DU1233).

To send the trade to a specific account, simply state the AccountName parameter:

orderId = IBMatlab (' action ' , ' BUY' , ' symbol ' , ' IBM' , ' quantity ' ,100, ...

 ' type ' , ' MKT' , ' AccountName ' , ' DU1232');

To send the trade to multiple specific sub-accounts using a predefined allocation

profile, state the FAProfile parameter with the requested profile name:

orderId = IBMatlab (' action ' , ' BUY' , ' symbol ' , ' IBM' , ' quantity ' ,100, ...

 ' type ' , ' MKT' , ' FAProfi le ' , ' myProfile1 ');

To send the trade to multiple specific sub-accounts using a predefined accounts

group, state the FAGroup and FAMethod parameters, and possibly also the

FAPercentage parameter (only if FAMethod = 'PctChange'):

% Enter into position: allo cate to sub - accounts based on their netliq

orderId = IBMatlab (' action ' , ' BUY' , ' symbol ' , ' IBM' , ' quantity ' ,100, ...

 ' type ' , ' MKT' , ' FAGroup ' , ' EntryGroup ' , ...

 ' FAMethod ' , ' NetLiq ');

% Exit position: each sub - account ' s posit ion reduced by 100%

orderId = IBMatlab (' action ' , ' SELL' , ' symbol ' , ' IBM' , ... % no Quantity

 ' type ' , ' MKT' , ' FAGroup ' , ' ExitGroup ' , ...

 ' FAMethod ' , ' PctChange ' , ' FAPercentage ' , - 100);

84 http://interactivebrokers.com/en/software/tws/usersguidebook/financialadvisors/create_a_share_allocation_profile.htm
85 http://interactivebrokers.com/en/software/tws/usersguidebook/financialadvisors/create_an_account_group_for_share_allocation.htm
86 http://www.interactivebrokers.com/en/software/tws/usersguidebook/financialadvisors/set_default_allocations.htm

http://interactivebrokers.com/en/software/tws/usersguidebook/financialadvisors/create_a_share_allocation_profile.htm
http://interactivebrokers.com/en/software/tws/usersguidebook/financialadvisors/create_an_account_group_for_share_allocation.htm
http://www.interactivebrokers.com/en/software/tws/usersguidebook/financialadvisors/set_default_allocations.htm

66 IB-Matlab User Guide

Note how in this latest example, weôve used the NetLiq method to enter into a

position (split up amongst the sub-accounts defined in our EntryGroup, based on the

accounts relative net liquidation values), but we exit the position using the PctChange

method (i.e., sell securities such that the new position in each sub-account is -100%

of its current position). This is a very typical entry/exit usage scenario.

The benefit of using PctChange to exit a position is that we do not need to calculate

or even know the total Quantity nor the actual current position in each of the sub-

accounts. We cannot use NetLiq to exit the position (as we have to enter it), since the

different sub-accounts may possibly have a different NetLiq relative ratio between

themselves, so the liquidation order would leave a few extra shares in some sub-

acounts and a few missing (shorted) shares in the other sub-accounts.

Note that FAMethod only works with FAGroup and is a mandatory parameter when

FAGroup is specified. In other words, we cannot specify FAMethod with

FAProfile , nor specify FAGroup without a corresponding FAMethod.

When specifying FAMethod=PctChange, it is an error to specify the Quantity , since

the quantity is automatically calculated by IB. Also, the trade order will only have an

effect if the trade Action and the current total position would result in a trade having

the same direction as the requested FAPercentage.

For example, if we currently have 20 shares of IBM in DU1231, 30 shares in DU1232

and 50 shares in DU1233 (i.e., a total of 100 shares), then the exit order above would

result in a valid trade order that would sell 100 shares of IBM at MKT and reduce

each of the sub-accountsô holdings to 0 shares (-100% of their current holdings).

On the other hand, if we used Action=BUY (rather than SELL), then the direction of

the action and position (i.e., increase the position) would not match the direction of

the requested FAPercentage (-100%, i.e. decrease position). The IB-calculated order

size would be 0, the order would not execute, and IB will send us an error message:

orderId = IBMatlab (' action ' , ' BUY' , ' symbol ' , ' IBM' , ... % no Quantity

 ' type ' , ' MKT' , ' FAGroup ' , ' ExitGroup ' , ...

 ' FAMethod ' , ' PctChange ' , ' FAPercentage ' , - 100);

[API.msg2] The order size cannot be zero. {640996954, 434}

Action FAPercentage Long position Short position

Buy
Positive (>0) Trade increases position Error (no trade)

Negative (<0) Error (no trade) Trade decreases position

Sell
Positive (>0) Error (no trade) Trade increases position

Negative (<0) Trade decreases position Error (no trade)

67 IB-Matlab User Guide

If you state a FAMethod that is not officially supported by IB, IB-Matlab issues a

warning but sends the request to IB anyway, in the hope that the method is supported

after all. If IB does not support it, the request is ignored and IB sends an error message:

IBMatlab (' action ' , ' BUY' , ' symbol ' , ' IBM' , ' quantity ' ,100, ...

 ' type ' , ' MKT' , ' FAGroup ' , ' EntryGroup ' , ' FAMethod ' , ' XYZ');

Warning: FAMethod 'XYZ ' may possibly not be supported by IB

(Type "warning off YMA:IBMat lab:FAMethod" to suppress this warning.)

[API.msg2] Order rejected - reason: Invalid value in field # 6159

{640973648, 201}

Note that Action=ôCloseô commands (Ä8.2) are not supported for multiple accounts at

once, only for a single account at a time. If you try to issue the command for multiple

accounts (as shown in §4.1, §4.2), then an error will be thrown, asking you to specify

the AccountName parameter to a single account. Alternatively, use the PctChange

method to close the open positions as shown above.

The following parameters affect Financial Advisor (FA) trade orders:

Parameter Type Default Description

AccountName String ''

The specific IB account used for this trade.

Useful when you manage multiple IB accounts,

otherwise leave empty.

FAProfile String ''

Financial Advisor profile for trade allocation.

Only relevant for Financial Advisor (multi-client)

accounts, otherwise leave empty.

FAGroup String ''

Financial Advisor account group for trade

allocation. Only relevant for Financial Advisor

(multi-client) accounts, otherwise leave empty.

FAMethod String ''

Method by which trades will be allocated within

the stated FAGroup . Only relevant for Financial

Advisor accounts, otherwise leave empty.

IB officiall y supports the following methods:

¶ NetLiq

¶ EqualQuantity

¶ AvailableEquity

¶ PctChange (requires FAPercentage)

FAPercentage Number 0

Percentage of position change used when

FAMethod = 'PctChange'. Only relevant for

Financial Advisor accounts, otherwise leave as-is.

When this FAPercentage parameter is specified,

the Quantity parameter may NOT be specified.

68 IB-Matlab User Guide

9 Specialized trade orders

Several specialized order types are supported by IBMatlab, each of which has

dedicated parameters for configuration. These order types include VWAP (best

effort), TWAP, bracket orders, automated orders, combo orders, and options

exercise/lapse.

9.1 VWAP (best-effort) orders

When the order Type is óVWAPô (the best-effort type, since the guaranteed type has

Type='GuaranteedVWAP'), IB treats the order as a Market order with a VWAP algo

strategy.
87

 IBMatlab enables specifying the algo strategyôs properties, as follows:

Parameter Data type Default Description

Type string 'LMT' Set to 'VWAP' for this IBAlgo type

MaxPctVol number 0.1=10% Percent of participation of average

daily volume up to 0.5 (=50%).

StartTime string '9:00:00 EST' Format: 'YYYYMMDD hh:mm:ss

TMZ' (TMZ is optional)

EndTime string '16:00:00 EST' (same as StartTime above)

AllowPastEndTime integer or

logical flag

1=true If true, allow the algo to continue to

work past the specified EndTime if

the full quantity has not been filled.

NoTakeLiq integer or

logical flag

0=false If true, discourage the VWAP algo

from hitting the bid or lifting the

offer if possible.

Here is an example for specifying a best-effort VWAP trade order:

orderId = IBMatlab (' action ' , ' SELL' , ' symbol ' , ' GOOG' , ' quantity ' ,1 0, ...

 ' type ' , ' VWAP' , ' limitPrice ' ,600 , ' MaxPctVol ' ,0.3, ...

 ' StartTime ' , ' 20120215 10:30:00 EST ' , ...

 ' EndTime ' , ' 10:45 :00 EST' , ...

 ' AllowPastEndTime ' , fals e, ...

 ' NoTakeLiq ' , true);

When we run the command above in Matlab, we see the following in IBôs TWS:

Note that IB automatically routes the trade to its internal servers (IBALGO) rather

than directly to the relevant exchange as it would do in most other cases. Also note

that the VWAP order is NOT guaranteed to execute. Best-effort VWAP algo orders

87 http://www.interactivebrokers.com/en/trading/orders/vwapAlgo.php;

http://www.interactivebrokers.com/en/software/tws/usersguidebook/algos/vwap.htm

http://www.interactivebrokers.com/en/trading/orders/vwapAlgo.php
http://www.interactivebrokers.com/en/software/tws/usersguidebook/algos/vwap.htm

69 IB-Matlab User Guide

result in lower commissions than the Guaranteed VWAP, but the order may not fully

execute and is not guaranteed, so if you need to ensure this, use Guaranteed VWAP.

StartTime and EndTime dictate when the VWAP algo will begin/end working,

regardless of whether or not the entire quantity has been filled. EndTime supersedes

the TIF (time in force) parameter. Note that the order will automatically be cancelled

at the designated EndTime regardless of whether the entire quantity has filled unless

AllowPastEndTime=1. If an EndTime is specified, then set AllowPastEndTime=1

(or true) to allow the VWAP algo to continue to work past the specified EndTime if

the full quantity has not been filled.

Note: If you specify and StartTime and EndTime, TWS confirms the validity of the

time period using yesterdayôs trading volume. If the time period you define is too

short, you will receive a message with recommended time adjustments.

In the example above, note the optional date (20120215) in StartTime. In the

EndTime parameter no date was specified so todayôs date will be used, at 10:45 EST.

The time-zone part is also optional, but we strongly recommend specifying it, to

prevent ambiguities. Not all of the worldôs time zones are accepted, but some of the

major ones are, and you can always convert a time to one of these time zones. The

full list of time-zones supported by IB is given below:
 88

Time zone supported by IB Description

GMT Greenwich Mean Time

EST Eastern Standard Time

MST Mountain Standard Time

PST Pacific Standard Time

AST Atlantic Standard Time

JST Japan Standard Time

AET Australian Standard Time

Setting the NoTakeLiq parameter value to true (or 1) may help to avoid liquidity-

taker fees, and could result in liquidity-adding rebates. But it may also result in

greater deviations from the benchmark and partial fills, since the posted bid/offer may

not always get hit as the price moves up/down. IB will use best efforts not to take

liquidity, however, there will be times that it cannot be avoided.

Note: IB only enables VWAP algo orders for US equities on live accounts (i.e., not

on paper-trading accounts
89

).

88 http://www.interactivebrokers.com/en/software/api/apiguide/tables/supported_time_zones.htm
89 http://interactivebrokers.com/en/software/am/am/manageaccount/paper_trading_limitations.htm

http://www.interactivebrokers.com/en/software/api/apiguide/tables/supported_time_zones.htm
http://interactivebrokers.com/en/software/am/am/manageaccount/paper_trading_limitations.htm

70 IB-Matlab User Guide

9.2 TWAP (best-effort) orders

When the order Type is óTWAPô, IB treats the order as a Limit order with a TWAP

algo strategy.
90

 IBMatlab enables specifying the algo strategyôs properties, as follows:

Parameter Data type Default Description

Type string 'LMT' Set to 'TWAP' for this IBAlgo type

StrategyType string 'Marketable' One of:

¶ 'Marketable' (default)

¶ 'Matching Midpoint'

¶ 'Matching Same Side'

¶ 'Matching Last'

StartTime string '9:00:00 EST' Format: 'YYYYMMDD hh:mm:ss

TMZ' (TMZ is optional)

EndTime string '16:00:00 EST' (same as StartTime above)

AllowPastEndTime integer or

logical flag

1=true If true, allow the algo to continue to

work past the specified EndTime if

the full quantity has not been filled.

Note: StartTime, EndTime and AllowPastEndTime were described in §9.1.

Here is an example for specifying a TWAP trade order:

orderId = IBMatlab (' action ' , ' SELL' , ' symbol ' , ' GOOG' , ' quantity ' ,1 0, ...

 ' type ' , ' TWAP' , ' limitPrice ' ,600 , ...

 ' StrategyType ' , ' Matching Last ' , ...

 ' StartTime ' , ' 20120215 10:30:00 EST ' , ...

 ' EndTime ' , ' 10:45:00 EST ' , ...

 ' AllowPastEndTime ' , fals e);

Note that, as with VWAP, IB automatically routes the trade to its internal servers

(IBALGO) rather than directly to the relevant exchange as it would do in most other

cases. Also note that the TWAP order is NOT guaranteed to execute. The order will

trade if and when the StrategyType criterion is met.

Note: IB only enables TWAP algo orders for US equities.

90 http://www.interactivebrokers.com/en/trading/orders/twapAlgo.php;

http://www.interactivebrokers.com/en/software/tws/usersguidebook/algos/twap.htm

http://www.interactivebrokers.com/en/trading/orders/twapAlgo.php
http://www.interactivebrokers.com/en/software/tws/usersguidebook/algos/twap.htm

71 IB-Matlab User Guide

9.3 Bracket orders

Bracket orders are trades which aim to limit losses while locking-in profits, by

sending two opposite-side child orders to offset a parent order.
91

 This mechanism

ensures that the child orders are made active only when the parent order executes.

Both of the bracket child orders have the same amount as the parent order, and belong

to the same OCA (One-Cancels-All) group, so that if one of the child orders is

triggered and gets executed, the opposing order is automatically cancelled. Similarly,

canceling the parent order will automatically cancel all its child orders.

Buy orders are bracketed by a high-side sell Limit (Type='LMT ') order and a low-

side sell Stop (Type='STP') order; Sell orders are bracketed by a high-side buy Stop

order and a low side buy Limit order.

In IB-Matlab , brackets can only be assigned to parent Buy or Sell orders having

Type='LMT' or 'STPLMT'. Specifying bracket orders is very simple, using the

BracketDelta parameter. This parameter (default=[] = empty) accepts a single

number value or an array of two numeric values, which specify the offset from the

parent orderôs LimitPrice :

¶ If BracketDelta is a 2-value array [lowerDelta,upperDelta], then lowerDelta

is used as the offset for the lower child, and upperDelta is used for the upper

child. The corresponding child order limits will be set to LimitPrice -

lowerDelta and LimitPrice +upperDelta, respectively.

¶ If BracketDelta is a single (scalar) value, then this value is used as offset for

both child orders: LimitPrice -offset and Li mitPrice+offset, respectively.

IBMatlab returns the orderId of the parent order; the child orders have order IDs that

are orderId+1 and orderId+2, respectively.

For example, the following trade order:

parentO rderId = IBMatlab (' action ' , ' BUY' , ' symbol ' , ' GOOG' , ...

 ' quantity ' ,100, ' type ' , ' LMT' , ...

 ' limitPrice ' ,600 , ' BracketDelta ' ,[20,50]);

Will result in the following situation in IB:

In this screenshot, notice that the parent order is shown as active (blue; IB status:

ñOrder is being held and monitoredò) at the bottom. This order has a Last-Key value

of ñ4ò and is a simple Buy at Limit 600 order.

91 http://www.interactivebrokers.com/en/trading/orders/bracket.php, http://ibkb.interactivebrokers.com/node/1043

http://www.interactivebrokers.com/en/trading/orders/bracket.php
http://ibkb.interactivebrokers.com/node/1043

72 IB-Matlab User Guide

The child orders are shown above their parent as inactive (red; IB status: ñWaiting for

parent order to fillò). These orders have type=LMT (for the 650 take-profit order) and

STP (for the 580 stop-loss order). Note that the child orders have a Last-Key value

that derives from their parent (4.2, 4.1 respectively) and the same OCA group name,

which is automatically generated based on the order timestamp.

It is possible to specify child bracket orders of different types than the default LMT

and STP. This can be done using the BracketTypes parameter. For example, to set an

upper bracket of type MIT (Market-If -Touched) rather than LMT for the preceding

example, we could do as follows:

parentOrderId = IBMatlab (' action ' , ' BUY' , ' symbol ' , ' GOOG' , ...

 ' quantity ' ,100, ' type ' , ' LMT' , ...

 ' limitPrice ' ,600 , ' BracketDelta ' ,[20,50], ...

 ' BracketTypes ' ,{ ' STP' , ' MIT' });

Another method to achieve this modification would be to use the relevant child order

ID (which is parentOrderId+2 for the upper child) and modify its type from LMT to

MIT (see §10.2 below for details).

The following parameters specifically affect bracket orders:

Parameter Data type Default Description

BracketDelta number []=empty Price offset for stop-loss and take-profit

bracket child orders.

Note: BracketDelta may be a single value or a

[lowerDelta,upperDelta] pair of values

Note: value(s) must be positive:

- low bracket will use limitPrice ï lowerDelta

- high bracket will use limitPrice + upperDelta

BracketTypes cell array

of 2 strings

Buy:

{ 'STP',

'LMT '}

Sell:

{ 'LMT ',

'STP'}

Types of child bracket orders.

The first string in the cell array defines the

order type for the lower bracket; the second

string defines the order type for the upper

bracket.

See related BracketDelta parameter above.

73 IB-Matlab User Guide

9.4 Automated orders

Automated orders are similar to orders of types REL and TRAIL. The idea is to

modify a Limit orderôs LimitPrice based on instantaneous market bid and ask quotes

plus (or minus) a certain number of security tick value. At a certain point in time, the

order, if not fulfilled or cancelled by then, can automatically be transformed from

LMT to some other type (e.g., MKT).

IBMatlab implements automated orders using a timer that periodically checks the

latest bid/ask quotes for the specified security and modifies the orderôs LimitPrice

(and possibly the order Type) accordingly.

Unlike IBôs REL and TRAIL order types (and their variants, e.g., TRAIL MIT etc.),

which update the LimitPrice continuously, IBMatlabôs automated orders are only

updated periodically. This could be problematic for highly-volatile securities: in such

cases users should use IBôs standard REL and TRAIL. However, for low-volatility

securities, the flexibility offered by IBMatlabôs automated orders could be useful.

The following parameters affect automated orders in IBMatlab:

Parameter Data type Default Description

LimitBasis string (none) Either 'BID' or 'ASK'. LimitBasis cannot be

used together with LimitPrice .

LimitDelta integer 0 Units of the securityôs minimal tick value

Limit Bounds [number,

number]

[0,inf] The LimitPric e will only fluctuate between

the specified lower & upper bounds

LimitRepeatEvery number 0 Update timer period in seconds

Limit Pause number 0 Update timer suspend time in seconds

Limit UpdateMode number 0 Mode of the periodic Limit Price update:

¶ 0: Limit Price increases or decreases

based on the latest market bid/ask price

¶ 1: LimitPrice only increases; if market

price decreases, LimitPrice remains as-is

¶ -1: LimitPrice only decreases; if the

price increases, LimitPrice remains as-is

LimitChangeTime string (now+

10 hrs)

Time at which to change the order Type

automatically, if it was not fulfilled or

cancelled by then. Format: 'YYYYMMDD

hh:mm:ss' local time

LimitChangeType string 'MKT' The new order type to be used at

LimitChangeTime

Tick number 0 Override the securityôs reported tick value,

used by LimitDelta . This is useful for

securities/exchanges that do not report a

valid tick value in market queries (see §5.1).

74 IB-Matlab User Guide

IBMatlab uses Matlab timers for the implementation of automated orders having

LimitRepeatEvery > 0. These timers invoke their callback function once every

LimitRepeatEvery seconds. In each invocation, the current market data for the

security is checked against the specifications (LimitUpdateMode , LimitBounds etc.).

If it is determined that the trade order should be modified, then an update command is

sent to the IB server with the new LimitPrice (see §10.2 below). This process could

take some time and therefore it is strongly suggested to use a LimitRepeatEvery value

larger than 5 or 10 [secs], otherwise Matlab might use a large percent of its CPU time

in these timer callbacks. Each automated order uses an independent timer, so having

multiple concurrent automated orders would only exasperate the situation. Therefore,

the more such concurrent orders you have, the longer LimitRepeatEvery should be.

Note: using IBMatlabôs automated orders, implied by setting a non-empty LimitBasis

parameter value, automatically sets the order type to LMT, regardless of the order

Type requested by the user. LimitPrice cannot be used together with LimitBasis.

For example, the tick value for GOOG is 0.01. To send a Limit BUY order, which is

updated to BID ï 2 ticks (i.e., BID ï 0.02) every 15 seconds, run the following:

orderId =IBMatlab (' action ' , ' BUY' , ' symbol ' , ' GOOG' , ' quantity ' ,100, ...

 ' type ' , ' LMT' , ' LimitBasis ' , ' BID ' ,...

 ' LimitDelta ' , - 2, ' LimitRepeatEvery ' ,15);

When trying to use the automated orders feature, you may discover that the limit

price is not updated although the market price moves up or down. In most likelihood,

this is due to the tick price not being available for some reason, and the simple

solution is to specify it directly using the Tick parameter:

orderId =IBMatlab (' action ' , ' BUY' , ' symbol ' , ' GOOG' , ' quantity ' ,100, ...

 ' type ' , ' LMT' , ' LimitBasis ' , ' BID ' , ' tick ' ,0.01,...

 ' LimitDelta ' , - 2, ' LimitRepeatEvery ' ,15);

The LimitPause parameter enables a suspension of the order for the specified

duration between each timer invocation. At the beginning of each suspension, the

order is cancelled. At the end of each suspension, the order is resubmitted with

updated LimitPrice and Quantity (depending on the number of executed Quantity

until that time). For example, if LimitRepeatEvery=15 and LimitPause=3, then the

order will be active between t=0 and t=15, then again between t=18 and t=33, then

again between t=36 and t=51, and so on.

High frequency traders often game REL and various types of pegged orders, e.g., by

temporarily causing price to move up or down such that these orders trigger at less

than optimal prices. Order delays reduce this possibility, as temporary price

movements may revert before the order is re-released. The regular periodic update

feature (LimitRepeatEvery) helps in this regard, but using LimitPause would

increase the possibility of price improvement (e.g., for a buy order the price could

drop below the original bid).

75 IB-Matlab User Guide

9.5 Combo orders

IB enables traders to trade a spread of securities as a single atomic combination

(combo) order. For example, a trader might trade a calendar spread of some security

options or futures, e.g. Sell November, Buy December. Each of these securities (legs)

is treated separately, but the combination is treated as a single entity. Combo-orders

typically improve trading certainty, reduce risk of partial or mis-executions, and

reduce the trading costs significantly compared to trading the securities separately.

To use combo-trades in IBMatlab, specify the leg parameters (Symbol,

LocalSymbol, SecType, Exchange, Currency, Multiplier , Expiry , Strike, and

Right) in a cell array wherever the different legs have different values. In addition,

you must specify the ComboActions parameter:

orderId = IBMatlab(' action ' , ' buy ' , ' exchange ' , ' CFE' , ' quantity ' ,1, ...

 ' SecType ' , ' FUT' , ' LocalSymbol ' ,{ ' VXZ2' , ' VXX2' }, ...

 ' ComboActions ' ,{ ' Buy' , ' Sell ' })

Alternatively, you could use cell arrays also for the fields that are the same for all

legs. The following is equivalent to the command above:

orderId = IBMatlab(' action ' , ' buy ' , ' exchange ' , { ' CFE' , ' CFE' }, ...

 ' quantity ' ,1, ' SecType ' , { ' FUT' , ' FUT' }, ...

 ' LocalSymbol ' ,{ ' VXZ2' , ' VXX2' }, ...

 ' ComboActions ' ,{ ' Buy' , ' Sell ' })

The same syntax can be used for querying the market data of a specific combo:

data = IBMatlab(' action ' , ' query ' , ' exchange ' , ' GLOBEX' , ...

 ' secType ' , ' FUT' , ' localSymbol ' ,{ ' ESZ2' , ' ESH3' } , ...

 ' ComboActions ' ,{ ' Sell ' , ' Buy' }

Note that querying market data for a combo might well return negative prices. For

example, in the specific query example above, the following data was received:

data =

 reqId: 230455081

 reqTime: ' 26- Oct - 2012 04:24:22 '

 dataTime: ' 26- Oct - 2012 04:24:23 '

 dataTimestamp: 7.3517e+05

 ticker: ''

 bidPrice: - 6.8500

 askPrice: - 6.7500

 bidSize: 748

 askSize: 287

 open: - 1

 close: - 1

 low: - 1

 high: - 1

 lastPrice: - 1

 volume: - 1

 tick: 0.2500

 contract: [1x1 struct]

 contractDetails: [1x1 struct]

76 IB-Matlab User Guide

Note that only instantaneous market bid/ask data is reliably returned ï the open,

close, low, high, lastPrice and volume fields are often returned empty (-1).

IB sometimes fails to accept combo requests. This can be due to a variety of reasons:

1. IB only supports combos for a small subset of securities ï generally speaking,

US options and futures. For example, Forex is NOT supported as of 2016.

2. IB will not accept a combo that has been incorrectly configured

3. IB will not accept a combo if you are not subscribed for real-time quotes for

any of its legs

4. IB does not fully support combos on demo/paper-trading accounts ï only live

accounts.
92

 The availability of combos on your paper account may possibly

depend on your IB service plan and/or the specific combo that you try to use.

5. Some users reported that combo quotes can only be received using streaming

quotes (§7.1), but not snapshot quotes (§5.1). Other users have not reported a

problem, so perhaps this is dependent on the specific combo.

In all such cases, the query will return empty (-1) data in all data fields, including

bidPrice/askPrice (for queries); or the command will simply be ignored by IB (for

trade orders).

Unfortunately, IB does not report an informative error message when a combo trade

order or market query is rejected. We are left guessing as to the reason: perhaps one

or more legs is incorrectly configured or not supported or not subscribed for real-time

data; perhaps the market is closed; etc. Contact IB to check your specific case.

When specifying combo legs, you can specify the optional ComboRatios parameter,

as an array of positive values that shall be used to determine the relative weights of

the legs. IBMatlab uses default ratios of [1,1], i.e. the same ratio for all legs.

When specifying combo legs, we need to be aware of exchange limitations. In general

combos use the default ratio of 1:1, but in some cases some other ratio is needed. For

example, the ComboRatios for the ZN/ZT spread (10-vs-2-year US Treasury-Notes)

must be set to 1:2 since the ECBOT exchange does not currently (1/1/2016) support

any other ratio. This ratio changes over time: the ratio was 1:2 in early 2013, then

changed to 3:5, then 1:2 again.
93

 If you specify an incorrect ratio, or when the market

is closed, IB will send an ICS (Inter-Commodity Spread) error message. For example:

[API.msg2] Invalid ICS spread {360280114, 318}

In cases where you cannot figure out the exact set of parameters for a combo, it might

help to try to create the combo directly in TWS: If the combo is supported by TWS

then it might also be available to the API (and IBMatlab). But if the combo is not

supported by TWS then it will also certainly not work in IBMatlab.

92 http://interactivebrokers.com/en/software/am/am/manageaccount/paper_trading_limitations.htm
93 The latest spread ratios on CME can be found here: http://cmegroup.com/trading/interest-rates/intercommodity-spread.html

http://interactivebrokers.com/en/software/am/am/manageaccount/paper_trading_limitations.htm
http://cmegroup.com/trading/interest-rates/intercommodity-spread.html

77 IB-Matlab User Guide

The combo legs must all use the same exchange and generally also the same

currency. However, combo legs do not need to have the same underlying security

Symbol. If you wish to use a combo spread of two securities with a different symbol,

you could use the internal symbol for the spread using the ComboBagSymbol

parameter. For example, the ZN/ZT spread has the internal symbol óTUTô:
94

IBMatlab(' action ' , ' query ' , ' SecType ' , ' FUT' , ' exchange ' , ' ECBOT' , ...

 ' ComboBagSymbol ' , ' TUT' , ... % the spread ' s symbol is TUT

 ' LocalSymbol ' ,{ ' ZN MAR 16' , ' ZT MAR 16' }, ...

 ' ComboActions ' ,{ ' Sell ' , ' Buy' }, ' ComboRatios ' ,[1, 2])

ans =

 reqId: 576662704

 reqTime: '24 - Dec- 2015 05:18:49'

 dataTime: '24 - Dec- 2015 05:18:53'

 dataTimestamp: 7.3632e+05

 lastEventTime: 7.3632e+05

 ticker: ''

 bidPrice: - 0.0078

 askPrice: 0.0078

 open: - 1

 close: 0

 low : 0.0078

 high: 0.0078

 lastPrice: 0.0078

 volume: - 1

 tick: 0.0078

 contract: [1x1 struct]

 contractDetails: [1x1 struct]

 bidSize: 592

 askSize: 25

 lastSize: 2

 lastTimestamp: '1450947638'

 halted: 0

Sometimes IB fails to return snapshot query data for combos (as for TUT above), due

to IB server limitations/bugs. In such cases, using streaming quotes (see Chapter 7)

may be a good workaround:

IBMatlab(' action ' , ' query ' , ' SecType ' , ' FUT' , ' exchange ' , ' ECBOT' , ...

 ' ComboBagSymbol' , ' TUT' , ... % the spread ' s symbol is TUT

 ' LocalSymbol ' ,{ ' ZN MAR 13' , ' ZT MAR 13' }, ...

 ' ComboActions ' ,{ ' Sell ' , ' Buy' }, ' ComboRatios ' ,[1, 2] , ...

 'QuotesNumber' ,2) ;

pause(1.5); % wait a bit for data to be received from IB server

data = IBMatlab('action' , 'query' , 'QuotesNumber' , - 1, ...

 ' LocalSymbol' ,{ 'ZN MAR 13' , 'ZT MAR 13' }) ;

94 A list of other similar predefined CME spreads can be found in http://cmegroup.com/trading/interest-

rates/files/TreasurySwap_SpreadOverview.pdf and http://cmegroup.com/trading/interest-rates/intercommodity-spread.html

http://cmegroup.com/trading/interest-rates/files/TreasurySwap_SpreadOverview.pdf
http://cmegroup.com/trading/interest-rates/files/TreasurySwap_SpreadOverview.pdf
http://cmegroup.com/trading/interest-rates/intercommodity-spread.html

78 IB-Matlab User Guide

When specifying the spreadôs LocalSymbol, be careful to enter all the spaces in

there. For example, the ZN LocalSymbol has 4 spaces between ñZNò and ñMARò.

IB is super sensitive about this and if you specify a LocalSymbol that is even slightly

incorrect then IB will complain that it cannot find the specified contract.

The following parameters affect combo orders in IBMatlab:

Parameter Data type Default Description

Symbol string or cell-

array of strings

(none) The symbol(s) of the underlying leg

assets.

LocalSymbol string or cell-

array of strings

'' The local exchange symbol of the

underlying leg asset. When left empty,

IB sometimes tries to infer it from

Symbol and the other properties.

SecType string or cell-

array of strings

'STK' One of: 'STK', 'OPT', 'FUT', 'IND', 'FOP'

(but not 'CASH' or 'BAG') for the legs.

Exchange string or cell-

array of strings

'SMART' The exchange that should process the

request for the corresponding legs.

Currency string or cell-

array of strings

'USD' The currency for the corresponding legs.

Multiplier number [] The contract multiplier (for options)

Expiry string or cell-

array of strings

'' 'YYYYMM' or 'YYYYMMDD' format,

for each of the combo legs.

Strike number or

numeric array

0.0 The strike price (for options) of the

corresponding legs.

Right string or cell-

array of strings

'' One of: óPô, óPUTô, óCô, óCALLô for each

of the combo legs.

ComboActions cell-array of

strings

{} Array of corresponding leg actions. For

example: {'Sell', 'Buy'}

ComboRatios numeric array

of positive

numbers

[1,1] Array of corresponding leg weights. Any

number is accepted ï only the relative

values matter, so [1,1.5]=[2,3]=[4,6].

ComboBag

Symbol

string '' The exchange symbol of the combo-bag

spread. When left empty, IBMatlab will

use the last legôs LocalSymbol and

Symbol for the parent bag contract.

79 IB-Matlab User Guide

9.6 Setting special order attributes

Most of the important order parameters that are supported by IB are also supported as

IBMatlab parameters. However, IB also supports additional properties that in some

cases may be important.

For example, we may wish to specify the security identifier (via the contract objectôs

m_secIDType and m_secId properties
95

), or to specify the All-or-None flag (via the

order objectôs m_allOrNone property
96

).

These properties are not available as IBMatlab parameters, but they can still be

specified in IB-Matlab using the ibConnectionObject Java object returned by

IBMatlab as a second output value, as explained in §15 below. There are several ways

in which we can create and update the contract:

¶ We can use ibConnectionObj ect to create the initial contract and order

objects, modify their requested properties, then use ibConnectionObject again

to send the order to IB. §15.3 shows a usage example of this.

¶ We can use IBMatlabôs Hold parameter (see §8) to prepare the contract and

order object, then modify them with the extra properties, and finally use

ibConnectionObject to send the order to IB. The difference vs. the previous

method is that we donôt need to create the contract and order objects ï

IBMatlab takes care of this for us.

In all cases, we would use the ibConnectionObject.placeOrder function to send the

updated contract and order to IB for processing. Here is a typical usage example:

% Prepare initial contract and order objects using the Hold mechanism

[orderId, ibConne ctionObject, contract, order] = ...

 IBMatlab(' action ' , ' BUY' , ' Hold ' , true , ...);

% Modify some contract properties

contract.m_secIdType = ' ISIN ' ;

contract.m_secId = ' US0378331005 ' ; % =Apple Inc.

contract.m_ multiplier = ' 100 ' ; % only relevant for o ption /future

% Modify some order properties

order.m_clearingIntent = ' Away' ; % Possible values: IB, Away, PTA

order.m_settlingFirm = ' CSBLO' ; % =Credit Suisse Securities Europe

order.m_allOrNone = true ; % set the order to be All - or - None

or der.m_sweepToFill = true ; % set the order to be Sweep- to - Fill

order. m_orderRef = ' abra kadabra ' ; % internal trading note

% Send the modified order to IB

ibConnectionObject.placeOrder(orderId, contract, order);

Note that the contract and order objects are only returned from IBMatlab for trading

orders (i.e., Action = 'Buy', 'Sell' or 'SShort'), but not for other IBMatlab actions.

95 http://www.interactivebrokers.com/en/software/api/apiguide/java/contract.htm
96 http://www.interactivebrokers.com/en/software/api/apiguide/java/order.htm

http://www.interactivebrokers.com/en/software/api/apiguide/java/contract.htm
http://www.interactivebrokers.com/en/software/api/apiguide/java/order.htm

80 IB-Matlab User Guide

Some additional order fields that can be set in this manner include:

¶ m_hidden ï true for a hidden order routed via the INet (Island) exchange
97

¶ m_displaySize ïinteger >0 for an Iceberg order
98

¶ m_volatility ï value >0 for specifying option limit price in terms of volatility

[percent], typically used together with m_volatilityType [1=daily, 2=annual]

¶ additional contract and order fields are described in IBôs API documentation
99

The Hold mechanism can be used to programmatically prepare an order for later

manual approval and transmission in TWS:

% Prepare initial contract and order objects using the Hold mechanism

[orderId, ibConn ectionObject, contract, order] = ...

 IBMatlab(' action ' , ' BUY' , ' Hold ' , true , ...);

% Modify the order to NOT transmit immediately from TWS to IB server

order.m_transmit = false ;

% Send the modified order to IB

ibConnectionObject.placeOrder(orderId, contr act, order);

This will create the order in TWS without transmitting it. You will see the order in

TWSôs API tab with a button to transmit:

Right-clicking anywhere in the row will present a menu with additional options:

When changing an order immediately following creation, IB might reject the request.

In such cases, adding a short pause(0.5) normally solves the problem:

[API.msg2] Unable to modify this order as it i s still be ing processed

97 http://www.interactivebrokers.com/en/trading/orders/hidden.php
98 http://www.interactivebrokers.com/en/trading/orders/iceberg.php
99 http://www.interactivebrokers.com/en/software/api/apiguide/java/contract.htm,

http://www.interactivebrokers.com/en/software/api/apiguide/java/order.htm,
http://www.interactivebrokers.com/en/software/api/apiguide/tables/extended_order_attributes.htm

http://www.interactivebrokers.com/en/trading/orders/hidden.php
http://www.interactivebrokers.com/en/trading/orders/iceberg.php
http://www.interactivebrokers.com/en/software/api/apiguide/java/contract.htm
http://www.interactivebrokers.com/en/software/api/apiguide/java/order.htm
http://www.interactivebrokers.com/en/software/api/apiguide/tables/extended_order_attributes.htm

81 IB-Matlab User Guide

9.7 Exercising and lapsing options

To exercise or lapse an option, use Action='exercise' or 'lapse' (respectively). You

must specify the quantity of contracts and the exchange (IBôs SMART exchange

cannot be used).
100

 You can also indicate whether to override IBôs default handling

action (exercise in-the-money options only). For example:

orderId = IBMatlab (' action ' , ' exercise ' , 'symbol' , 'GOOG' , ...

 'secT ype' , 'OPT' , 'expiry' , '201509' , ...

 'm ultiplier' ,100, 'strike' ,6 00, 'right' , 'C ' , ...

 'quantity' ,5 , 'exchange' , 'AMEX' , 'override' , tru e)

Assuming that the information is correct and that I have 5 unlapsed GOOG 9/2015

Call-600 options in my portfolio, then these 5 options will be exercised and turn into

500 shares (5 options * 100 multiplier) of the underlying GOOG, at USD 600 each.

At the time of this writing, GOOG trades at USD 542.34, so the exercise is not in the

money and would be rejected if I had not stated Override=true. Because of the

override the exercise order is executed at a nominal loss of USD 57.66 (=600-542.34)

per share (excluding commissions).

If the option is not in-the-money and you try to exercise without specifying the

Override parameter (or if you set the Override value to the default=false), you will

receive an error from IB:

[API.msg2] Error processing request: Exercise ignored because option

is not in - the - money. {498825899, 322}

If the options do not exist in your portfolio you will receive a different error message:

[API.msg2] Error processing request: No unlapsed position exists in

this option in acc ount DU1 23456. {498752361, 322}

If you have several IB accounts, then the AccountName parameter must be specified,

otherwise you will receive yet a different error message:

[API.msg2] Error validating request: - 'kd' : cause - The account code is

required for this operation. {498752362, 321}

You can only lapse an option on its last trading day. If you try to lapse it on a

different date, you will receive two separate error messages from IB:

[API.msg2] Order rejected - reason: trade date must match last trade

date of the contract {498825901, 201}

[API.msg2] Error processing request: Exercise/Lapse failed due to

server rejection {498825901, 322}

Finally, as of the time of this writing, IB only supports exercising/lapsing options, not

FOP (future-on-option) or warrants. Customers wishing to exercise or lapse such

contracts must submit a manual request ticket to IB.

100 http://www.interactivebrokers.com/en/software/api/apiguide/java/exerciseoptions.htm

http://www.interactivebrokers.com/en/software/api/apiguide/java/exerciseoptions.htm

82 IB-Matlab User Guide

The following parameters affect exercising/lapsing options in IBMatlab:

Parameter Data type Default Description

Action string (none) Either 'exercise' or 'lapse'.

Symbol string (none) The symbol of the underlying asset.

LocalSymbol string '' The local exchange symbol of the option

contract. When left empty, IB infers it from

Symbol and the other properties.

SecType string (none) Needs to be 'OPT'. IB does not currently

allow exercising any other SecType.

Exchange string (none) The exchange that should process the

request ï cannot be set to 'SMART'.

Currency string 'USD' The currency for the option contract.

Multiplier number [] The option contract multiplier.

Expiry string '' 'YYYYMM' or 'YYYYMMDD' format.

Strike number 0.0 The strike price of the option contract.

Right string '' One of: óPô, óPUTô, óCô, óCALLô.

Quantity integer 0 Number of contracts to exercise or lapse.

Override integer or

logical flag

0=false ¶ 0 or false: use default action (exercise in-

the-money options only)

¶ 1 or true: override the default action

AccountName string ''

The specific IB account ID to use.

Useful when you handle multiple IB

accounts, otherwise leave empty.

83 IB-Matlab User Guide

9.8 Additional IBAlgo orders

In addition to VWAP (§9.1) and TWAP (§9.2), IB-Matlab supports several

additional so-called ñIBAlgoò strategies, including Arrival Price,
101

 Dark Ice,
102

Percentage of Volume,
103

 Balance Impact/Risk,
104

 and Minimize Impact.
105

 IBMatlab

enables specifying the algo strategyôs properties, as follows:

Parameter Data type Default Description

Type string 'LMT' Set to one of the following:

¶ 'VWAP' (see §9.1)

¶ 'TWAP' (see §9.2)

¶ 'ArrivalPx'

¶ 'DarkIce'

¶ 'PctVol'

¶ 'BalanceImpactRisk'

¶ 'MinImpact'

MaxPctVol number 0.1=10% Maximal % participation of average

daily volume up to 0.5 (=50%).

PctVol number 0.1=10% Target % participation of average

daily volume up to 0.5 (=50%).

StartTime string '9:00:00 EST' Format: 'YYYYMMDD hh:mm:ss

TMZ' (TMZ is optional)

EndTime string '16:00:00 EST' (same as StartTime above)

AllowPastEndTime integer or

logical flag

1=true If true, allow the algo to continue to

work past the specified EndTime if

the full quantity has not been filled.

NoTakeLiq integer or

logical flag

0=false If true, discourage the algo from

hitting the bid or lifting the offer if

possible.

RiskAversion string óNeutralô One of:

¶ 'Neutral' (default)

¶ 'Get Done'

¶ 'Aggressive'

¶ 'Passive'

101 http://www.interactivebrokers.com/en/trading/orders/arrivalprice.php;

http://www.interactivebrokers.com/en/software/tws/usersguidebook/algos/arrival_price.htm
102 http://www.interactivebrokers.com/en/trading/orders/darkIce.php;

http://www.interactivebrokers.com/en/software/tws/usersguidebook/algos/dark_ice.htm
103 http://www.interactivebrokers.com/en/trading/orders/percentofvolume.php;

http://www.interactivebrokers.com/en/software/tws/usersguidebook/algos/percentage_of_volume_strategy.htm
104 http://www.interactivebrokers.com/en/trading/orders/balanceimpactrisk.php;

http://www.interactivebrokers.com/en/software/tws/usersguidebook/algos/balance_impact_and_risk.htm
105 http://www.interactivebrokers.com/en/trading/orders/minimizeimpact.php;

http://www.interactivebrokers.com/en/software/tws/usersguidebook/algos/minimize_impact.htm

http://www.interactivebrokers.com/en/trading/orders/arrivalprice.php
http://www.interactivebrokers.com/en/software/tws/usersguidebook/algos/arrival_price.htm
http://www.interactivebrokers.com/en/trading/orders/darkIce.php
http://www.interactivebrokers.com/en/software/tws/usersguidebook/algos/dark_ice.htm
http://www.interactivebrokers.com/en/trading/orders/percentofvolume.php
http://www.interactivebrokers.com/en/software/tws/usersguidebook/algos/percentage_of_volume_strategy.htm
http://www.interactivebrokers.com/en/trading/orders/balanceimpactrisk.php
http://www.interactivebrokers.com/en/software/tws/usersguidebook/algos/balance_impact_and_risk.htm
http://www.interactivebrokers.com/en/trading/orders/minimizeimpact.php
http://www.interactivebrokers.com/en/software/tws/usersguidebook/algos/minimize_impact.htm

84 IB-Matlab User Guide

Parameter Data type Default Description

ForceCompletion integer or

logical flag

0=false If true, attempt completion by end

of day.

DisplaySize integer 1 The order quantity (size) that you

want to be displayed to the market.

Note that the algo will randomize

the size by 50% on either side.

Note: StartTime, EndTime, AllowPastEndTime, and NoTakeLiq were described

in §9.1.

IB only enables IBAlgo strategy orders for a subset of security types and exchanges.

Refer to the specific algoôs documentation for details.

Some IBAlgo properties are only relevant to some strategies, but not to others:
106

Here is an example for specifying an Arrival Price trade order:

orderId = IBMatlab (' action ' , ' BUY' , ' symbol ' , ' GOOG' , ' quantity ' ,1 0, ...

 ' type ' , ' ArrivalPx ' , ' limitPrice ' ,600 , ...

 ' MaxPctVol ' , 0.01 , ' RiskAversion ' , ' Passive' , . ..

 ' StartTime ' , ' 20120215 10:30:00 EST ' , ...

 ' EndTime ' , ' 10:45:00 EST ' , ...

 'TIF','Day', . ..

 ' ForceCompletion ' , true , ...

 ' AllowPastEndTime ' , fals e);

Note that, as with VWAP and TWAP, IB automatically routes the trade to its internal

servers (IBALGO) rather than directly to the relevant exchange as it would do in most

other cases. Also note that some IBAlgo orders are not guaranteed to execute.

IBAlgo orders cannot use the default TIF value of 'GTC' ï use 'Day' instead.

Finally, note that all IBAlgo orders will be treated as LMT orders, except VWAP

(§9.1) which uses MKT. For this reason, you must specify the LimitPrice parameter

in all IBAlgo orders except VWAP.

106 http://www.interactivebrokers.com/en/software/api/apiguide/tables/ibalgo_parameters.htm

http://www.interactivebrokers.com/en/software/api/apiguide/tables/ibalgo_parameters.htm

85 IB-Matlab User Guide

10 Accessing and cancelling open trade orders

10.1 Retrieving the list of open orders

To retrieve the list of open IB orders use Action='query' and Type='open' as follows:

>> data = IBMatlab (' action ' , ' query ' , ' type ' , ' open ')

data =

1x3 struct array with fields:

 orderId

 contract

 order

 orderState

 status

 filled

 remaining

 avgFillPrice

 permId

 parentId

 lastFillPrice

 clientId

 whyHeld

 message

This returns a Matlab struct array, where each array element represents a different

open order. In this particular case, we see the parent order and two open bracket

child-orders from §9.3 above.

You can access any of the orders using the standard Matlab dot notation:

>> data(1)

ans =

 orderId: 154410310

 contract: [1x1 struct]

 order: [1x1 struct]

 orderState: [1x1 struct]

 status: ' Submitted '

 filled: 0

 re maining: 100

 avgFillPrice: 0

 permId: 989560927

 parentId: 0

 lastFillPrice: 0

 clientId: 8981

 whyHeld: []

 message: [1x162 char]

86 IB-Matlab User Guide

>> data(2)

ans =

 orderId: 154410311

 contract: [1x1 st ruct]

 order: [1x1 struct]

 orderState: [1x1 struct]

 status: ' PreSubmitted '

 filled: 0

 remaining: 100

 avgFillPrice: 0

 permId: 989560928

 parentId: 154410310

 lastFillPrice: 0

 clientId: 8981

 whyHeld: ' child,trigger '

 message: [1x182 char]

Each of the order structs contains the following data fields:
107

¶ orderId ï this is the ID returned by IBMatlab when you successfully submit a

trade order. It is the ID that is used by IB to uniquely identify the trade.

¶ contract ï this is a struct object that contains the contract information,

including all the relevant information about the affected security

¶ order ï this is another struct object that contains information about the

specific trade orderôs parameters

¶ orderState ï this is another struct object that contains information about the

current status of the open order. An order can be open with several possible

states, and this is reported in this structôs fields.

¶ status ï indicates the order status e.g., óSubmittedô, óPreSubmittedô, etc.

¶ filled ï indicates the number of shares that have been executed in the order

¶ remaining ï number of shares remaining to be executed in the order

¶ avgFillPrice ï average price of the filled (executed) shares; 0 if no fills

¶ permId ï the permanent ID used to store the order in the IB server

¶ parentId ï the order ID of the orderôs parent order; 0 if no parent

¶ lastFillPrice ï last price at which shares in the order were executed

¶ clientId ï ID of the client used for sending the order (see §13 below)

¶ whyHeld ï specific reasons for holding the order in an open state

¶ message ï a detailed message string stating the orderôs state. This is basically

just a string that contains all the fields above and their values.

107 http://www.interactivebrokers.com/en/software/api/apiguide/java/orderstatus.htm

http://www.interactivebrokers.com/en/software/api/apiguide/java/orderstatus.htm

87 IB-Matlab User Guide

For example:

>> data(2).contract

ans =

 m_conId: 30351181

 m_symbol: ' GOOG'

 m_secType: ' STK'

 m_expiry: []

 m_strike: 0

 m_right: ' ?'

 m_multi plier: []

 m_exchange: ' SMART'

 m_currency: ' USD'

 m_localSymbol: ' GOOG'

 m_primaryExch: []

 m_includeExpired: 0

 m_secIdType: []

 m_secId: []

 m_comboLegsDescrip: []

 m_comboLegs: ' [] '

 m_underComp: []

>> data(1).order

ans =

 CUSTOMER: 0

 FIRM: 1

 OPT_UNKNOWN: ' ?'

 OPT_BROKER_DEALER: ' b'

 OPT_CUSTOMER: ' c '

 OPT_FIRM: ' f '

 OPT_ISEMM: ' m'

 OPT_FARMM: ' n'

 OPT_SPECIALIST: ' y '

 AUCTION_MATCH: 1

 AUCTION_IMPROVEMENT: 2

 AUCTION_TRANSPARENT: 3

 EMPTY_STR: ''

 m_orderId: 15441031 1

 m_clientId: 8981

 m_permId: 989560928

 m_action: ' SELL'

 m_totalQuantity: 100

 m_orderType: ' STP'

 m_lmtPrice: 58 0

 m_auxPrice: 0

 m_tif: ' GTC'

 m_ocaGroup: ' 989560927 '

 m_ocaType: 3

 m_transmit: 1

 m_parentId: 154410310

 (plus many more internal order properties...)

88 IB-Matlab User Guide

>> data(1).orderState

ans =

 m_status: ' Submitted '

 m_initMargin: ' 1.7 976931348623157E308 '

 m_maintMargin: ' 1.7976931348623157E308 '

 m_equityWithLoan: ' 1.7976931348623157E308 '

 m_commission: 1.79769313486232e+308

 m_minCommission: 1.79769313486232e+308

 m_maxCommission: 1.797693134 86232e+308

 m_commissionCurrency: ' USD'

 m_warningText: []

Donôt let the number 1.79769313486232e+308 alarm you ï this is simply IBôs way of

specifying uninitialized data.

Note: IB warns
108

 that ñIt is possible that orderStatus() may return duplicate

messages. It is essential that you filter the message accordingly.ò

We can filter the results based on a specific OrderId and/or Symbol. For example:

% Filter by order ID

>> data = IBMatlab (' action ' , ' query ' , ' type ' , ' open ' , ' OrderId ' ,154410310)

data =

 orderId: 154410310

 contract: [1x1 struct]

 order: [1x1 struct]

 orderState: [1x1 struct]

 (etc.)

% Filter by symbol : note that symbol filtering is case insensitive

>> data = IBMatlab (' action ' , ' query ' , ' type ' , ' open ' , ' symbol ' , ' goog ')

Of course, it is possible that there are no open orders that match the filtering criteria:

>> data = IBMatlab (' action ' , ' query ' , ' type ' , ' open ' , ' symbol ' , ' xyz ')

data =

 []

We can use the returned data to filter the results by any of the order/contract fields:

data = IBMatlab (' action ' , ' query ' , ' type ' , ' open ' , ' symbol ' , ' goog ') ;

for idx = length (data) : - 1:1 % only report orders having lmtPrice<600

 if data(idx).order.m_lmtPrice>= 600 , data(idx)=[]; end

end

Note that you can only retrieve (and modify) open orders that were originally sent by

your IB-Matlab ClientID . Trades that were placed directly in TWS, or via another

API client that connects to TWS, or by another IB-Matlab connection session with a

different ClientID , will not be accessible. If this limitation affects your work, use a

static ClientID of 0, thereby enabling access to all open orders placed by any IB-

Matlab session (since they will all have the same ClientID =0) as well as directly on

TWS (which uses the same ClientID =0). See §13 for additional details on ClientID .

108 http://www.interactivebrokers.com/en/software/api/apiguide/java/orderstatus.htm

http://www.interactivebrokers.com/en/software/api/apiguide/java/orderstatus.htm

89 IB-Matlab User Guide

10.2 Modifying open orders

To modify parameters of open orders, we need to first ensure they are really open

(duh!). This sounds trivial, but one would be surprised at how common a mistake is to

try to update an order that has already been filled or cancelled.

When we are certain that the order is open, we can resend the order with modified

parameters, along with the OrderId parameter. The OrderId parameter tells

IBMatlab (and IB) to modify that specific order, rather than to create a new order:

[orderId,ibConnectionObject]= IBMatlab (' action ' , ' BUY' , ' symbol ' , ' GOOG' , ...

 ' quantity ' ,100, ' type ' , ' LMT' , ' limitPrice ' ,600);

% Let some time pass...

% If the requested order is still open

if ~isempty(IBMatlab (' action ' , ' query ' , ' type ' , ' open ' , ' OrderId ' , orderId))

 % Send the trade with modified parameters

 IBMatlab (' action ' , ' BUY' , ' symbol ' , ' GOOG' , ' quantity ' ,5 0, ...

 ' type ' , ' MKT' , ' orderID ' , orderId);

end

Note: orders placed manually via TWS all have an OrderId of 0, unless we run the

following command in Matlab. TWS orders placed from then on will get unique IDs.

Naturally, we also need to set ClientId =0 to access the TWS orders (see §10.1):

ibConnectionObject. reqAutoOpenOrders (true); % see §1 5 for details

10.3 Cancelling open orders

To cancel open orders, we need (as above) to first ensure that they are really open

(again, duh!), although in this case it does not really matter so much if we are trying

to cancel a non-existing order. The only side-effect will be a harmless message sent to

the Matlab command window, no real harm done.

To cancel the trade, simply use Action='cancel' with the specific order ID:

% If the requested order is still open

if ~isempty(IBMatlab (' action ' , ' query ' , ' type ' , ' open' , ' OrderId ' , orderId))

 % Cancel the requested order

 data = IBMatlab (' action ' , ' CANCEL' , ' orderID ' , orderId);

end

To cancel ALL open orders simply discard the OrderId parameter from the command:

data = IBMatlab (' action ' , ' CANCEL'); % cancel ALL op en orders

In both cases, the returned data is an array of structs corresponding to the cancelled

order(s), as described in §10.1 above.

Alternatively, we can use the Java connector object for this (see §15 for details):

% Place an order, return the orderId and the Java connector object

[orderId, ibConnectionObject] = IBMatlab (' action ' , ' BUY' , ...);

% Cancel the order using the u nderlying Java connector object

ibConnectionObject.cancelOrder(orderId);

90 IB-Matlab User Guide

11 Processing IB events

11.1 Processing events in IB-Matlab

IB uses an asynchronous event-based mechanism for sending information to clients.

This means that we do not simply send a request to IB and wait for the answer.

Instead, we send a request, and when IB is ready it will send us one or more (or zero)

events in response. These events carry data, and by analyzing the stored event data we

(hopefully) receive the answer that we were waiting for.

These callbacks are constantly being ñfiredò (i.e., invoked) by asynchronous

messages from IB, ranging from temporary market connection losses/reconnections,

to error messages and responses to market queries. Some of the events are triggered

by user actions (market or portfolio queries, for example), while others are triggered

by IB (e.g., disconnection notifications). The full list of IB events (and their data) is

documented in the online API documentation.
109

Matlab has built-in support for asynchronous events, called callbacks in Matlab

jargon.
110

 Whereas Matlab callbacks are normally used in conjunction with Graphical

User Interfaces (GUI), they can also be used with IB-Matlab , which automatically

converts all the Java events received from IB into Matlab callbacks.

There are two types of callbacks that you can use in IB-Matlab :

¶ Generic callback ï this is a catch-all callback function that is triggered upon

any IB event. Within this callback, you would need to write some code to

distinguish between the different event types in order to process the eventsô

data. A skeleton for this is given below. The parameter controlling this

callback in IBMatlab is called CallbackFunction.

¶ Specific callback ï this is a callback function that is only triggered when the

specific event type is received from IB. Since the event type is known, you

can process its event data more easily than in the generic callback case.

However, you would need to specify a different specific callback for each of

the event types that you wish to process.

The parameters controlling the specific callbacks in IBMatlab are called

CallbackXXX , where XXX is the name of the IB event (the only exception to this

rule is CallbackMessage, which handles the IB error event ï the reason is that this

event sends informational messages in addition to errors,
111

 so IBôs event name is

misleading in this specific case).

109 http://www.interactivebrokers.com/en/software/api/apiguide/java/java_eclientsocket_methods.htm
110 http://www.mathworks.com/help/matlab/creating_guis/writing-code-for-callbacks.html
111 http://www.interactivebrokers.com/en/software/api/apiguide/java/error.htm

http://www.interactivebrokers.com/en/software/api/apiguide/java/java_eclientsocket_methods.htm
http://www.mathworks.com/help/matlab/creating_guis/writing-code-for-callbacks.html
http://www.interactivebrokers.com/en/software/api/apiguide/java/error.htm

91 IB-Matlab User Guide

When you specify any callback function to IBMatlab, either the generic kind

(CallbackFunction) or a specific kind (CallbackXXX), the command action does

not even need to be related to the callback (for example, you can set

CallbackExecDetails together with Action='query').

data = IBMatlab (' action ' , ' query ' , ..., ...

 ' CallbackExecDetails ' , @IBMatlab _CallbackExecDetails) ;

where IBMatlab _CallbackExecDetails () is a Matlab function created by you that

accepts two input arguments (which are automatically populated in run-time):

¶ hObject ï the Java connector object that is described in §15 below

¶ eventData ï a Matlab struct that contains the eventôs data in separate fields

An example for specifying a Matlab callback function is:

function IBMatlab _CallbackExecDetails(ib Connector , eventData)

 % do the callback processing here

end

You can pass external data to your callback functions using the callback cell-array

format. For example, to pass two extra data values:
112

callbackDetails = {@ IBMatlab _CallbackExecDetails , 123, ' abc ' };

IBMatlab (' action ' , ' query ' ,..., ' CallbackExecDetails ' ,callbackDetails) ;

function IBMatlab _CallbackExecDetails(ibConn, eventData ,extra1,extra2)

 % do the callback processing here

end

When you specify any callback function to IBMatlab, you only need to set it once, in

any IBMatlab command. Unlike most IBMatlab parameters, which are not

remembered across IBMatlab commands and need to be re-specified, callbacks do not

need to be re-specified. They are remembered from the moment they are first set,

until such time as Matlab exits or the callback parameter is changed.
113

To reset a callback (i.e., remove the callback invocation), simply set the callback

parameter value to [] (empty square brackets) or '' (empty string):

data = IBMatlab (' action ' , ' query ' , .. ., ' CallbackExecDetails ' , '') ;

Matlab callbacks are invoked even if you use the Java connector object (see §15) for

requesting data from IB. This is actually very useful: we can use the connector object

to send a request to IB, and then process the results in a Matlab callback function.

112 http://www.mathworks.com/help/matlab/creating_guis/writing-code-for-callbacks.html#brqow8p
113 It is not an error to re-specify the callbacks in each IBMatlab command, it is simply useless and makes the code less readable

http://www.mathworks.com/help/matlab/creating_guis/writing-code-for-callbacks.html#brqow8p

92 IB-Matlab User Guide

Using Matlab callbacks with the Java connector object can be used, for example, to

implement combo trades,
114

 as an alternative to the built-in mechanism described in

§9.5 above. In this case, separate contracts are created for the separate combo legs,

then submitted to IB via the Java connectorôs reqContractDetails() method, awaiting

the returned IDs via the Matlab callback to the ContractDetails event (see

CallbackContractDetails in the table below). Once the IDs for all the legs are

received, com.ib.client.ComboLeg objects
115

 are created. The completed order can

then be submitted to IB for trading via the Java connectorôs placeOrder() method. All

this may appear a bit difficult to implement, but in fact can be achieved in only a few

dozen lines of code. This example illustrates how Matlab callbacks can seamlessly

interact with the underlying Java connectorôs methods.

Here is the list of currently-supported callback events in IBMatlab (for additional

information about any of the callbacks, follow the link in the ñIB Eventò column):

IBMatlab parameter IB Event
Triggered

by

IBMatlab?
Called when?

CallbackAccountDownloadEnd accountDownloadEnd Yes

in response to account queries,

after all UpdateAccount events

were sent, to indicate end of data

CallbackAccountSummary accountSummary Yes

for every single field in the

summary data when the account

data is requested (see §4.1)

CallbackAccountSummaryEnd accountSummaryEnd Yes

when all AccountSummary

events have been sent, to indicate

end of data

CallbackBondContractDetails bondContractDetails Yes
in response to market queries;

not really used in IBMatlab

CallbackCommissionReport commissionReport Yes

immediately after a trade

execution, or when requesting

executions (see §12.1 below)

CallbackConnectionClosed connectionClosed Yes

when IB-Matlab loses its

connection (or reconnects) to

TWS/Gateway

CallbackContractDetails contractDetails Yes

in response to market queries;

used in IBMatlab only to get the

tick value

CallbackContractDetailsEnd contractDetailsEnd Yes

when all ContractDetails events

have been sent, to indicate end of

data

CallbackCurrentTime currentTime Yes

numerous times during regular

work; returns the current server

system time

CallbackDeltaNeutralValidation deltaNeutralValidation No
in response to a Delta-Neutral

(DN) RFQ

114 http://www.interactivebrokers.com/en/software/api/apiguide/java/placing_a_combination_order.htm
115 http://www.interactivebrokers.com/en/software/api/apiguide/java/comboleg.htm#XREF_interoperability_socket66

http://www.interactivebrokers.com/en/software/api/apiguide/java/accountdownloadend.htm
http://www.interactivebrokers.com/en/software/api/apiguide/java/accountsummary.htm
http://www.interactivebrokers.com/en/software/api/apiguide/java/accountsummaryend.htm
http://www.interactivebrokers.com/en/software/api/apiguide/java/bondcontractdetails.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/commissionreport_event.htm
http://www.interactivebrokers.com/en/software/api/apiguide/java/connectionclosed.htm
http://www.interactivebrokers.com/en/software/api/apiguide/java/contractdetails.htm
http://www.interactivebrokers.com/en/software/api/apiguide/java/contractdetailsend.htm
http://www.interactivebrokers.com/en/software/api/apiguide/java/currenttime.htm
http://www.interactivebrokers.com/en/software/api/apiguide/java/deltaneutralvalidation.htm
http://www.interactivebrokers.com/en/software/api/apiguide/java/placing_a_combination_order.htm
http://www.interactivebrokers.com/en/software/api/apiguide/java/comboleg.htm#XREF_interoperability_socket66

93 IB-Matlab User Guide

IBMatlab parameter IB Event
Triggered

by

IBMatlab?
Called when?

CallbackExecDetails execDetails Yes

whenever an order is partially or

fully filled, or in response to

reqExecutions() on the Java

connector

CallbackExecDetailsEnd execDetailsEnd Yes

when all the ExecDetails events

have been sent, to indicate end of

data

CallbackFundamentalData fundamentalData Yes
in response to requesting

fundamental data for a security

CallbackHistoricalData historicalData Yes

in response to a historical data

request, for each of the result

bars separately

CallbackManagedAccounts managedAccounts Yes

when a successful connection is

made to a Financial Advisor

account, or in response to calling

reqManagedAccts ()on the Java

connector

CallbackMarketDataType marketDataType No

when the market type is set to

Frozen or RealTime, to announce

the switch, or in response to

calling reqMarketDataType() on

the Java connector

CallbackMessage error Yes

whenever IB wishes to send the

user an error or informational

message. See §14 below.

CallbackNextValidId nextValidId No after connecting to IB

CallbackOpenOrder openOrder Yes
in response to a user query for

open orders, for each open order

CallbackOpenOrderEnd openOrderEnd Yes

after all OpenOrder events have

been sent for a request, to

indicate end of data

CallbackOrderStatus orderStatus Yes

in response to a user query for

open orders (for each open

order), or when an orderôs status

changes

CallbackPosition position Yes

in response to a user query for

portfolio positions (for each

position in the portfolio)

CallbackPositionEnd positionEnd Yes

when all Position events have

been sent for a request, to

indicate end of data

CallbackTickPrice tickPrice Yes
in response to a market query,

for price fields (e.g., bid)

CallbackTickSize tickSize Yes
in response to a market query,

for size fields (e.g., bidSize)

CallbackTickString tickString Yes

in response to a market query,

for string fields (e.g.,

lastTimestamp)

https://www.interactivebrokers.com/en/software/api/apiguide/java/execdetails.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/execdetailsend.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/fundamentaldata.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/historicaldata.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/managedaccounts.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/marketdatatype.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/error.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/nextvalidid.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/openorder.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/openorderend.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/orderstatus.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/position.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/positionend.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/tickprice.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/ticksize.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/tickstring.htm

94 IB-Matlab User Guide

IBMatlab parameter IB Event
Triggered

by

IBMatlab?
Called when?

CallbackTickGeneric tickGeneric Yes
in response to a query with a

GenericTickList param

CallbackTickEFP tickEFP No

when the market data changes.

Values are updated immediately

with no delay.

CallbackTickOptionComputation tickOptionComputation No

when the market of an option or

its underlier moves. TWSôs

option model volatilities, prices,

and deltas, along with the present

value of dividends expected on

that underlier are received

CallbackTickSnapshotEnd tickSnapshotEnd Yes

when all events in response to a

snapshot query request have

been sent, to indicate end of data

CallbackRealtimeBar realtimeBar Yes

in response to a realtime bars

request, for each of the result

bars separately

CallbackReceiveFA receiveFA No

in response to calling

requestFA() on the Java

connector

CallbackScannerData scannerData Yes
in response to a user query for

scanner data, for each result row

CallbackScannerDataEnd scannerDataEnd Yes

when the last scannerData event

has been sent, to indicate end of

data

CallbackScannerParameters scannerParameters Yes
in response to a user query for

scanner parameters XML

CallbackUpdateAccountTime updateAccountTime Yes

together with the Update-

AccountValue callbacks, to

report on the event time

CallbackUpdateAccountValue updateAccountValue Yes

for every single property in the

list of account properties, when

the account data is requested (see

§4) or updated

CallbackUpdateMktDepth updateMktDepth Yes when market depth has changed

CallbackUpdateMktDepthL2 updateMktDepthL2 Yes
when the Level II market depth

has changed

CallbackUpdateNewsBulletin updateNewsBulletin No

for each new bulletin if the client

has subscribed by calling

reqNewsBulletins() on the Java

connector

CallbackUpdatePortfolio updatePortfolio Yes
when account updates are

requested or occur

https://www.interactivebrokers.com/en/software/api/apiguide/java/tickgeneric.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/tickefp.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/tickoptioncomputation.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/ticksnapshotend.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/realtimebar.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/receivefa.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/scannerdata.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/scannerdataend.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/scannerparameters.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/updateaccounttime.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/updateaccountvalue.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/updatemktdepth.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/updatemktdepthl2.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/updatenewsbulletin.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/updateportfolio.htm

95 IB-Matlab User Guide

11.2 Example ï using CallbackExecDetails to track executions

The execDetails event is triggered whenever an order is fully or partially executed.

Let us trap this event and send the execution information into a CSV file for later use

in Excel (also see §12 below):

orderId = IBMatlab (' action ' , ' BUY' , ' symbol ' , ' GOOG' , ' quantity ' ,1, ...

 ' limitPrice ' ,600, ...

 ' CallbackExecDetails ' ,@IBMatlab _CallbackExecDetails);

Where the function IBMatlab _CallbackExecDetails is defined as follows (for

example, in a file called IBMatlab_CallbackExecDetails.m):
116

function IBMatlab _CallbackExecDetails(ibConnector , even tData, varargin)

 % Extract the basic event data components

 contractData = eventData.contract;

 executionData = eventData.execution;

 % Example of extracting data from the contract object:

 % http://www.interactivebrokers.com/en/software/api/apiguide/java/contract.htm

 symbol = char(eventData.contract.m_symbol);

 secType = char(eventData.contract.m_secType);

 % ... several other contract data fiel d available ï see above webpage

 % Example of extracting data from the execution object:

 % http://www.interactivebrokers.com/en/software/api/apiguide/java/exe cution.htm

 orderId = eventData.execution.m_orderId;

 execId = char(eventData.execution.m_execId);

 time = char(eventData.execution.m_time);

 exchange = char(eventData.execution.m_exchange);

 side = char(eventData.execu tion.m_side);

 shares = eventData.execution.m_shares;

 price = eventData.execution.m_price;

 permId = eventData.execution.m_permId;

 liquidation = eventData.execution.m_liquidation;

 cumQty = eventData.execution.m_cumQty;

 avgPrice = eventData.execution.m_avgPrice;

 % ... several other execution data field available ï see above webpage

 % Convert the data elements into a comma - separated string

 csvline = sprintf(' %s,%d,%s,%d,%d,%f \ n' , time, orderId, symbol, ...

 shares, cumQty, price);

 % Now append this comma - separated string to the CSV file

 fid = fopen(' executions .csv ' , ' at '); % ' at ' = append text

 fprintf(fid, csvline);

 fclose(fid);

end % IBMatlab _CallbackExec Details

116 This file can be downloaded from: http://UndocumentedMatlab.com/files/IBMatlab_CallbackExecDetails.m

http://www.interactivebrokers.com/en/software/api/apiguide/java/contract.htm
http://www.interactivebrokers.com/en/software/api/apiguide/java/execution.htm
http://undocumentedmatlab.com/files/IBMatlab_CallbackExecDetails.m

96 IB-Matlab User Guide

11.3 Example ï using CallbackTickGeneric to check if a security is shortable

In this example, we attach a user callback function to tickGeneric events in order to

check whether a security is shortable
117

 (also see §5.1 above).

Note: according to IB,
118

 ñGeneric Tick Tags cannot be specified if you elect to use

the Snapshot market data subscriptionñ, and therefore we need to use the streaming-

quotes mechanism, so QuotesNumber>1:

orderId = IBMatlab (' action ' , ' Query ' , ' symbol ' , ' GOOG' , ...

 ' GenericTicklist ' , ' 236 ' , ' QuotesNumber ' ,2, ...

 ' CallbackTickGeneric ' ,@IBMatlab _CallbackTickGeneric);

where the function IBMatlab _CallbackTickGeneric is defined as follows:
119

function IBMatlab _CallbackTickGeneric(ibConnector , eventData, varargin)

 % Only check the shortable tick type =46, according to

 % http://www.interactivebrokers.com/en/software/api/apiguide/tables/tick_types.htm

 if eventData.field == 46 % 46=Shortable (see footnote below)

 % Get this event ' s tickerId (=orderId as returned from the

 % original IBMatlab command)

 tickerId = eventData.tickerId;

 % Get the corresponding shortable value

 shortableValue = eventData.generic; % (see footnote below)

 % Now check whether the security is shortable or not

 title = sprintf(' Shortable info for request %d ' , tickerId);

 if (shortableValue > 2.5) % 3.0

 msgbox(' >1000 shares available for a short ' , title, ' help ');

 elseif (shortableValue > 1.5) % 2.0

 msgbox(' This contract will be available for short sale if

shares can be located ' , title, ' warn ');

 elseif (shortableValue > 0.5) % 1.0

 msgbox(' Not available for short sale ' , title, ' warn ');

 else

 msg=sprintf(' Unknown shortable value: %g ' ,shortableValue) ;

 msgbox(msg, title, ' error ');

 end

 end % if shortable tickType

end % IBMatlab _Call backTickGeneric

Note that in this particular example we could also have simply used the streaming

quotes data, instead of using the callback:

>> data S = IBMatlab (' action ' , ' query ' , ' symbol ' , ' GOOG' , ' quotes Number ' , - 1) ;

>> shortableValue = dataS.data.shortable; % =3 for GOOG

117 http://www.interactivebrokers.com/en/software/api/apiguide/tables/using_the_shortable_tick.htm
118 http://www.interactivebrokers.com/en/software/api/apiguide/tables/generic_tick_types.htm
119 This code can be downloaded from: http://UndocumentedMatlab.com/files/IBMatlab_CallbackTickGeneric.m. In IB-Matlab,
tickGenericôs eventData contains the fields ñfieldò, ñgenericñ, which correspond to IBôs documented ñtickTypeò, ñvalueò fields.

http://www.interactivebrokers.com/en/software/api/apiguide/tables/tick_types.htm
http://www.interactivebrokers.com/en/software/api/apiguide/tables/using_the_shortable_tick.htm
http://www.interactivebrokers.com/en/software/api/apiguide/tables/generic_tick_types.htm
http://undocumentedmatlab.com/files/IBMatlab_CallbackTickGeneric.m

97 IB-Matlab User Guide

11.4 Example ï using CallbackContractDetails to get a contractôs full options chain

In this example, we attach a user callback function to contractDetails events in order

to receive the full list of LocalSymbols and associated contract properties of an

underlying securityôs options chain.
120

As noted in §3.2 above, it is not possible to receive the entire list of option prices in a

single command ï each market price requires a separate request with a specific

LocalSymbol.

However, we can use the contractDetails event to extract the full list of option

LocalSymbols in a single command. This relies on the fact that when the Right and

Strike parameters of an option security are empty, IB returns the full list of contracts

matching the other specifications.

We first define our callback function for the event:

function IB Callback ContractDetails (ibConnector , eventData)

 contract = eventData. contractDetails.m_summary ;

 fprintf ([char(contract .m_localSymbol) ' \ t ' ...

 char(contract.m_se cType) ' \ t ' ...

 char(contract . m_symbol) ' \ t ' ...

 char(contract . m_expiry) ' \ t ' ...

 char(contract .m_right) ' \ t ' ...

 char(contract .m_multiplier) ' \ t ' ...

 num2str(contract. m_strike) ' \ n']);

end % IB Callback ContractDetails

Now we ask IB for the current market data of the futures options for Light Sweet

Crude Oil (CL) with empty Right and Strike. We can safely ignore the IB warning

about ambiguous or missing security definition:

>> data =IBMatlab(' action ' , ' query ' , ' symbol ' , ' CL' , ' secType ' , ' FOP' , ...

 ' exchange ' , ' NYMEX' , ' currency ' , ' USD' , ...

 ' expiry ' , ' 201306 ' , ' right ' , '' , ' strike ' ,0.0, ...

 ' CallbackContractDetails ' , @IBCallback ContractDetails)

[API.msg2] The contract description specified for CL is ambiguous;

you must specify the multiplier. {286356018, 200}

LOM3 P6650 FOP CL 20130516 P 1000 66.5

LOM3 P8900 FOP CL 20130516 P 1000 89

LOM3 P11150 FOP CL 20130516 P 1000 111.5

LOM3 C6400 FOP CL 20130516 C 1000 64

LOM3 C8650 FOP CL 20130516 C 1000 86.5

LOM3 C10900 FOP CL 20130516 C 1000 109

LOM3 C6650 FOP CL 20130516 C 1000 66.5

LOM3 C8900 FOP CL 20130516 C 1000 89

... (over 400 different contracts)

120 A synchronous alternative for retrieving the options chain is explained in §5.4 above

98 IB-Matlab User Guide

The returned data struct will naturally contain empty market data, but its

contractDetails field will contain useful data about the requested security:

>> data
data =

 reqId: 286356019
 reqTime: ' 30- Apr - 2013 12:55:28 '
 dataTime: ' 30- Apr - 2013 12:55:31 '

 dataTimestamp: 735354.538562743
 lastEventTime: 735354.538562743
 ticker: ' CL'

 bidPrice: - 1
 askPrice: - 1
 open: - 1

 close: - 1
 low: - 1
 high: - 1

 lastPri ce: - 1
 volume: - 1
 tick: 0.01

 contract: [1x1 struct]
 contractDetails: [1x1 struct]

>> data.contract % these are the details for only one of the options

ans =
 m_conId: 50318947
 m_symbol: ' CL'

 m_secType: ' FOP'
 m_expiry: ' 20130516 '
 m_strike: 111 .5

 m_right: ' P'
 m_multiplier: ' 1000 '
 m_exchange: ' NYMEX'

 m_currency: ' USD'
 m_localSymbol: ' LOM3 P11150'
 ...

>> data.contractDetails
ans =
 m_summary: [1x1 com.ib.client.Contract]

 m_marketName: ' LO'
 m_tradingClass: ' LO'
 m_minTick: 0.01

 m_priceMagnifier: 1
 m_orderTypes : [1x205 char]
 m_validExchanges: ' NYMEX'

 m_underConId: 43635367

 m_longName: ' Light Sweet Crude Oil '
 m_contractMonth: ' 201306 '

 m_industry: []
 m_category: []
 m_subcategory: []

 m_timeZoneId: ' EST'
 m_tradingHours: ' 20130430:1800 - 1715;20130501:1800 - 1715 '
 m_liquidHours: ' 20130430:0000 - 1715,1800 - 2359;20130501:0000 -

1715,1800 - 2359 '
 ...

99 IB-Matlab User Guide

11.5 Example ï using CallbackUpdateMktDepth for realtime order-book GUI update

In this example, we wish to update a real-time GUI display of the order-book (at least

the top few rows of the book).

As noted in §7.3 above, market-depth events may be sent at a very high rate from the

IB server, and so it is not feasible or useful to update the Matlab GUI for each update.

Instead, we update the GUI with the latest data at a steady rate of 2 Hz (twice a

second). This can be achieved in two different ways: one alternative is to set-up a

periodic timer that will run our GUI-update callback every 0.5 secs, which will call

IBMatlab(é,ôQuotesNumberô,-1) to fetch the latest data and update the GUI.

Another alternative, shown here below, is to attach a user callback function to

updateMktDepth
121

 and updateMktDepthL2
122

 events, updating an internal data struct,

but only updating the GUI if 0.5 secs or more have passed since the last GUI update:

% IBMatlab_MktDepth - sample Market - Depth usage function

function IBMatlab_MktDepth (varargin)

 % Initialize data

 numRows = 5;

 depthData = cell(numRows,6);

 lastUpdateTime = - 1;

 GUI_refresh_period = 0.5 * 1/24/60/60; % =0.5 secs

 % Prepare the GUI

 hFig = figure('Name' , 'IB - Matlab market - depth example' , ...

 'NumberTitle' , 'off' , 'CloseReq' ,@figClosedCall back, ...

 'Menubar' , 'none' , 'Toolbar' , 'none' , ...

 'Resize' , 'off' , 'Pos' ,[100,200,520,170]);

 color = get(hFig, 'Color') ;

 headers = { 'Ask exch.' , 'Ask size' , 'Ask price' , ...

 'Bid price' , 'Bid size' , 'Bid exch.' };

 formats = { 'char' , 'numeric' , 'long' , 'long' , 'numeric' , 'char' };

 hTable = uitable('Parent' ,hFig, 'Pos' ,[10,40,500,120], ...

 'Data' , depthData , ...

 'ColumnName' ,headers, 'ColumnFormat' ,formats);

 hButton = uicontrol('Parent' ,hFig, 'Pos' ,[50,10,60,20], ...

 'String' , 'Start' , 'Callback' ,@buttonCallback);

 hLabel1 = uicontrol('Parent' ,hFig, 'Pos' ,[120,10,100,17], ...

 'Style' , 'text' , 'String' , 'Last updated :' , ...

 'Horizontal' , 'right' , 'Background' , color);

 hLabelTime = uicontrol('Parent' ,hFig, 'Pos' ,[225,10,100,17], ...

 'Style' , 'text' , 'String' , '(not yet)' , ...

 'Horizontal' , 'left' , ' Background' , color);

 % Send the market - depth request to IB using IB - Matlab

 contractParams = { 'symbol' , 'EUR' , 'localSymbol' , 'EUR.USD' , ...

 'secType' , 'cash' , 'exchange' , 'idealpro' , ...

 'NumberOfRows' ,5, vara rgin{:}};

121 http://www.interactivebrokers.com/en/software/api/apiguide/java/updatemktdepth.htm
122 http://www.interactivebrokers.com/en/software/api/apiguide/java/updatemktdepthl2.htm

http://www.interactivebrokers.com/en/software/api/apiguide/java/updatemktdepth.htm
http://www.interactivebrokers.com/en/software/api/apiguide/java/updatemktdepthl2.htm

100 IB-Matlab User Guide

 reqId = IBMatlab('action' , 'query' , 'QuotesNumber' ,inf, ...

 contractParams{:}, ...

 'CallbackUpdateMktDepth' , @mktDepthCallbackFcn, ...

 'CallbackUpdateMktDepthL2' ,@mktDepthCallbackF cn);

 % Figure close callback function - stop the market - depth streaming

 function figClosedCallback(hFig, eventData)

 % Delete the figure window and stop any pending data streaming

 delete(hFig);

 IBMatlab('action' , 'query' , cont ractParams{:}, 'QuotesNumber' ,0);

 end % figClosedCallback

 % Start/stop button callback function

 function buttonCallback(hButton, eventData)

 currentString = get(hButton, 'String');

 if strcmp(currentString, 'Start')

 set (hButton, 'String' , 'Stop');

 else

 set(hButton, 'String' , 'Start');

 end

 end % buttonCallback

 % Callback functions to handle IB Market Depth update events

 function mktDepthCallbackFcn(ibConnObj, eventData)

 % Ensur e that it's the correct MktDepth event

 if eventData.tickerId == reqId

 % Get the updated data row

 % Note: Java indices start at 0, Matlab starts at 1

 row = eventData.position + 1;

 % Get the size & pric e data fields from the event's data

 size = eventData.size;

 price = eventData.price;

 % Prevent extra LS digits in uitable display

 price = single(price + 0.00000001);

 % Exchange (marketMaker) data is only available in L2:

 try

 exchange = char(eventData.marketMaker);

 catch

 exchange = '' ;

 end

 % Update the internal data table

 if eventData.side == 0 % ask

 if eventData.operation == 0 % insert

 depthData (row+1:end,1:3) = depthData (row:end - 1,1:3);

 depthData (row,1:3) = {exchange, size, price};

 elseif eventData.operation == 1 % update

 depthData (row,1:3) = {exchange, size, price};

 elseif eventData.operation == 2 % delete

 depthData (row:end - 1,1:3) = depthData (row+1:end,1:3);

101 IB-Matlab User Guide

 depthData (end,1:3) = {[],[],[]};

 else

 % should never happen!

 end

 else % bid (same as ask but the data columns are reversed)

 if eventData.operation == 0 % insert

 depthData (row+1:end,4:6) = depthData (row:end - 1,4:6);

 depthData (row,4:6) = {price, size, exchange};

 elseif eventData.operation == 1 % update

 depthData (row,4:6) = {price, size, exchange};

 elseif eventData.operation == 2 % delete

 depthData (row:end - 1,4:6) = depthData (row+1:end,4:6);

 depthData (end,4:6) = {[],[],[]};

 else

 % should never happen!

 end

 end

 % Update the GUI if more than 0.5 secs have passed and

 % the <Stop> button was not press ed

 isStopped = strcmp(get(hButton, 'String'), 'Start');

 if now - lastUpdateTime > GUI_refresh_period && ~isStopped

 set(hTable, 'Data' , depthData);

 set(hLab elTime, 'String' ,datestr(now, 'HH:MM:SS'));

 lastUpdateTime = now;

 end

 end

 end % mktDepthCallbackFcn

end % IBMatlab_MktDepth

102 IB-Matlab User Guide

12 Tracking trade executions

IB-Matlab provides several distinct ways to programmatically track trade executions:

12.1 User requests

To retrieve the list of trade executions done in the IB account today,
123

 use

Action='query' and Type='executions' as follows (note the similarities to the request

for open order, §10.1 above):

>> data = IBMatlab (' action ' , ' query ' , ' type ' , ' executions ')

data =

1x3 struct array with fields:

 orderId

 execId

 time

 exchange

 side

 shares

 symbol

 price

 permId

 liquidation

 cumQty

 avgPrice

 contract

 execution

This returns a Matlab struct array, where each array element represents a different

execution event.

You can access any of the orders using the standard Matlab dot notation:

>> data(1)

ans =

 orderId: 154735358

 execId: ' 00018037.4ff27b0e.01.01 '

 time: ' 20120216 18:50:14 '

 exchange: ' ISLAND'

 side: ' BOT'

 shares: 1

 symbol: ' GOOG'

 price: 602.82

 permId: 300757703

 liquidation: 0

 cumQty: 1

 avgPrice: 602.82

 contract: [1x1 struct]

 execution: [1x1 struct]

123 To view executions from previous days, open the Trades Log in TWS and request the executions while the Trades Log is

displayed.

103 IB-Matlab User Guide

>> data(2)

ans =

 orderId: 154737092

 execId: ' 00018037.4ff2a3b8.01.01 '

 time: ' 20120216 18:58:57 '

 exchange: ' BEX'

 side: ' SLD'

 shares: 3

 symbol: ' GOOG'

 price: 605.19

 permId: 300757711

 liquidation: 0

 cumQty: 3

 avgPrice: 605.19

 contract: [1x1 struct]

 execution: [1x1 struct]

Each of the order structs contains the following data fields:
124

¶ orderId ï this is the ID returned by IBMatlab when you successfully submit a

trade order. It is the ID that is used by IB to uniquely identify the trade. TWS

orders have a fixed order ID of zero (0).

¶ execId ï the unique ID assigned to this execution

¶ time ï indicates the time of execution (local user time, not IB server time)

¶ exchange ï the exchange which executed the trade

¶ side ï BOT (=buy) or SLD (=sell)

¶ shares ï the number of executed shares

¶ symbol ï the securityôs symbol (use the contract field to get the LocalSymbol)

¶ pri ce ï the execution price

¶ permId ï the permanent ID used to store the order in the IB server

¶ liquidation ï identifies the position as one to be liquidated last should the

need arise

¶ cumQty ï the cumulative quantity of shares filled in this trade (used for partial

executions)

¶ avgPrice ï the weighted average price of partial executions for this trade

¶ contract ï this is a struct object that contains the contract information,

including all the relevant information about the affected security

¶ execution ï this is another struct object that contains information about the

specific executionôs parameters

124 http://www.interactivebrokers.com/en/software/api/apiguide/java/orderstatus.htm

http://www.interactivebrokers.com/en/software/api/apiguide/java/orderstatus.htm

104 IB-Matlab User Guide

For example:

>> data(2).contract

ans =

 m_conId: 30351181

 m_symbol: ' GOOG'

 m_secType: ' STK'

 m_expiry: []

 m_strike: 0

 m_right: []

 m_multiplier: []

 m_exchange: ' BEX'

 m_currency: ' USD'

 m_localSymbol: ' GOOG'

 m_primaryExch: []

 m_includeExpired: 0

 m_secIdType: []

 m_secId: []

m_comboLegsDescrip: []

 m_comboLegs: ' [] '

 m_underComp: []

>> data(2).execution

ans =

 m_orderId: 154737092

 m_clientId: 8101

 m_execId: ' 00018037.4ff2a3b8.01.01 '

 m_time: ' 20120216 18:58:57 '

 m_acctNumber: ' DU90912'

 m_exchange: ' BEX'

 m_side: ' SLD'

 m_shares: 3

 m_price: 605.19

 m_permId: 300757711

 m_liquidation: 0

 m_cumQty: 3

 m_avgPrice: 605.19

We can filter the results based on a specific Symbol and/or OrderId . For example:

>> data = IBMatlab (' action ' , ' query ' , ' type ' , ' executions ' , ' OrderId ' , 154737092)

data =

 orderId: 154737092

 execId: ' 00018037.4ff2a3b8.01.01 '

 (etc.)

Or alternatively (note that symbol filtering is case insensitive):

>> data = IBMatlab (' action ' , ' query ' , ' type ' , ' executions ' , ' symbol ' , ' goog ')

Of course, it is possible that there are no executions that match the filtering criteria:

>> data = IBMatlab (' action ' , ' query ' , ' type ' , ' executions ' , ' symbol ' , ' xyz ')

data =

 []

105 IB-Matlab User Guide

12.2 Automated log files

IB-Matlab automatically stores two log files of trade executions. Both files have the

same name, and different extensions:

¶ A CSV (comma separated values) text file named <LogFileName>.csv. A

separate line is stored for each execution event. This file can be opened in

Excel as well as by any text editor.

¶ A MAT (Matlab compressed format) binary file named <LogFileName>.mat

that stores the struct array explained in §12.1 above, excluding the sub-structs

contract and execution .

The default file name (<LogFileName>) for these files is IB_tradeslog_yyyymmdd,

where yyyymmdd is the current date. For example, on 2012-02-15 the log files will

be called IB_tradeslog_20120215.csv and IB_tradeslog_20120215.mat. The log file

name will remain unchanged until you modify it or restart Matlab.

The log filename can be modified by setting the LogFileName parameter (default =

ó./IB_tradeslog_YYYYMMDD.csvô) when you specify a trade order:

newLogFileName = ['./IB_tradeslog_' datestr(now, 'yyyymmdd') '.csv'];

order Id = IBMatla b('Action' , 'Buy' , 'LogFileName' ,newLogFileName, ...);

Note the leading ó./ô in the default value of LogFileName ï you can use any other

folder path if you want to store the log files in a different folder than the current

Matlab folder. Also note that the new LogFileName should end with ó.csvô.

It should be noted that using these log files, which is done by default, can have a

significant performance impact in cases of rapid partial executions. For example, if

we buy 1000 shares of a security whose normal ask size is 5 shares, then we should

expect about 200 separate execution messages when the order is filled. This in turns

translates into 200 separate file saves, for each of the two log files (CSV, MAT). This

could cause MATLAB to appear frozen for quite a long time until all this I/O is done.

To solve the performance issue in cases where the execution logs are not really

needed, set the LogFileName parameter to the empty string ('') to prevent logging.

12.3 Using CallbackExecDetails

You can set the CallbackExecDetails parameter to a user-defined Matlab function

that will process each execution event at the moment that it is reported. Section §11.2

above contains a working example of such a function.

As noted in §11.1, you only need to set CallbackExecDetails once (this is normally

done in the same IBMatlab command that sends the trade order). You do not need to

re-specify this callback in subsequent IBMatlab commands, unless you wish to

override the parameter with a different function, or to cancel it (in which case you

would set it to [] or '').

106 IB-Matlab User Guide

13 TWS connection parameters

When using IB-Matlab , there is no need to worry about connecting or disconnecting

from TWS/Gateway ï IB-Matlab handles these activities automatically, without

requiring user intervention. The user only needs to ensure that TWS/Gateway is

active and logged-in when the IBMatlab command is invoked in Matlab.

IB-Matlab does not require any special configuration when connecting to IB. It uses

a random client ID when first connecting to TWS or the IB Gateway, and this is

perfectly fine for the vast majority of uses.

However, in some specific cases, users may wish to control the connection properties.

This is supported in IB-Matlab using the following input parameters:

Parameter Data type Default Description

ClientId integer (random)
A number that identifies IB-Matlab to

TWS/Gateway. 0 acts as another TWS.

Host string
'localhost' =

'127.0.0.1'

IP address of the computer that runs

TWS/Gateway

Port integer 7496
Port number used by TWS/Gateway for

API communication

AccountName string ''

The specific IB account used for queries or

trades. Useful when you handle multiple

IB accounts (§8.5), otherwise leave empty.

The ClientID , Host and Port properties should match the API configuration of the

TWS/Gateway applications, as described in §2 above (installation steps #9-10).

Setting a static ClientID can be used to modify open orders placed in a different IB-

Matlab session (i.e., after the original IB-Matlab client has disconnected from IB

and a new IB-Matlab has connected). IB normally prevents clients from modifying

orders placed by other clients, but if all your clients use the same ID then this

limitation will not affect you.

Matlab-to-IB reconnections occur automatically when IB-Matlab needs to issue any

request to IB and the connection is not live for whatever reason. This happens upon

the initial IBMatlab request (when the initial connection needs to be established);

after TWS or the IB Gateway were closed; after a call was made to

ibConnectionOb ject.disconnectFromTWS (see below); after a Matlab restart; after a

specified number of streaming quotes, and in a few other special cases.
125

In reconnections of any kind, IB-Matlab automatically tries to reuse the same

ClientID as in the previous connection.

When a new ClientID is specified for any IBMatlab command, IBMatlab

automatically disconnects the previous client ID and reconnects as the new ClientID .

125 See the ReconnectEvery parameter (§7.1 above).

107 IB-Matlab User Guide

In the IB Gateway, this will be seen as a dark-gray tab contents for the old ClientID

and a light-gray tab contents for the connected ClientID :

data = IBMatlab (' action ' , ' query ' , ' type ' , ' executions ' , ' ClientID ' ,8103)

While specifying a new ClientID automatically disconnects and reconnects to IB,

you can also force a disconnection/reconnection for the same ClientID , by using the

Java connector object (discussed in §15 below). Following a disconnection from IB,

IB-Matlab will automatically reconnect to IB upon the very next use of IBMatlab:
[data, ibConnectionObject] = IBMatlab (' action ' , ...); % do whateve r

ibConnectionObject.disconnectFromTWS; % disconnect from IB

data = IBMatlab (' action ' , ' portfolio '); % will automatically reconnect

ClientID =0 is special: it simulates the TWS and enables IB-Matlab to receive,

modify and cancel all the open orders that were interactively entered in TWS. Instead

of ClientID 0, you can use any other value that you pre-configured as the Master API

Client ID in the TWS/Gatewayôs API configuration screen (see §2 installation step

#9). Using a Master Client ID enables the IB-Matlab client to receive all open orders

that were placed in the IB account using any client ID, not just TWS. If you only

connect IB-Matlab and no other API client to TWS, and if you only use the static

ClientID 0, then you do not need to worry about the Master API Client ID setup.

IBMatlab connects to whichever TWS is currently active. If you login to TWS with a

paper-trade login, IBMatlab will work on the simulated account, and similarly for a

live account. TWSôs account type is transparent to IBMatlab: the only way to control

whether IBMatlab will use simulated/live trading is to use the appropriate TWS login.

108 IB-Matlab User Guide

Note that TWS and the IB Gateway have a limitation that they can only be connected

to a single IB-Matlab client at any time. Also, TWS and the IB Gateway cannot be

logged-in at the same time to the same IB account. These IB limitations mean you

cannot simultaneously connect multiple IB-Matlab instances to the same IB account.

IB Server

Userôs computer

TWSTWS

IB GatewayIB Gateway

Account

DU123

Account

DU123

Not OK ï

prevented by IB

Userôs computer

MATLABMATLAB

Userôs

Application

Not OK ï

prevented

by IB

IB-

Matlab

MATLABMATLAB

Userôs

Application

IB-

Matlab IB Server

TWSTWS

On the other hand, it is possible to control multiple IB accounts from the same TWS

application, and in such a case IB-Matlab can access all of these accounts when it

connects to TWS, using the AccountName parameter. Please refer to your TWS

documentation (or IBôs customer service) to set up your TWS accordingly.

IB Server

Userôs computer

MATLABMATLAB

Userôs

Application

OK !

IB-

Matlab

TWSTWS

Accounts

DU123,

124, 125

109 IB-Matlab User Guide

It is also possible to run TWS with one IB account, and IB Gateway with another

account, either on the same computer as IB-Matlab , or on another machine. You can

then connect one or more IB-Matlab instances to these IB applications at the same

time. Simply ensure that your Host, Port and AccountName parameters are OK for

any IBMatlab command. IB-Matlab can maintain simultaneous connections to both

TWS and IB Gateway, on different Ports, as long as they are both on the same Host.

IB Server

Userôs computer

TWSTWS

IB GatewayIB Gateway

MATLABMATLAB

Userôs

Application

IB-

Matlab

Account

DU123

Account

DU124

OK!

Port

7496

Port

7497

TWS & IB Gateway on the same host (computer) can be controlled by a single IB-Matlab

Another use is to connect IB-Matlab on one computer (which has Matlab installed)

to TWS/Gateway on another computer, which may not necessarily have Matlab. In

this case, simply set the Host and possibly also the Port parameters.
126

 However, you

cannot connect to separate TWS/Gateways on separate computers: all TWS/Gateways

must reside on the same Host (which is not necessarily IB-Matlabôs computer):

IB Server

Userôs computer #1

TWSTWS
MATLABMATLAB

Userôs

Application
Account

DU123

IB-

Matlab

Userôs computer #2

TWSTWS

Account

DU124

Not OK ï

prevented by

IB-Matlab

Separate TWS/Gateways on separate hosts (computers) cannot be controlled by a single IB-Matlab

126 IB only sends live/historic data to a single computer, so retrieving such data requires IB-Matlab to be connected to the TWS

that gets the live data, not to another TWS on a different computer. So if you connect TWS to your live account on computer
#1, and another TWS to your paper-trading account on computer #2, then IB-Matlab can retrieve data only via computer #1.

110 IB-Matlab User Guide

To control two or more TWS/Gateways, it is better to use distinct IB-Matlab

instances, i.e., distinct Matlab sessions, each running its own IB-Matlab instance and

connecting to a single IB client (TWS or Gateway). This helps prevent mix-ups in the

AccountName or Port that may occur when IB-Matlab controls separate IB clients:

IB Server

Userôs computer

TWSTWS

IB GatewayIB Gateway

MATLABMATLAB

Userôs

Application

Account

DU123

Account

DU124

OK!

IB-

Matlab

MATLABMATLAB

Userôs

Application

IB-

Matlab

Or alternatively (this requires two separate IB-Matlab licenses):
127

IB Server

Userôs computer #1

TWSTWS
MATLABMATLAB

Userôs

Application
Account

DU123

IB-

Matlab

Userôs computer #2

TWSTWS

Account

DU124

MATLABMATLAB

Userôs

Application

IB-

Matlab

OK!

For additional information regarding the usage of IB-Matlab with multiple accounts,

typically used by Financial Advisors, refer to section §8.5 above.

127 A separate IB-Matlab license is required for each computer running IB-Matlab , except if you have a site license.

111 IB-Matlab User Guide

14 Messages and general error handling

IB constantly sends messages of various severity levels to IB-Matlab . These range

from the mundane (e.g., ñMarket data farm connection is OK:cashfarm {-1, 2104}ò)

to the problematic (e.g., ñNo security definition has been found for the request

{153745227, 200}ò). All these messages arrive as regular events of type error, just

like all the other information sent from IB (see §11 above for details).

IB-Matlab automatically displays messages in the Matlab command window. The

user can control the display of these messages using the MsgDisplayLevel parameter,

which accepts the following possible values:

¶ -2 ï most verbose output, including all the information contained in all

incoming IB events (not just messages)

¶ -1 ï display all messages as well as basic events information

¶ 0 (default) ï display all messages, but not other events

¶ 1 ï only display error messages, not informational messages

¶ 2 ï do not display any automated output onscreen (not even errors)

We can trap and process the message events just like any other IB events, using

Matlab callbacks. Note that the parameter for message callback is CallbackMessage,

although for some reason the IB event is called error:

data = IBMatlab (' action ' , ' query ' , ..., ' MsgDis playLevel ' , - 1, ...

 ' CallbackMessage ' , @IBMatlab _Callback Message) ;

The information contained in the message events varies depending on message

type.
128

 The events have one of the following data sets:

Contents Description Displayed as Displayed onscreen if

Message general error messages [API.msg1] MsgDisplayLevel < 2

message, id (data1),

code (data2)

errors and infor-

mational messages
[API.msg2]

MsgDisplayLevel < 1 or:

data2<2000, data2>3000
129

message,

exception object

severe IB errors

(exceptions)
[API.msg3] MsgDisplayLevel < 2

Note: no IB message (regardless of data1, data2) is displayed if MsgDisplayLevel>=2

The full list of message codes (data2) for API.msg2 (which is the most common

message type) is listed online.
130

 It is sub-divided into three groups:

¶ Error messages (data2 codes between 100-999)

¶ System messages (data2 codes between 1000-1999)

¶ Warning messages (data2 codes between 2000-2999)

128 http://www.interactivebrokers.com/en/software/api/apiguide/java/error.htm
129 IBMatlab versions prior to May 10, 2013 had a different implementation, in which MsgDisplayLevel=1 had an effect only on

very few messages while most messages were displayed. This was fixed to be consistent with the original intention. IBMatlab

versions dated March 3, 2015 or later now consider messages having data2>3000 as errors rather than warning/info.
130 http://www.interactivebrokers.com/en/software/api/apiguide/tables/api_message_codes.htm

http://www.interactivebrokers.com/en/software/api/apiguide/java/error.htm
http://www.interactivebrokers.com/en/software/api/apiguide/tables/api_message_codes.htm

112 IB-Matlab User Guide

Most messages are of type API.msg2, and contain two numeric fields: data2 contains

the message code, and data1 contains message-specific data. For most messages (e.g.,

ñMarket data farm connection is OK:cashfarmò =code 2104), there is no associated

message-specific data, and in such cases data1 = -1. In some cases, data1 does contain

relevant information. For example, ñNo security definition has been found for the

request {153745227, 200}ò tells us that this error (code=200) occurred for the specific

request ID 153745227 and so we can correlate between the error and our request.

IB-Matlab automatically infers whether an IB message is an error, warning or infor-

mational message. Errors are sent to the standard error stream (stderr) and displayed

in red in the Matlab console. Other messages are sent to the standard output (stdout)

and displayed in regular black text on the Matlab console.

IBôs error messages are often cryptic. It is sometimes difficult to understand the

problemôs root cause.
131

 Several mechanisms can help us with this detective work:

¶ We could set IBMatlabôs MsgDisplayLevel parameter to -1 or -2 (see above).

¶ We could set IBMatlabôs Debug parameter to 1 (default=0). This will display

in the Matlab Command Window a long list of parameters used by IBMatlab

to prepare the request for IB. Check this list for any default values that should

actually be set to some non-default values.

¶ We could set the API logging level to ñDetailedò in the TWS/Gateway API
configuration window.

132
 By default it is set to ñErrorò, and this can be

changed at any time. This affects the amount of information (verbosity)

logged in IBôs log files, which are located in IBôs installation folder (e.g.,

C:\Program Files\Jts).
133

 The log files are separated by the day of week, and

have names such as: ibgateway.Thu.log, log.Wed.txt, api.8981.Tue.log. These

refer, respectively, to the main Gateway log, the main TWS log,
134

 and a log

of requests/responses for a specific ClientID. The api.*.log file reflects the

contents of the corresponding tab in the Gateway application.
135

 Note that

setting the logging level to ñDetailò has a performance overhead and should

be avoided except when debugging a specific issue. In other cases, you can set

the level to ñInformationò, ñWarningò or back to the default ñErrorò.

In addition to messages reported by IB, the userôs program must check for and handle

cases of exceptions caused by IB-Matlab . In the vast majority of cases, these are due

to invalid input parameters being passed to IBMatlab (for example, an invalid Action

131 See examples in §3.2 above
132 See §2, installation step 9d
133 http://www.interactivebrokers.com/en/software/api/apiguide/tables/api_logging.htm
134 The list of IDs used in the ibgateway.* .log, log.* .txt log files when the logging level is ñDetailedò, is described here:

http://www.interactivebrokers.com/en/software/api/apiguide/api/api_request_server_response_message_identifiers.htm;

information about the format of the extra log entries can be found in

http://www.interactivebrokers.com/en/software/api/apiguide/api/api_logging.htm
135 See the screenshot in §13 above

http://www.interactivebrokers.com/en/software/api/apiguide/tables/api_logging.htm
http://www.interactivebrokers.com/en/software/api/apiguide/api/api_request_server_response_message_identifiers.htm
http://www.interactivebrokers.com/en/software/api/apiguide/api/api_logging.htm

113 IB-Matlab User Guide

parameter value). However, an exception could also happen due to network problems,

or even an occasional internal bug due to an unhandled edge-case situation.

To trap and handle such programmatic exceptions, wrap your calls to IBMatlab

within a try-catch block, as follows:

try

 data = IBMatlab (' action ' , ' query ' , ...) ;

catch

 % process the e xception here

end

Try-catch blocks do not have any performance or memory overhead and are a very

effective way to handle programmatic errors. We highly recommend that you use

them very liberally within your user program, not just to wrap IBMatlab calls but also

for any other processing tasks. I/O sections in particular (reading/writing to files) are

prone to errors and are prime candidates for such exception handling. The same

applies for processing blocks that handle user inputs (we can never really be too sure

what invalid junk a user might enter in there, can we?).

Very common causes of errors when using IB-Matlab are relying on default

parameter values, and specifying numeric parameter values within string quotes (e.g.,

ó1ô rather than 1).
136

 Users of IB-Matlab should take extra precaution in their

programs to ensure that these common mistakes do not occur.

A different type of error occurs in user applications that rely on valid data being

returned from the IB server in response to account, portfolio or market-data queries.

Unfortunately, the IB server data feed (or perhaps only the interface) is not as reliable

as it could be. IB sometimes returns empty or invalid data field values, typically -1.

This issue, together with some workarounds, was discussed in §3.2 and §4 above. In

general, user applications should implement sanity checks on the returned data, and

retry to send the request until receiving valid data. Failing to do so may result in

applicative errors, and might even lead to bad automated trading decisions, so please

be extra careful about this.

One final type of error may be due to out-of-memory errors, either directly in Matlab

or in Java. Matlab ñout of memory ò errors might occur when receiving and storing a

huge amount of streaming/historic data. They can be fixed by running IB-Matlab on

a computer having more memory, or by reducing the amount of stored data.
137

Java memory errors are recognized by the message ñjava.lang.OutOfMemoryError:

Java heap space ò. They can be solved by running Matlab with more allocated Java

heap memory than the default value of 64 or 128MB (depending on Matlab release).

This value can be increased in Matlabôs preferences, or via a java.opts file.
138

136 Both of these were discussed in §3.2 above
137 Also see: http://www.mathworks.com/help/matlab/matlab_prog/resolving-out-of-memory-errors.html
138 http://www.mathworks.com/support/solutions/en/data/1-18I2C/

http://www.mathworks.com/help/matlab/matlab_prog/resolving-out-of-memory-errors.html
http://www.mathworks.com/support/solutions/en/data/1-18I2C/

