
Matlab Performance Tuning
Open Day – Jan 8, 2013

Yair Altman

© Yair Altman www.UndocumentedMatlab.com 1

http://UndocumentedMatlab.com/files/OpenDay.zip

http://undocumentedmatlab.com/files/OpenDay.zip

Is Matlab performance important?

• Not a trivial question at all

• Some examples:
o Compiled application

o Need for real-time processing

o Optimizing parameters based on numerous re-runs

o Development time is often cheaper than production time

o Developers are cheap, customers are expensive 

© Yair Altman www.UndocumentedMatlab.com 2

The iterative tuning cycle

1. Measure overall performance
o Proceed only if out of spec

2. Profile the code to determine hotspots
o Profiler, tic/toc, log files

3. Modify the code to fix only the top hotspots

4. Return to step #1

• Avoid premature optimization

• Avoid tendency to over-tune

• Avoid tendency to custom-tune
© Yair Altman www.UndocumentedMatlab.com 3

Optimization techniques

• Perceived performance

• Standard programming techniques

• Data analysis techniques

• Matlab-specific techniques

• Parallelization techniques

• Graphics and GUI techniques

• Memory-related techniques

© Yair Altman www.UndocumentedMatlab.com 4

Standard programming techniques

• Loop optimization

• Caching data

• Smart checks bypass

• Remove unused computations (mlint, profiler)

• Exception handling

• Processing smaller data subsets

• Inlining core algorithm based on profiling report

• Improve external systems (database, file system)

© Yair Altman www.UndocumentedMatlab.com 5

Other standard techniques

• Place more common conditional branches at top

• Lazy loading/initializing

• Preload/prefetch data

• Minimize/unify data fetch requests

• Reduce CPU/memory-intensive external processes

• Use short-circuit operators (& => &&, | => ||)

o Backward compatibility considerations => use nested ifs

• Dynamic self-tuning

© Yair Altman www.UndocumentedMatlab.com 6

Data analysis techniques

• Selecting the right tool for the job

• Outliers removal

• Controlling the target accuracy

• Coordinate transformation

• Choosing correct parameters

• Reducing problem complexity

© Yair Altman www.UndocumentedMatlab.com 7

Matlab specific techniques

• Effects of using different storage types

• Vectorization

• Object oriented Matlab

• Using internal helper functions

• Optimizing string operations

• Deployed (compiled) applications

• Optimizing I/O

• Object-oriented Matlab

• Using MEX (=Matlab Executable), Matlab Coder

• Many other techniques…
© Yair Altman www.UndocumentedMatlab.com 8

Parallelization techniques

• Implicit/explicit parallelization
o Within the core (hyper-threading)

o Multi-threading

o Across CPU cores

o Across CPUs

o Using GPU(s)

 on-die (Intel's Ivy Bridge via OpenCL)

 external (mainly NVidia CUDA 1.3+)

• Matlab add-ons:
o MathWorks: Parallel Computing Toolbox, Distributed Computing Server

o AccelerEyes: Jacket (RIP…)

o CULA, GPULib, OpenCL, GPUMat, NVMex, JADE, OpenMP, MATLAB*P,
MatlabMPI, pMATLAB

© Yair Altman www.UndocumentedMatlab.com 9

Graphics and GUI techniques

• Initial graphs generation

• Updating graphs in real-time

• GUI preparation

• GUI responsiveness

© Yair Altman www.UndocumentedMatlab.com 10

Memory-related techniques

• Why memory affects performance

• Profiling memory usage in Matlab

• Speed-up techniques:

o Matlab’s memory storage and looping order

o Sub-indexing is sometimes slower (!)

o Array memory allocation, pre-allocation

o Minimizing memory allocations (COW, in-place)

o Memory packing

© Yair Altman www.UndocumentedMatlab.com 11

Why memory affects performance

• Data and code share the system memory

• CPU and disk caches constantly contend for room

• CPU performance outpaced memory throughput
→ programs are often “memory-bound”

• Paging in/out:
o Disk (virtual memory)

o Physical memory

o CPU cache (L1,L2,…)

• All using the main system bus…

• Especially important for CPU/GPU parallelization
© Yair Altman www.UndocumentedMatlab.com 12

Profiling memory usage in Matlab

• The Workspace browser

• The whos function

• The memory function

• feature memstats

• feature dumpmem

• feature mtic/mtoc (R2008a)

• profile –memory on

• Using 3rd-party tools (e.g., SysInternals ProcessExplorer)

• Using the OS tools

• format debug

© Yair Altman www.UndocumentedMatlab.com 13

Dynamic array growth

• What happens here (performance-wise)?
fibonacci = [0, 1];

for idx = 3 : 100

 fibonacci(idx) = fibonacci(idx-1) + fibonacci(idx-2);

end

• Memory reallocations: allocate, copy, discard
o Slow!

o Potentially disastrous (thrashing)

© Yair Altman www.UndocumentedMatlab.com 14

The quadratic cost of dynamic growth

• Theory: quadratic cost (N allocations x size N = N2)

% This was ran on MATLAB 7.1 (R14 SP3):

tic, f=[0,1]; for idx=3:10000, f(idx)=f(idx-1)+f(idx-2); end, toc

 Elapsed time is 0.149173 seconds. %baseline loop size & exec time

tic, f=[0,1]; for idx=3:20000, f(idx)=f(idx-1)+f(idx-2); end, toc

 Elapsed time is 0.586088 seconds. %x2 loop size, x4 execution time

tic, f=[0,1]; for idx=3:40000, f(idx)=f(idx-1)+f(idx-2); end, toc

 Elapsed time is 2.090217 seconds. %x4 loop size, x14 execution time

© Yair Altman www.UndocumentedMatlab.com 15

Effects of incremental JIT releases

• JIT Accelerator introduced in Matlab 6.5 (R13)

o Dramatic automatic performance boost

o Incrementally improved over the years (releases)
 Matlab 7.11 (R2010b) is ~30% faster than Matlab 7.1 (R14SP3) for

the fibonacci code above

 However, still O(N2)

• Matlab 7.12 (R2011a): significant optimization to
dynamic memory allocation => O(N)

% This was ran on MATLAB 7.12 (R2011a):

tic, f=[0,1]; for idx=3:10000, f(idx)=f(idx-1)+f(idx-2); end, toc

 Elapsed time is 0.004924 seconds. %baseline loop size & exec time

tic, f=[0,1]; for idx=3:20000, f(idx)=f(idx-1)+f(idx-2); end, toc

 Elapsed time is 0.009971 seconds. %x2 loop size, x2 execution time

tic, f=[0,1]; for idx=3:40000, f(idx)=f(idx-1)+f(idx-2); end, toc

 Elapsed time is 0.019954 seconds. %x4 loop size, x4 execution time

© Yair Altman www.UndocumentedMatlab.com 16

Alternatives for dynamic array growth
• Using cell arrays

• Dynamic advanced allocation (factor growth)

• Using FEX: growdata utility

• Reuse existing data array

• Wrap data in a referential object

• Naïve resizing using the new JIT:

% This was ran on Matlab 7.12 (R2011a):

% Variant #1: direct assignment into a specific out-of-bounds index

data=[]; tic, for idx=1:100000; data(idx)=1; end, toc

 Elapsed time is 0.075440 seconds.

% Variant #2: direct assignment into an index just outside the bounds

data=[]; tic, for idx=1:100000; data(end+1)=1; end, toc

 Elapsed time is 0.241466 seconds. % x3 slower

% Variant #3: concatenating a new value to the array

data=[]; tic, for idx=1:100000; data=[data,1]; end, toc

 Elapsed time is 22.897688 seconds. % x300 slower!!!

© Yair Altman www.UndocumentedMatlab.com 17

http://www.mathworks.com/matlabcentral/fileexchange/8334-incremental-growth-of-an-array-revisited
http://www.mathworks.com/matlabcentral/fileexchange/8334-incremental-growth-of-an-array-revisited

Pre-allocation

• Even with the new JIT, pre-allocation still faster:
% This is ran on MATLAB 7.12 (R2011a)

% Regular dynamic array growth

tic, f=[0,1]; for idx=3:40000, f(idx)=f(idx-1)+f(idx-2); end, toc

 Elapsed time is 0.019954 seconds.

% Now use preallocation: x5 faster than dynamic array growth

tic, f=zeros(40000,1); f(1)=0; f(2)=1;

for idx=3:40000, f(idx)=f(idx-1)+f(idx-2); end, toc

 Elapsed time is 0.004132 seconds.

• Compare Matlab 7.1 (R14 SP3): 2.1s, 0.06s (=x35)

© Yair Altman www.UndocumentedMatlab.com 18

Pre-allocation variants – D/C value
% Variant #1: explicit preallocation of data1

data1 = zeros(1000,3000);

for colIdx = 1 : 3000

 for rowIdx = 1 : 1000

 data1(rowIdx,colIdx) = someValue;

 end

end

 17 mSecs

% Variant #2: implicit preallocation of data2 (much faster, see below)

data2=[]; data2(1000,3000) = 0;

for colIdx = 1 : 3000

 for rowIdx = 1 : 1000

 data2(rowIdx,colIdx) = someValue;

 end

end

 0.03 mSecs (~x500 faster)

% Variant #3: implicit preallocation of data3 using loop reversal

for colIdx = 3000 : -1 : 1

 for rowIdx = 1000 : -1 : 1

 data3(rowIdx,colIdx) = someValue;

 end

end

 0.03 mSecs (~x500 faster)

© Yair Altman www.UndocumentedMatlab.com 19

Pre-allocation variants – scalar value

© Yair Altman www.UndocumentedMatlab.com 20

scalar = 7; % for example...

data = scalar(ones(1000,3000)); % Variant A: 87.680 msecs

data(1:1000,1:3000) = scalar; % Variant B: 28.646 msecs

data = repmat(scalar,1000,3000); % Variant C: 17.250 msecs

data = scalar + zeros(1000,3000); % Variant D: 17.168 msecs

data(1000,3000) = 0; data = data+scalar; % Variant E: 16.334 msecs

Preallocation of non-double data

• Prevent implicit data conversions and reallocations

% Bad idea: allocates 8MB double array, then converts to 1MB int8 array

data = int8(zeros(1000,1000)); % 1M elements

 Elapsed time is 0.008170 seconds.

% Better: directly allocate the array as a 1MB int8 array – x80 faster

data = zeros(1000,1000,'int8');

 Elapsed time is 0.000095 seconds.

% Another example:

text = char(fread(…)); % reads doubles, then converts to chars

text = fread(…,'*char'); % better – reads chars directly

© Yair Altman www.UndocumentedMatlab.com 21

Minimizing memory allocations

• Matlab’s Copy-on-Write (COW) mechanism

• In-place data manipulations

• Reusing exiting variables (with utmost care!)

• Clearing unused workspace variables

• global and persistent variables

• Scoping rules and nested functions

• Passing handle references to functions

• Reducing data precision/type

© Yair Altman www.UndocumentedMatlab.com 22

Matlab’s Copy-on-Write mechanism

• Pass-by-value vs.
pass-by-reference

• Lazy copying

© Yair Altman www.UndocumentedMatlab.com 23

In-place data manipulations
• Within the code:

% In-place data manipulation, no memory allocation

>> tic, m = m * 0.5; toc

 Elapsed time is 0.056464 seconds.

% Regular data manipulation (122MB allocation) – 50% slower

>> clear m2; tic, m2 = m * 0.5; toc;

 Elapsed time is 0.084770 seconds.

• Calling functions:
% In-place data manipulation, no memory allocation

>> d=0:1e-7:1; tic, d = sin(d); toc

 Elapsed time is 0.083397 seconds.

% Regular data manipulation (76MB allocation) – 50% slower

>> clear d2, d=0:1e-7:1; tic, d2 = sin(d); toc

 Elapsed time is 0.121415 seconds.

• Called function:
% Suggested practice: use in-place optimization within functions

function x = function1(x)

 x = someOperationOn(x); % temporary variable x is NOT allocated

end

% Standard practice: prevents future use of in-place optimizations

function y = function2(x)

 y = someOperationOn(x); % new temporary variable y is allocated

end

© Yair Altman www.UndocumentedMatlab.com 24

MEX in-place

• Working, but not officially supported for RHS params

• Use mxDuplicateArray() to create copies

• Use mxUnshareArray() to mimic COW behavior

• Warning: can easily crash Matlab upon SEGV

© Yair Altman www.UndocumentedMatlab.com 25

Conclusion

• Matlab application performance can be
dramatically improved

• Numerous different techniques can be used

• Need to pay managerial attention to
o performance tradeoffs

o apply the most promising techniques

o stick to the measure-profile-tune-remeasure cycle

o prevent premature tuning, over-tuning

© Yair Altman www.UndocumentedMatlab.com 26

