
Yair Altman http://UndocumentedMatlab.com altmany@gmail.com

Undocumented Matlab
unbelievable features; unbelievable quality; unbelievable cost effectiveness; unbelievable service

MATLAB PERFORMANCE TUNING – PART 1

WEBINAR OUTLINE

1. Profiling Matlab performance

a. When to profile and when not to bother

b. When should we stop optimizing the code?

c. Profiling techniques

d. Real-time profiling limitations

e. Using the profiler vs. tic/toc

f. Matlab’s JIT and its effect on profiling

g. Trade-offs: performance vs. maintainability, robustness, development time, repeatability

h. Vertical vs. horizontal scalability

2. Standard programming techniques

a. Loop optimizations

b. Caching data

c. Smart checks bypass

d. Exception handling and performance

e. Sizing data sets

f. Code inlining

g. Externally-connected systems

h. Perceived vs. actual performance

i. Data analysis techniques

j. Using mathematical identities

3. Matlab-specific techniques

a. Using different storage types

b. Object-orient Matlab and performance

c. Using internal helper functions

d. Strings and dates/times

e. Matlab’s Startup “Accelerator”

4. Using binary code

a. Mex

b. Matlab Compiler vs. Coder

c. 3
rd

-party libraries

5. I/O speedup techniques

a. XLS/CSV read/write

b. Binary vs. text format

c. Reducing disk access

d. Buffered, consolidated and chunked I/O

Summary

You will learn:

 when to profile, when not to bother

 how to determine the most effective

optimization route

 trade-offs of program performance

 how to profile Matlab programs to

determine where the hotspots are

 how to avoid and solve potential

hotspots in your program’s execution

 how to use a variety of techniques to

maximize the performance of your

application at reasonable cost

 skills that will enable you to discover

additional techniques for improving

program performance by yourself

Target audience

Matlab users with some experience using

Matlab, who wish to improve the quality

and effectiveness of their programs;

Matlab users who wish to distribute

professional Matlab-based software where

timely run-time performance is important.

Basic familiarity with Matlab environment,

data types and coding is assumed.

http://undocumentedmatlab.com/
mailto:altmany@gmail.com

	1. Profiling Matlab performance
	a. When to profile and when not to bother
	b. When should we stop optimizing the code?
	c. Profiling techniques
	d. Real-time profiling limitations
	e. Using the profiler vs. tic/toc
	f. Matlab’s JIT and its effect on profiling
	g. Trade-offs: performance vs. maintainability, robustness, development time, repeatability
	h. Vertical vs. horizontal scalability
	2. Standard programming techniques
	a. Loop optimizations
	b. Caching data
	c. Smart checks bypass
	d. Exception handling and performance
	e. Sizing data sets
	f. Code inlining
	g. Externally-connected systems
	h. Perceived vs. actual performance
	i. Data analysis techniques
	j. Using mathematical identities
	3. Matlab-specific techniques
	a. Using different storage types
	b. Object-orient Matlab and performance
	c. Using internal helper functions
	d. Strings and dates/times
	e. Matlab’s Startup “Accelerator”
	4. Using binary code
	a. Mex
	b. Matlab Compiler vs. Coder
	c. 3rd-party libraries
	5. I/O speedup techniques
	a. XLS/CSV read/write
	b. Binary vs. text format
	c. Reducing disk access
	d. Buffered, consolidated and chunked I/O

