Matlab Performance Tuning

Open Day —Jan §, 2013
Yair Altman

JOHN BRYCE

T2 AT .pO-51 TN

http://UndocumentedMatlab.com/files/OpenDay.zip

© Yair Altman www.UndocumentedMatlab.com

http://undocumentedmatlab.com/files/OpenDay.zip

Is Matlab performance important?

* Not a trivial question at all

* Some examples:
o Compiled application
o Need for real-time processing
o Optimizing parameters based on numerous re-runs
o Development time is often cheaper than production time
o Developers are cheap, customers are expensive ©

© Yair Altman www.UndocumentedMatlab.com 2

1. Measure overall performance

o Proceed only if out of spec

2. Profile the code to determine hotspots

o Profiler, tic/toc, log files
3. Modify the code to fix only the top hotspots
4. Return to step #1

* Avoid premature optimization
* Avoid tendency to over-tune

* Avoid tendency to custom-tune

Perceived performance

Standard programming techniques

Data

analysis techniques

Matlab-specific techniques

Paral

Grap

elization techniques

nics and GUI techniques

Memory-related techniques

Loop optimization

Caching data

Smart checks bypass

Remove unused computations (mlint, profiler)

Exception handling

Processing smaller data subsets

nlining core algorithm based on profiling report

mprove external systems (database, file system)

Place more common conditional branches at top

Lazy loading/initializing

Preload/prefetch data
Minimize/unify data fetch requests
Reduce CPU/memory-intensive external processes

Use short-circuit operators (& => &&, | => | |)

o Backward compatibility considerations => use nested ifs

Dynamic self-tuning

Selecting the right tool for the job
Outliers removal

Controlling the target accuracy
Coordinate transformation
Choosing correct parameters

Reducing problem complexity

Effects of using different storage types
Vectorization

Object oriented Matlab

Using internal helper functions

Optimizing string operations

Deployed (compiled) applications

Optimizing /0

Object-oriented Matlab

Using MEX (=Matlab Executable), Matlab Coder
Many other techniques...

* Implicit/explicit parallelization
o Within the core (hyper-threading)
o Multi-threading
o Across CPU cores
o Across CPUs
o Using GPU(s)

= on-die (Intel's lvy Bridge via OpenCL)
= external (mainly NVidia CUDA 1.3+)

* Matlab add-ons:

o MathWorks: Parallel Computing Toolbox, Distributed Computing Server
o AccelerEyes: Jacket (RIP...)

o CULA, GPULib, OpenCL, GPUMat, NVMex, JADE, OpenMP, MATLAB*P,
MatlabMPI, pMATLAB

Graphics and GUI techniques

* |nitial graphs generation
* Updating graphs in real-time
* GUI preparation

* GUI responsiveness

© Yair Altman www.UndocumentedMatlab.com 10

 Why memory affects performance
* Profiling memory usage in Matlab

* Speed-up techniques:
o Matlab’s memory storage and looping order
o Sub-indexing is sometimes slower (!)
o Array memory allocation, pre-allocation
o Minimizing memory allocations (COW, in-place)

o Memory packing

Data and code share the system memory
CPU and disk caches constantly contend for room

CPU performance outpaced memory throughput
—> programs are often “memory-bound”

Paging in/out:
o Disk (virtual memory)

o Physical memory
o CPU cache (L1,L2,...)

All using the main system bus...
Especially important for CPU/GPU parallelization

Profiling memory usage in Matlab

* The Workspace browser

* [The whos function |

* Thememory function

* feature memstats

e feature dumpmem

e feature mtic/mtoc (R2008a)

°[profile —Mmemory on]

e Using 3"-party tools (e.g., Sysinternals ProcessExplorer)
* Using the OS tools
e format debug

© Yair Altman www.UndocumentedMatlab.com 13

Dynamic array growth

 What happens here (performance-wise)?

fibonacci = [0, 1];
for idx = 3 : 100

fibonacci (idx) = fibonacci (idx-1) + fibonacci (idx-2);
end

* Memory reallocations: allocate, copy, discard

o Slow!
o Potentially disastrous (thrashing)

© Yair Altman www.UndocumentedMatlab.com 14

The quadratic cost of dynamic growth

* Theory: quadratic cost (N allocations x size N = N?)

% This was ran on MATLAB 7.1 (R14 SP3):
tic, £=[0,1]; for i1dx=3:10000, f(idx)=f(idx-1)+f(idx-2); end, toc

—> Elapsed time is 0.149173 seconds. S$%baseline loop size & exec time

tic, f=[0,1]; for i1idx=3:20000, f (idx)=f(idx-1)+f(idx-2); end, toc
—> Elapsed time is 0.586088 seconds. $%x2 loop size, x4 execution time

tic, f=[0,1]; for i1idx=3:40000, f (idx)=f(idx-1)+f(idx-2); end, toc
—> Elapsed time is 2.090217 seconds. $%x4 loop size, x14 execution time

© Yair Altman www.UndocumentedMatlab.com 15

e JIT Accelerator introduced in Matlab 6.5 (R13)

o Dramatic automatic performance boost

o Incrementally improved over the years (releases)

= Matlab 7.11 (R2010b) is ~30% faster than Matlab 7.1 (R14SP3) for
the fibonacci code above

= However, still O(N?)

 Matlab 7.12 (R2011a): significant optimization to
dynamic memory allocation => O(N)

% This was ran on MATLAB 7.12 (R2011a):
tic, £=[0,1]; for 1dx=3:10000, f(idx)=f(idx-1)+f (idx-2); end, toc

= Elapsed time is 0.004924 seconds. 3%baseline loop size & exec time
tic, £=[0,1]; for i1dx=3:20000, f(idx)=f(idx-1)+f (idx-2); end, toc

= Elapsed time is 0.009971 seconds. %x2 loop size, x2 execution time
tic, f£=[0,1]; for i1idx=3:40000, f (idx)=f(idx-1)+f (idx-2); end, toc

= Elapsed time is 0.019954 seconds. %x4 loop size, x4 execution time

Alternatives for dynamic array growth

* Using cell arrays
 Dynamic advanced allocation (factor growth)
* Using FEX: growdata utility

* Reuse existing data array
* Wrap data in a referential object
* Naive resizing using the new JIT:

This was ran on Matlab 7.12 (R2011a):

Variant #1: direct assignment into a specific out-of-bounds index
data=[]; tic, for 1dx=1:100000; data(idx)=1; end, toc

— Elapsed time is 0.075440 seconds.

$ Variant #2: direct assignment into an index just outside the bounds
data=[]; tic, for 1dx=1:100000; data(end+1l)=1; end, toc

o

— Elapsed time is 0.241466 seconds. % x3 slower

Q

$ Variant #3: concatenating a new value to the array
data=[]; tic, for 1dx=1:100000;, data=[data,l]; end, toc
— Elapsed time is 22.897688 seconds. $ x300 slower!!!

© Yair Altman www.UndocumentedMatlab.com 17

http://www.mathworks.com/matlabcentral/fileexchange/8334-incremental-growth-of-an-array-revisited
http://www.mathworks.com/matlabcentral/fileexchange/8334-incremental-growth-of-an-array-revisited

* Even with the new JIT, pre-allocation still faster:

% This 1s ran on MATLAB 7.12 (R2011a)

$ Regular dynamic array growth
tic, £=[0,1]; for idx=3:40000, f (idx)=f(idx-1)+f(idx-2); end, toc

—> Elapsed time is 0.019954 seconds.

s Now use preallocation: x5 faster than dynamic array growth

tic, f=zeros(40000,1); £(1)=0, f£(2)=1;
for 1dx=3:40000, f (idx)=f(idx-1)+f (idx-2); end, toc

—> Elapsed time is 0.004132 seconds.

 Compare Matlab 7.1 (R14 SP3): 2.1s, 0.06s (=x35)

Pre-allocation variants — D/C value

$ Variant #1: explicit preallocation of datal
datal = zeros(1000,3000);
for colIdx = 1 : 3000
for rowIdx = 1 : 1000
datal (rowIdx,collIdx) = someValue;
end
end
—> 17 mSecs

$ Variant #2: implicit preallocation of data? (much faster, see below)
data2=[]; data2(1000,3000) = O;
for colIdx = 1 : 3000
for rowIdx = 1 : 1000
dataZ? (rowlIdx,collIdx) = someValue;
end
end
—> 0.03 mSecs (~x500 faster)

$ Variant #3: implicit preallocation of data3 using loop reversal
for colIdx = 3000 : -1 : 1
for rowIdx = 1000 : -1 : 1
data3 (rowlIdx,colIdx) = someValue;
end
end
= 0.03 mSecs (~x500 faster)

© Yair Altman www.UndocumentedMatlab.com 19

Pre-allocation variants — scalar value

scalar = 7; % for example...

data = scalar (ones (1000,3000)) ; % Variant A: 87.0680 msecs
data(1:1000,1:3000) = scalar; % Variant B: 28.646 msecs
data = repmat (scalar,1000,3000); % Variant C: 17.250 msecs
data = scalar + zeros (1000,3000); % Variant D: 17.168 msecs
data(1000,3000) = 0, data = data+scalar; % Variant E: 16.334 msecs

© Yair Altman www.UndocumentedMatlab.com 20

Preallocation of non-double data

* Prevent implicit data conversions and reallocations

% Bad idea: allocates 8MB double array, then converts to 1IMB int8 array
data = int8(zeros (1000,1000)) ; $ 1M elements

—> Elapsed time is 0.008170 seconds.

% Better: directly allocate the array as a 1MB int8 array - x80 faster
data = zeros (1000,1000, '"int8") ;

— Elapsed time is 0.000095 seconds.

% Another example:

text = char (fread(..)); % reads doubles, then converts to chars
text = fread(.., '*char'); % better - reads chars directly

© Yair Altman www.UndocumentedMatlab.com 21

Matlab’s Copy-on-Write (COW) mechanism

In-place data manipulations

Reusing exiting variables (with utmost care!)

Clearing unused workspace variables
global and persistent variables
Scoping rules and nested functions
Passing handle references to functions

Reducing data precision/type

* Pass-by-value vs. |
B MATLAB.exe:4600 Properties M=
3 a S S_ by_ refe re n C e Threads TCP/IP Security Environment Strings

Image Performance Performance Graph Disk and Metwork

CPU Usage

e
(LRI TS

* Lazy copying

Private Bytes
time calls mem 1ine
0.8590 1 215m/23.%m /191w 2 datal = magic(5000)
1 3 dataZ = datal: L1
0.172 1 191m,/0b/1%1m 4 datazil,l) = 0:
1 5 end 3825 MB

J

| ok { [Cancel

In-place data manipulations

 Within the code:

% In-place data manipulation, no memory allocation
>> tic, m = m * 0.5; toc
= Elapsed time is 0.056464 seconds.

% Regular data manipulation (122MB allocation) - 50% slower
>> clear m2; tic, m2 = m * 0.5; toc;

= Elapsed time is 0.084770 seconds.

e (Calling functions:

% In-place data manipulation, no memory allocation
>> d=0:1e-7:1; tic, d = sin(d); toc
= Elapsed time is 0.083397 seconds.

% Regular data manipulation (76MB allocation) - 50% slower
>> clear d2, d=0:1e-7:1; tic, d2 = sin(d); toc
= Elapsed time is 0.121415 seconds.

e (Called function:

Q

% Suggested practice: use in-place optimization within functions
function x = functionl (x)

x = someOperationOn (x) ; % temporary variable x is NOT allocated
end

% Standard practice: prevents future use of in-place optimizations
function y = function2 (x)

y = someOperationOn (x) ; % new temporary variable y 1is allocated
end

© Yair Altman www.UndocumentedMatlab.com

Working, but not officially supported for RHS params
Use mxDuplicateArray () to create copies
Use mxUnshareArray () to mimic COW behavior

Warning: can easily crash Matlab upon SEGV

* Matlab application performance can be
dramatically improved

* Numerous different techniques can be used

* Need to pay managerial attention to
o performance tradeoffs
o apply the most promising techniques
o stick to the measure-profile-tune-remeasure cycle

O prevent premature tuning, over-tuning

