

IB-Matlab User Guide

Version 2.22

June 14, 2023

Fully compatible with:

Windows, Linux, Mac OS

IB TWS versions 962 - 983

MATLAB R2007a - R2023a

© Yair Altman, Octahedron Ltd.

http://UndocumentedMatlab.com/IB-Matlab

Undocumented Matlab
The engineering choice for professional Matlab solutions

http://undocumentedmatlab.com/IB-Matlab

2 IB-Matlab User Guide

Table of Contents

DISCLAIMER .. 4

1 Introduction ... 5

2 Installation and licensing ... 7
2.1 Licensing and activation... 10
2.2 Switching activated computers ... 11
2.3 Updating the static Java classpath ... 12

3 Using IBMatlab ... 13
3.1 General usage... 13
3.2 Contract properties .. 15

4 Querying account and portfolio data ... 16
4.1 Account information ... 16
4.2 Portfolio data ... 18

5 Querying current market data .. 21
5.1 Single-quote data .. 21
5.2 Market depth (Level II) data ... 27
5.3 Scanner data ... 29
5.4 Contract details and options chain ... 34
5.5 Fundamental data ... 37

6 Querying historical and intra-day data .. 41

7 Streaming data ... 48
7.1 Streaming quotes .. 48
7.2 Realtime bars .. 54
7.3 Streaming market depth (Level II) data .. 57

8 Sending trade orders .. 58
8.1 General usage... 58
8.2 Close orders ... 62
8.3 Order types ... 63
8.4 Trail orders .. 66
8.5 Financial Advisor (multi-client) orders .. 68
8.6 Potential impact of an order (“what-if”) ... 71

9 Specialized trade orders ... 72
9.1 VWAP (best-effort) orders .. 72
9.2 TWAP (best-effort) orders .. 74
9.3 Bracket (child) orders .. 75
9.4 Automated orders ... 78
9.5 Combo orders ... 80
9.6 Setting special order attributes .. 84
9.7 Exercising and lapsing options .. 87
9.8 Algorithmic trading orders ... 89

3 IB-Matlab User Guide

10 Accessing and cancelling open trade orders .. 92
10.1 Retrieving the list of open orders ... 92
10.2 Modifying open orders ... 96
10.3 Cancelling open orders .. 96

11 Processing IB events .. 97
11.1 Processing events in IB-Matlab .. 97
11.2 Example – using CallbackExecDetails to track executions 102
11.3 Example – using CallbackTickGeneric to check if a security is shortable 103
11.4 Example – using CallbackContractDetails to get a contract’s full options chain 104
11.5 Example – using CallbackUpdateMktDepth for realtime order-book GUI update .. 106

12 Tracking trade executions .. 109
12.1 User requests .. 109
12.2 Automated log files ... 112
12.3 Using CallbackExecDetails .. 113

13 TWS connection parameters .. 114

14 Handling errors, problems, and IB messages .. 119
14.1 Messages sent from IB .. 119
14.2 Ambiguous/invalid security errors ... 123
14.3 Programmatic errors .. 126
14.4 Troubleshooting specific problems/errors .. 129

15 Using the Java connector object .. 132
15.1 Using the connector object ... 132
15.2 Programming interface .. 133
15.3 Usage example ... 139

16 Sample strategies/models using IB-Matlab ... 141
16.1 Pairs trading .. 141
16.2 Using RSI technical indicator .. 144

17 Frequently-asked questions (FAQ) .. 149

18 Professional services .. 153
18.1 Sample program screenshots .. 154
18.2 About the author (Yair Altman) .. 157

Appendix A – resources.. 158
A.1 IB-related resources ... 158
A.2 MathWorks webinars ... 159
A.3 Additional open-source Matlab resources ... 159

Appendix B – change log ... 160

4 IB-Matlab User Guide

DISCLAIMER

THIS IB-MATLAB SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF

ANY KIND, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,

AND/OR NONINFRINGEMENT.

THIS SOFTWARE IS NOT OFFICIALLY APPROVED OR ENDORSED BY ANY

REGULATORY, GOVERNING OR COMMERCIAL BODY, INCLUDING SEC, FINRA,

MATHWORKS AND/OR INTERACTIVE BROKERS.

MUCH EFFORT WAS INVESTED TO ENSURE THE CORRECTNESS, ACCURACY

AND USEFULNESS OF THE INFORMATION PRESENTED IN THIS DOCUMENT

AND THE SOFTWARE. HOWEVER, THERE IS NEITHER A GUARANTEE THAT THE

INFORMATION IS COMPLETE OR ERROR-FREE, NOR THAT IT MEETS THE

USER’S NEEDS. THE AUTHOR AND COPYRIGHT HOLDERS TAKE ABSOLUTELY

NO RESPONSIBILITY FOR POSSIBLE CONSEQUENCES DUE TO THIS DOCUMENT

OR USE OF THE SOFTWARE.

THE FUNCTIONALITY OF THE SOFTWARE DEPENDS, IN PART, ON THE

FUNCTIONALITY OF OTHER SOFTWARE, HARDWARE, SYSTEMS AND SERVICES

BEYOND OUR CONTROL. SUCH EXTERNAL COMPONENTS MAY CHANGE OR

STOP TO FUNCTION AT ANY TIME, WITHOUT PRIOR NOTICE AND WITHOUT

OUR CONTROL. THEREFORE, THERE CAN BE NO ASSURANCE THAT THE

SOFTWARE WOULD WORK, AS EXPECTED OR AT ALL, AT ANY GIVEN TIME.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR

ANY CLAIM, DAMAGES, LOSS, OR OTHER LIABILITY, WHETHER IN ACTION OF

CONTRACT OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH

THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE,

REGARDLESS OF FORM OF CLAIM OR WHETHER THE AUTHORS WERE

ADVISED OF SUCH LIABILITIES.

WHEN USING THIS DOCUMENT AND SOFTWARE, USERS MUST VERIFY THE

BEHAVIOR CAREFULLY ON THEIR SYSTEM BEFORE USING THE SAME

FUNCTIONALITY FOR LIVE TRADES. USERS SHOULD EITHER USE THIS

DOCUMENT AND SOFTWARE AT THEIR OWN RISK, OR NOT AT ALL.

ALL TRADING SYMBOLS AND TRADING ORDERS DISPLAYED IN THE

DOCUMENTATION ARE FOR ILLUSTRATIVE PURPOSES ONLY AND ARE NOT

INTENDED TO PORTRAY A TRADING RECOMMENDATION.

5 IB-Matlab User Guide

1 Introduction

Interactive Brokers (IB, www.interactivebrokers.com) provides brokerage and

financial data-feed services. IB customers can use its services using specialized

applications (so-called “clients”) that can be installed on the user’s computer. These

client applications provide a user-interface that enables the user to view portfolio and

market information, as well as to issue trade orders to the IB server. The most widely-

used IB client application is TWS (Trader Work Station).1

In addition to TWS, IB provides other means of communicating with its server. A

lightweight client application called IB Gateway is installed together with TWS. IB

Gateway has no fancy GUI like TWS but provides exactly the same API functionality

as TWS, while using fewer system resources and running more efficiently.2

IB also publishes an interface (Application Programming Interface, or API) that

enables user applications to connect to the IB server using one of its client

applications (either IB Gateway or TWS). This API enables user trading models to

interact with IB: send trade orders, receive market and portfolio information, process

execution and tick events etc.

IB provides its API for three target platforms: Windows, Mac and Linux (Mac and

Linux actually use the same API installation).3 The API has several variants,

including C++, Java, DDE, and ActiveX (DDE and ActiveX only on Windows).

Matlab is a programming development platform that is widely-used in the financial

sector. Matlab enables users to quickly analyze data, display results in graphs or

interactive user interfaces, and to develop automated, semi-automated and decision-

support trading models.

Unfortunately, IB does not provide an official Matlab API connector. While IB’s Java

connector can be used directly in Matlab, setting up the event callbacks and data

conversions between Matlab and the connector is definitely not easy. You need to be

familiar with both Matlab and Java, at least to some degree.

This is the role of IB-Matlab (http://UndocumentedMatlab.com/IB-Matlab). IB-

Matlab uses IB’s Java API to connect Matlab to IB, providing a seamless interface

within Matlab to IB’s Java API functionality. Users can activate IB’s API using

simple Matlab commands, without any need to know Java.

Java’s cross-platform compatibility means that exactly the same IB-Matlab code runs

on all platforms supported by IB and Matlab, namely Windows (both 32 and 64 bit),

Mac and Linux/Unix.

1 http://interactivebrokers.com/en/software/tws/twsguide.htm#usersguidebook/getstarted/intro_to_get_started.htm

2 http://interactivebrokers.github.io/tws-api/initial_setup.html
3 https://www.interactivebrokers.com/en/index.php?f=5041

http://www.interactivebrokers.com/
http://undocumentedmatlab.com/IB-Matlab
http://interactivebrokers.com/en/software/tws/twsguide.htm#usersguidebook/getstarted/intro_to_get_started.htm
http://interactivebrokers.com/en/software/tws/twsguide.htm#usersguidebook/getstarted/intro_to_get_started.htm
http://interactivebrokers.github.io/tws-api/initial_setup.html
http://interactivebrokers.github.io/tws-api/initial_setup.html
https://www.interactivebrokers.com/en/index.php?f=5041
https://www.interactivebrokers.com/en/index.php?f=5041

6 IB-Matlab User Guide

IB-Matlab consists of two parts that provide different ways of interacting with IB:

1. A Java package (IBMatlab.jar) that connects to the TWS/Gateway and

provides full access to IB’s Java API functionality. Matlab users can use a

special connector object in Matlab to invoke the Java API functions directly

from within Matlab.

2. A Matlab wrapper (IBMatlab.p) that provides the most often-used API

functionality in an easy-to-use Matlab function. This wrapper is a pure Matlab

implementation that provides access IB’s most important functionalities,

without needing to know anything about Java or the underlying connector.

Active trading actions (buy, sell, short, close, modify, cancel, exercise, lapse) and

query actions (market, streaming quotes, open orders, historical, account and portfolio

data) can be initiated with simple one-line Matlab code that uses the Matlab wrapper

(IBMatlab.p). Additional trading features (the full range of IB’s Java API) can be

accessed using the connector object that is provided by IB-Matlab.

Users can easily attach Matlab code (callbacks) to IB events. This enables special

operations (e.g., adding an entry in an Excel file, sending an email or SMS) whenever

an order executes, or a specified price is reached, for example.

Professional reviews of IB-Matlab were published in 20114 and 20125 in the

Automated Trader magazine and can be downloaded from IB-Matlab’s web page.6

This document explains how to install and use IB-Matlab. Depending on the date

that you have installed IB-Matlab, your version may be missing some features

discussed in this document. Whenever you renew your annual license you will

receive the latest IB-Matlab version, including all the functionality detailed here.

4 http://www.automatedtrader.net/articles/software-review/84091/the-virtue-of-simplicity

5 http://www.automatedtrader.net/articles/software-review/107768/mashup
6 http://undocumentedmatlab.com/files/IB-Matlab_Review.pdf, http://undocumentedmatlab.com/files/IB-Matlab_Review2.pdf

http://www.automatedtrader.net/articles/software-review/84091/the-virtue-of-simplicity
http://www.automatedtrader.net/articles/software-review/84091/the-virtue-of-simplicity
http://www.automatedtrader.net/articles/software-review/107768/mashup
http://www.automatedtrader.net/articles/software-review/107768/mashup
http://undocumentedmatlab.com/files/IB-Matlab_Review.pdf
http://undocumentedmatlab.com/files/IB-Matlab_Review.pdf
http://undocumentedmatlab.com/files/IB-Matlab_Review2.pdf

7 IB-Matlab User Guide

2 Installation and licensing

IB-Matlab requires the following in order to run:

1. An active account at IB

IB-Matlab will also work with IB’s Demo account, but this is not

recommended: it is limited in comparison with the functionalities of a live

account. To properly test IB-Matlab, we recommend using the paper-trade

(simulated trading) account that you get when you open an IB account. Paper-

trade accounts resemble a live account more closely than the Demo account.7

2. An installation of TWS and/or the IB Gateway – (normally installed together)

3. An installation of Matlab R2006a or a newer release

If you have an earlier release of Matlab, some API functionality may still be avail-

able on your system. Contact us (info@UndocumentedMatlab.com) for details.

The installation procedure for IB-Matlab is as follows:

1. Ensure that you have read and accepted the IB-Matlab license agreement.8

This step is required even for IB-Matlab trials. If you do not accept the

license agreement, you cannot use IB-Matlab.

2. Extract the files within the installation zip file (esp. IBMatlab.jar, IBMatlab.p,

IBMatlab.m) into a dedicated folder (for example: C:\IB-Matlab\). Do not

place the files in one of Matlab’s installation folders.

3. Add the new IB-Matlab folder to your Matlab path using the path tool (in the

Matlab Desktop’s toolstrip, click HOME - ENVIRONMENT - Set path… and

save).9 The folder needs to be in your Matlab path whenever you run IBMatlab.

4. Ensure that either TWS or IB Gateway is working and logged-in to IB.

5. In TWS’s main menu’s Edit Global Configuration… API Settings,

make the following changes (the specifics depend on your TWS version):10

a. Enable the “Enable ActiveX and Socket Clients” checkbox

b. Validate the Socket port used by IB for API communication: normally

7496 or 7497 for TWS; 4001 or 4002 for Gateway. Other values can

be set, but then you will need to specify the Port parameter when you

use IBMatlab for the first time after each Matlab restart (see §13 below).

7 Note that IB provides limited support for some functional aspects on the paper-trading account compared to the live account:

https://quant.stackexchange.com/questions/8744/what-is-the-difference-between-the-interactive-brokers-demo-account-and-a-

personal-paper-trader-account; http://interactivebrokers.com/en/software/am/am/manageaccount/paper_trading_limitations.htm

8 The license agreement is available at http://undocumentedmatlab.com/files/IB-Matlab_License_Agreement.pdf. It is also

included in the installation zip file.

9 https://www.mathworks.com/help/matlab/matlab_env/add-remove-or-reorder-folders-on-the-search-path.html

10 If you do not make these changes, then IB-Matlab will either not be able to connect to IB, or will require popup confirmation
upon each request by IB-Matlab.

mailto:info@UndocumentedMatlab.com
https://quant.stackexchange.com/questions/8744/what-is-the-difference-between-the-interactive-brokers-demo-account-and-a-personal-paper-trader-account
https://quant.stackexchange.com/questions/8744/what-is-the-difference-between-the-interactive-brokers-demo-account-and-a-personal-paper-trader-account
http://interactivebrokers.com/en/software/am/am/manageaccount/paper_trading_limitations.htm
http://undocumentedmatlab.com/files/IB-Matlab_License_Agreement.pdf
https://www.mathworks.com/help/matlab/matlab_env/add-remove-or-reorder-folders-on-the-search-path.html

8 IB-Matlab User Guide

c. Specifying a Master ClientID (positive integer number) will enable

IB-Matlab to access to all orders created by any API client. You could

then use this in IBMatlab by specifying a ClientId parameter.11

d. Select the checkbox to “Create API message log file” if you wish to

access such log files later on (see §14.1 below).

e. Ensure that the settings allow connections from localhost. If you wish

to use IB-Matlab on a different computer than the one that runs TWS,

add IB-Matlab machine’s IP address to the list of trusted IP addresses.

f. If you have recently upgraded from a 32-bit system (e.g., Windows

XP) to 64 bits (e.g., Windows 7), then if you encounter some problems

running IB-Matlab, this could be due to a 32-64 bit mixup in TWS.12

g. Unset the “Read-Only API” checkbox if you wish IB-Matlab to be

able to send trade orders to IB (rather than just access IB’s data-feed).

6. IB Gateway configuration (main menu Configure Settings API Settings)

is similar to the TWS configuration above. The main difference is that the

“Enable ActiveX and Socket Clients” checkbox is not available in IB Gate-

11 See §10 and §13 below for more details. Note: It has been reported that setting a value in this field may limit the ability to

concurrently access multiple IB accounts, as may be the case for Financial Advisors or if you have child IB accounts.
12 See http://www.elitetrader.com/vb/showthread.php?threadid=175081 for details on how to solve this.

http://www.elitetrader.com/vb/showthread.php?threadid=175081

9 IB-Matlab User Guide

way’s configuration, since it is always enabled for trusted IPs (this is good).13

7. If you are running the non-trial version of IB-Matlab, you will need to

activate your license at this point, by sending us the output of the

IBMatlab('license') command. See §2.1 below for licensing details.

8. You can now run IBMatlab within Matlab. To verify that IB-Matlab is

properly installed, retrieve your current IB account information, using the

following commands (which are explained in §4 below):

>> data = IBMatlab('action','account_data')

>> data = IBMatlab('action','portfolio')

9. If you get an error such as “IBMatlab is not activated on this computer. To fix

this, send the following data…”, email us this message as plain text (not a screen-

shot) so we could activate your license on this computer, then retry step #8.

10. If you get an error such as “IBMatlab.jar not found in static Java classpath.

Please add IBMatlab.jar to classpath.txt”, then follow the steps in §2.3 below

carefully, restart Matlab and retry step #8. If you still get the error, contact us.

13 If you forget to add the localhost IP to the list of trusted IP addresses, IBMatlab may complain that it cannot connect to IB.

You may also need to add the IPv6 loopback address (0:0:0:0:0:0:0:1).

10 IB-Matlab User Guide

2.1 Licensing and activation

IB-Matlab’s license uses an activation that is specific to the installed computer. This

uses a unique fingerprint hash-code that is reported by the Operating System, which

includes the Windows ID (on Windows systems), computer name, and the list of

MAC addresses used by the computer.

Once the computer’s license is activated, the activation key is stored on the

UndocumentedMatlab.com webserver. This activation key validates online whenever

IB-Matlab connects to IB (i.e., at the beginning of an IB/TWS session), and once

every few hours while connected. Validating the license online only takes a second or

two. Since it is only done at the initial connection to TWS and once every few hours,

it does not affect IB-Matlab’s run-time performance. If you have a special concern

regarding the online activation, please contact us for clarifications.

A corollary of the computer fingerprint is that whenever you modify any component

that affects the fingerprint, IB-Matlab will stop working. This could happen if you

reinstall the operating system (OS), modify the computer name, change network

adapters (e.g., switch between wifi/cellular/wired connection, or use a new USB

networking device), manually modify MAC addresses, or use software that creates

dynamic MACs. In such cases, you might see an error message such as the following

when you try to use IB-Matlab:

Error using IBMatlab/ensureConnected

IBMatlab is not activated on this computer.

Some additional information may be presented to help you diagnose the problem.

To fix such cases, simply revert back to the original hardware/networking

configuration, and then IB-Matlab will resume working. If you wish to make the

configuration change permanent, then you can contact us for an activation switch to

the new configuration (see the following section §2.2 for details).

Computer fingerprints are typically stable, and are not supposed to change

dynamically. However, some software programs (especially on MacOS, but also

sometimes on Linux/Windows) create dynamic MAC addresses and/or dynamically

modify the computer name (hostname). This is then reflected in the OS-reported

fingerprint, possibly causing IB-Matlab to stop working. The solution in such cases

is to find a way to keep the MAC addresses and computer name static, with the same

values as the activated fingerprint. The hostname can be set using the OS’s hostname

command, and you can determine the nature of the OS-reported MACs as follows:

>> IBMatlab('license', 'debug',1); % partial sample output below

84A6C8EEAFED - net5 Intel(R) Centrino(R) Wireless-N 2230

B888E3E1EDD4 - eth4 Realtek PCIe GBE Family Controller

Using this output, you can determine which MAC address was changed / added /

deleted, and then take the appropriate action to fix it so that the reported MACs will

match the activated fingerprint. If you decide that the MACs/hostname changes are

permanent, contact us to change the activated fingerprint (see §2.2 below).

11 IB-Matlab User Guide

The standard IB-Matlab license is for a single year from date of purchase. Additional

licensing options are available; contact us for pricing information:

 2- or 4-months license: these short-term licenses can be repeatedly renewed,

for product evaluation or program development beyond the free trial.

 1-year license: this is the standard, most popular license term.

 Multi-year license: 2-year, 3-year, or 5-year extended license terms will work

for much longer than the standard license year, as long as you keep your

hardware and software stable and IB continues to provide its API service.

 Volume (multi-computer) license: the same license as for a single computer,

but when you purchase multiple licenses at once, you get a volume discount.

 Site license: enables to run IB-Matlab on an unlimited number of computers

within the same Windows Domain. This license does not require activation by

end-users, only a single centralized activation. It supports cloud deployment,

where computer hardware fingerprints (but not the domain) often change.

 Deployment (compiled) license: enables to use IB-Matlab within a compiled

program that runs on an unlimited number of computers. This license does not

require separate activations by end-users, only a single centralized activation.

 Source-code license: unlimited in duration, can be installed on an unlimited

number of computers in the organization, and requires no activation. This

license requires signing a dedicated NDA (non-disclosure agreement).

 Bundle license: a discounted bundle of IB-Matlab and IQML (IQFeed-

Matlab connector) or EODML (EODHistoricalData-Matlab connector) licenses.

You can view information about the installed IB-Matlab version as follows:

>> IBMatlab('version')

ans =

 Version: 2.19

 Expiry: '15-Nov-2023'

 Release: '02-Dec-2022'

 Install: 'C:\IB-Matlab\IBMatlab.m'

2.2 Switching activated computers

You can switch the IB-Matlab license activation between computers or computer

hardware configurations (i.e., fingerprint hash-code) whenever you purchase a license

renewal. For license terms of 1 year or longer, up to 2 activation switches per year are

also included, at no extra cost. A handling fee will be incurred for other re-activations.

In order to change the activation fingerprint, simply email us the new configuration’s

fingerprint and we will make the switch on the server-side.

Activation switches can take up to two business days to process, but typically

complete within a few hours during European business hours. You will receive a

confirmation email when the activation switch is complete.

12 IB-Matlab User Guide

2.3 Updating the static Java classpath

In IB-Matlab v1.97 and earlier, installation required adding the IBMatlab.jar file to

Matlab’s static Java classpath. This is done automatically since v1.98 (1/2018). However,

in very rare cases it might be needed to manually set the classpath, as detailed below:

1. Type the following in your Matlab command prompt:

>> edit('classpath.txt');

This will open the classpath.txt file for editing in the Matlab editor. This file

includes the Java static classpath that is used in Matlab and is typically located in

the %matlabroot%/toolbox/local/ folder (e.g., C:\Program Files\MATLAB\

R2011b\toolbox\local\).

2. Add the full path to the IBMatlab.jar file into the classpath.txt file (you may

need to repeat this step whenever you install a new Matlab release on your

computer). For example, on a Windows computer if the IB-Matlab files are in

C:\IB-Matlab\, then the new line in the classpath.txt file should be as follows:

C:\IB-Matlab\IBMatlab.jar

You must use the full absolute filepath. So on MacOS, for example, enter

/Users/John/IB-Matlab/IBMatlab.jar rather than ~/IB-Matlab/IBMatlab.jar.

Similarly, you cannot use something like $matlabroot/../../IB-Matlab.jar.

When saving classpath.txt, you may get an error message saying the file is read-

only. To solve this, enable write-access to this file: In Linux/Unix, run chmod

a+w classpath.txt. In Windows open Windows Explorer right-click classpath.txt,

select “Properties”, and unselect the “Read-only” attribute. In Windows 7/8/10

run Matlab as Administrator (right click the Matlab icon and select “Run as

Administrator”) in order to be able to save the file, even when it is not read-only.

If you cannot get administrator access to modify classpath.txt, place a copy of it

in your Matlab startup folder. This is the folder used when you start Matlab (type

the pwd command at the Matlab command prompt to get it). Note that placing the

modified classpath.txt file in your Matlab startup folder enables you to run IB-

Matlab whenever you use this startup folder – so if you ever use a different

Matlab startup folder, you’d will need to copy the classpath.txt file to the new

startup folder. Also note that the classpath.txt file depends on the Matlab release

– it will only work on your current release of Matlab, if you try to use a different

Matlab release with this same startup folder, then Matlab itself (not just IB-

Matlab) may fail to load. For these reasons, it is safer to update the classpath.txt

file in Matlab’s default location, namely the %matlabroot%/toolbox/local/ folder.

As an alternative on some Matlab releases, create a javaclasspath.txt file in the

startup folder, which just contains a single line, IBMatlab.jar’s full path.

Note: IB-Matlab may not be able to receive IB data if Java’s classpath is not set.

3. Restart Matlab (no need to restart the computer or to run as administrator)

13 IB-Matlab User Guide

3 Using IBMatlab

3.1 General usage

IB-Matlab uses the IB client (either TWS or IB Gateway) to connect to the IB server. To

use IB-Matlab, either TWS or Gateway must be active. If an active IB client is not

detected, IB-Matlab will automatically attempt to start TWS and to connect to it, but

this may fail for some TWS installations. You can always start an IB client manually,

before running IB-Matlab. If IB connection is unsuccessful, IB-Matlab will error.

IB-Matlab’s Matlab wrapper function is called IBMatlab. This function is contained in

the IBMatlab.p file. The IBMatlab.m file includes basic syntax help, used as follows:

>> help IBMatlab

>> doc IBMatlab

The IBMatlab function accepts a variable number of parameters, and returns data in a

query-specific format, usually a Matlab struct or a numeric ID.14

IBMatlab can accept input parameters in several formats:

 As name-value pairs – for example:

>> data = IBMatlab('action','account', 'AccountName','DU12345');

You can omit the 'action' keyword if you specify the action as the first input

parameter in IB-Matlab v2.20 or newer (12/2022):

>> data = IBMatlab('account', 'AccountName','DU12345');

 As a struct (or struct array) of parameters – for example:

>> params = []; % initialize

>> params.Action = 'account';

>> params.AccountName = 'DU12345';

>> data = IBMatlab(params);

 As a table of parameters, with the parameter names as the table field names

 As field-separated rows in an input file (CSV or XLS) – for example:
>> data = IBMatlab('C:\MyData\inputFile.xlsx');

Where row #1 of the file contains the parameter names, and rows 2+ contain

the parameter values, one row per IBMatlab command. For example:

In CSV files you can add comments following the % character, for example:
Action,Symbol,SecType,Quantity,Exchange,Currency,Type,LimitPrice

Buy,IBM,STK,10,SMART,USD,MKT % A Christmas gift for dad

These input formats are equivalent; use whichever format that you are comfortable with.

14 A Java connector object is also returned, which can be used for low-level access to IB’s API. See §15 below for details.

14 IB-Matlab User Guide

Note: if you choose to use the struct format and then to reuse this struct for different

IBMatlab commands (by altering a few of the parameters), then the entire set of struct

parameters is used, possibly including some leftover parameters from previous

IBMatlab commands, that may lead to unexpected results. For example:

% 1st IBMatlab command – buy 10 GOOG at limit $600.00

>> params = []; % initialize

>> params.Action = 'buy';

>> params.Symbol = 'GOOG';

>> params.Quantity = 10;

>> params.Type = 'LMT';

>> params.LimitPrice = 600.00;

>> orderId1 = IBMatlab(params);

% 2nd IBMatlab command – sell 10 GOOG at limit $625.00

>> params.Action = 'sell'; % reuse the existing params struct

>> params.LimitPrice = 625.00;

>> orderId1 = IBMatlab(params);

The second IBMatlab command will sell all 10 units of GOOG, even if the user

meant to sell just a single unit. This is because the params struct still contains the

Quantity=10 field from the first IBMatlab command. To avoid unexpected results, I

therefore advise to re-initialize the params struct (=[]) for each IBMatlab command.

IBMatlab is quite tolerant of user input: parameter names are case-insensitive (but

most IB values are case-sensitive), parameter order does not matter, non-numeric

parameters can be specified as either char arrays ('abc') or strings ("abc"), and some

of these can be shortened. For example, the following are all equivalent:

>> data = IBMatlab('action','account', 'AccountName','DU12345');

>> data = IBMatlab('action','account_data', 'accountname','DU12345');

>> data = IBMatlab('Action','Account_Data', "AccountName","DU12345");

>> data = IBMatlab('ACTION','ACCOUNT_DATA', 'AccountName',"DU12345");

>> data = IBMatlab('AccountName','DU12345', 'action','account_data');

>> data = IBMatlab('Account', 'AccountName','DU12345'); %v2.20 or newer

The full list of acceptable input parameters is listed in the sections below, grouped by

usage classification (action). Each action has a specific set of acceptable parameters.

When using IBMatlab, there is no need to worry about connecting/disconnecting from

IB: IBMatlab automatically connects to whichever TWS/Gateway is currently active.

If you logged-in to TWS/Gateway using a paper-trading username then IBMatlab will

work on the simulated account; if you login to a live account then IBMatlab will

connect to that account. The TWS account type is transparent to IBMatlab: the only

way to control whether IBMatlab will use simulated or live trading is to login to TWS

using the appropriate username. Refer to §13 below for additional details.

When using IBMatlab you may receive various error messages. See §14 below for details

about handling these messages. For example, IB limits the rate of messages sent to

the IB server to 50/sec. If you exceed this rate, you’ll receive an error message from IB:

[API.msg2] Max rate of messages per second has been exceeded: max=50 rec=55

15 IB-Matlab User Guide

3.2 Contract properties

The following contract (security/ticker) properties can be specified in IBMatlab:15

Parameter Data type Default Description

Symbol string (none) The symbol of the underlying asset16

LocalSymbol string '' The local exchange symbol of the underlying asset.
When left empty, IB sometimes tries to infer it from
Symbol and the other properties.

SecType string 'STK' 'STK' – stock equity and ETF (default)
 'OPT' – option
 'FUT' – future (CONTFUT=continuous)
 'IND' – index
 'FOP' – option on future
 'CASH' – Forex
 'WAR' – warrant
 'BOND' – bond
 'FUND' – mutual fund
 'IOPT' – structured (Dutch Warrant)
 'SSF' – single-stock future
 'CMDTY' – commodity
 'BAG' – combo-legs (see §9.5 below)

Exchange string 'SMART' The exchange that should process the request.17
SMART uses IB’s SmartRouting to optimize order
execution time and cost.18 To specify the primary
exchange, use the : or / separator,19 for example:
'SMART:ISLAND' or 'SMART/TSE'.

Currency string 'USD' The trading currency. This field can often be
specified to avoid ambiguities (see §14.2).

Expiry string '' 'YYYYMM' or 'YYYYMMDD' format
Note: indicates last trading date not expiry date

Multiplier number [] The contract multiplier (for options)

Strike number 0.0 The strike price (for options)

Right or Side string '' One of: ‘P’, ‘PUT’, ‘C’, ‘CALL’ (for options)

IncludeExpired
integer or

logical flag
0=false If true, expired options/futures are considered,

otherwise they are not.

ConId integer [] The contract ID (if known)

SecId

string '' The security ID e.g. 'US0378331005' (Apple ISIN).
Must be specified with SecIdType, or in unified
form e.g. 'ISIN:US0378331005', 'RIC:AAPL.O'

SecIdType string '' The SecId type: 'ISIN', 'CUSIP' or 'RIC' 20

15 This list closely mirrors IB’s Java API list of contract details. Some of the Java API properties mentioned in the online list

(https://interactivebrokers.com/php/whiteLabel/Interoperability/Socket_Client_Java/java_properties.htm) are not supported by

IBMatlab, but many of them can still be accessed via IB-Matlab’s Java connector object, as described in §15 below.
16 See https://groups.io/g/twsapi/topic/69675667 for a discussion of the difference between Symbol and LocalSymbol.
17 IB’s API uses ISLAND for NASDAQ requests; you can specify either NASDAQ or ISLAND in your IB-Matlab call (IB-

Matlab versions 1.80+; earlier versions should specify ISLAND). Other exchange names are the same in TWS and IB-Matlab.
18 http://interactivebrokers.com/en/p.php?f=smartRouting. Note that IB does not support the default 'SMART' exchange for all

combinations of SecType, Currency etc. In such cases, setting a specific Exchange name may avoid errors and empty results.
19 This is supported by TWS 942 or newer: http://interactivebrokers.com/en/?f=/en/software/apiReleaseNotes/api970.php. This

syntax is sometimes not accepted by IB. As an alternative, use the m_primaryExchange field as explained in §9.6 below.
20

 See https://interactivebrokers.com/en/software/apiReleaseNotes/api963.php. Note: SEDOL, FIGI are not supported. Also see §5.5.

https://interactivebrokers.com/php/whiteLabel/Interoperability/Socket_Client_Java/java_properties.htm
https://groups.io/g/twsapi/topic/69675667
http://interactivebrokers.com/en/p.php?f=smartRouting
http://interactivebrokers.com/en/?f=/en/software/apiReleaseNotes/api970.php
https://interactivebrokers.com/en/software/apiReleaseNotes/api963.php

16 IB-Matlab User Guide

4 Querying account and portfolio data

4.1 Account information

IB user accounts have numerous internal properties/parameters, ranging from the

account currency to cash balance, margin information etc. You can retrieve this

information in Matlab using the following simple command:

>> data = IBMatlab('action','account_data') % or: IBMatlab('account')

data =

 AccountCode: 'DU12345'

 accountName: 'DU12345'

 AccountReady: 'true'

 AccountType: 'INDIVIDUAL'

 AccruedCash: [1x9 struct]

 AccruedCash_C: [1x1 struct]

 AccruedCash_S: [1x1 struct]

 AccruedDividend: [1x1 struct]

 AccruedDividend_C: [1x1 struct]

 AccruedDividend_S: [1x1 struct]

 AvailableFunds: [1x1 struct]

 (and so on ... – dozens of different account parameters)

As can be seen, the returned data object is a simple Matlab struct, whose fields match

the IB account properties. To access a specific field use standard Matlab dot notation:

>> myDividends = data.AccruedDividend

myDividends =

 value: 12345.67

 currency: 'AUD'

When the account has information in various currencies, the corresponding data field

is an array of Matlab structs.21 For example:

>> data.AccruedCash(1) % A Matlab struct of a specific currency

ans =

 value: 1040

 currency: 'AUD'

>> data.AccruedCash(2) % A Matlab struct of a specific currency

ans =

 value: 1039

 currency: 'BASE'

>> [data.AccruedCash.value] % A numeric array of all currency values

ans =

 1040 1039 0 0 0 -7 0 0 0

>> {data.AccruedCash.currency} % A corresponding Matlab cell array

ans =

 'AUD' 'BASE' 'CAD' 'CHF' 'DKK' 'NOK' 'NZD' 'SEK' 'USD'

21 IB-Matlab versions prior to Oct 20, 2014 did not make a distinction between various currencies, so the reported value might

be misleading if your account holds values in various currencies.

17 IB-Matlab User Guide

Some account data fields have several variants, for example, AccruedCash,

AccruedCash_C and AccruedCash_S. Until you trade a commodity,

AccruedCash_C=0 and AccruedCash_S=AccruedCash. After trading a commodity,

AccruedCash_C holds the value for commodities, AccruedCash_S for securities, and

AccruedCash for the total. Several other fields also have these _S and _C variants.

If your TWS account is linked to multiple IB accounts (as is common for financial

advisors), then you should specify the AccountName input parameter, so that IB

would know which IB account to access:22

>> data = IBMatlab('action','account', 'AccountName','DU12345');

To get data for all accounts in a consolidated manner, set AccountName to 'All':23

>> data = IBMatlab('action','account', 'AccountName','All')

data =

 DF12344: [1x1 struct]

 DU12345: [1x1 struct]

 DU12346: [1x1 struct]

 SummaryData: [1x1 struct]

 ManagedAccounts: {'DF12344' 'DU12345' 'DU12346'}

where the returned struct fields contain the account data for each specific account, as

shown at the beginning of this section, plus a SummaryData struct field for all accounts.

The final field, ManagedAccounts, is a cell array of all the managed account names.

Note: IB has changed the behavior for AccountName='All' in 2015. The description

above is accurate as of November 2015, but with your IB accounts you might still see

the previous behavior, receiving a single unified data struct, as for a single account.

The AccountName parameter is only used when managing multiple accounts. If you

manage just a single account, then the AccountName parameter is ignored - you will

always receive the detailed data struct for the account, as shown at the beginning of

this section, even if you specify an invalid AccountName, or omit it altogether.

In some cases, IB might return empty data in response to account requests. Two

workarounds have been found for this, although they might not cover all cases. The

workarounds are to simply re-request the information, and to force a programmatic

reconnection to IB (more on connection issue in §13 below):

data = IBMatlab('action','account');

if isempty(data) % empty data – try to re-request the same data

 data = IBMatlab('action','account');

end

if isempty(data) % still empty data – try to disconnect/reconnect

 IBMatlab('disconnect'); % disconnect from IB

 pause(1); % let IB cool down a bit

 data = IBMatlab('action','account'); % will automatically reconnect

end

22 If you don’t specify the AccountName, you will get stale or empty account data.

23 TWS/IB-Gateway API setting "Master API Client ID" may need to be empty (even if correct) for this to work (see installation
step 5c in §2 above).

18 IB-Matlab User Guide

4.2 Portfolio data

To retrieve an IB account’s portfolio (list of held securities), use 'portfolio' action:

>> data = IBMatlab('action','portfolio')

data =

1x12 struct array with fields:

 symbol

 localSymbol

 exchange

 secType

 currency

 right

 expiry

 strike

 position

 marketValue

 marketPrice

 averageCost

 realizedPnL

 unrealizedPnL

 contract

This returns a Matlab array of structs, where each struct element in the array

represents a different security held in the IB account. For example:

>> data(2)

ans =

 symbol: 'AMZN'

 localSymbol: 'AMZN'

 exchange: 'NASDAQ'

 secType: 'STK'

 currency: 'USD'

 right: '0'

 expiry: ''

 strike: 0

 position: 920

 marketValue: 171580

 marketPrice: 186.5

 averageCost: 169.03183335

 realizedPnL: 7513.78

 unrealizedPnL: 16070.71

 contract: [1x1 struct]

The marketPrice value is reflected in TWS’s Quote Monitor as the “Mark Price”. It is

defined as the last price, clamped to ask (if ask<last) or bid (if bid>last) as needed.24

It is highly advisable for robustness to compare the account’s StockMarketValue25 to

the sum of non-cash portfolio marketValues. Be careful to sum only non-cash

securities (i.e., ~strcmpi(data.secType,'cash')). Shorted securities will appear with

a negative marketValue in the portfolio struct array, while long securities will have a

24 http://interactivebrokers.com/en/software/tws/usersguidebook/thetradingwindow/price-based.htm

25 As reported by the IBMatlab('action','account') command – see §4.1 for details

http://interactivebrokers.com/en/software/tws/usersguidebook/thetradingwindow/price-based.htm

19 IB-Matlab User Guide

positive value. The sum of these values, which should be equal to the account’s

StockMarketValue, may be positive or negative, indicating whether the overall

portfolio is long or short. If you are only interested in the total monetary value of the

security positions (i.e., their absolute marketValues), then the sum in this case should

equal the account’s GrossPositionValue. Note that there may be small differences

between the portfolio marketValue sums and the account StockMarketValue or

GrossPositionValue, due to market changes that occurred between the time that the

account data was collected, and the time that the portfolio data was requested. If you

run these requests immediately one after another, then in the vast majority of the

cases the data will match exactly.

In the returned data struct, the contract field is itself a struct, which contains basic

information about the security.26 The only important piece of information that is not

already included in the main struct is the contract Id stored in data.contract.conId:
>> data(2).contract
ans =
 conId: 3691937
 symbol: 'AMZN'
 secType: 'STK'
 currency: 'USD'
 primaryExch: 'NASDAQ'
 ...

As with account data requests,, if multiple IB accounts are connected to our IB login,

then we need to ensure that we request data for the correct account. Many frustrations

can be avoided by specifically stating the AccountName parameter whenever we use

IBMatlab in a multi-account environment. If you are unsure of the account name, set

AccountName to 'All' (read the related discussion at the end of §4.1):

>> data = IBMatlab('action','portfolio', 'AccountName','All')

data =

 DF12344: [0x0 struct]

 DU12345: [1x7 struct]

 DU12346: [1x3 struct]

As with account data requests, IB might return empty data in response to portfolio

requests. Two workarounds have been found for this, although they might not cover

all cases.27 The workarounds are to simply re-request the information, and to force a

programmatic reconnection to IB (more on the connection issue in §13 below):

data = IBMatlab('action','portfolio');

if isempty(data) % empty data – try to re-request the same data

 data = IBMatlab('action','portfolio');

end

if isempty(data) % still empty data – try to disconnect/reconnect

 IBMatlab('disconnect'); % disconnect from IB

 pause(1); % let IB cool down a bit

 data = IBMatlab('action','portfolio'); % will automatically reconnect

end

26 Use §5.4 below to retrieve detailed contract information; the fields are explained here:

http://interactivebrokers.com/php/whiteLabel/Interoperability/Socket_Client_Java/java_properties.htm
27 For example, the IB API has a known limitation that it does not return the portfolio position if the clearing house is not IB

http://interactivebrokers.com/php/whiteLabel/Interoperability/Socket_Client_Java/java_properties.htm

20 IB-Matlab User Guide

In some cases, even with the retry workaround above, IB still returns empty portfolio

data. A more reliable (and much faster) mechanism for retrieving portfolio data is to

limit the request only to the portfolio positions, by setting the Type parameter to

'positions'. IB will return the data much faster and more reliably, except for the

marketValue, marketPrice, and averageCost fields, which are returned empty:

>> data = IBMatlab('action','portfolio', 'type','positions');
>> data(5)

ans =
 symbol: 'ZL'
 localSymbol: 'ZL DEC 15'

 exchange: ''
 secType: 'FUT'
 currency: 'USD'

 right: ''
 expiry: '20151214'
 strike: 0

 position: -1
 marketValue: []
 marketPrice: []

 averageCost: []
 realizedPnL: []
 unrealizedPnL: []

 contract: [1x1 struct]

In this example, we have a short position of -1 for the ZL 12/2015 future, and no

market information is included in the returned data.

Here is a short Matlab code example showing how to retrieve the position (number of

portfolio shares) of a specific security ('GOOG' in this example):

portfolioData = IBMatlab('action','portfolio', 'type','positions');
symbols = {portfolioData.localSymbol};

idx = strcmpi('GOOG', symbols);
position = portfolioData(idx).position;
if isempty(position)

 position = 0;
end

The position information is often sufficient. For example, an automated trading

algorithm may need to determine if a position is currently open, and to compute the

trade-order quantity required to open/reverse/close it. In such cases, limiting the

portfolio request to position-only data is advisable. If you also need market data, you

can use a standard portfolio request, or to retrieve the market data in a separate query.

Finally, note that IB will only send Forex (cash) position in the portfolio data if the

relevant option is selected in the API settings:

21 IB-Matlab User Guide

5 Querying current market data

5.1 Single-quote data

Let us start with a simple example where we retrieve the current market information

for Google Inc., which trades using the GOOG symbol on IB’s SMART exchange

(the default exchange), with USD currency (the default currency):

>> data = IBMatlab('action','query', 'symbol','GOOG')

data =

 reqId: 22209874

 reqTime: '02-Dec-2010 00:47:23'

 dataTime: '02-Dec-2010 00:47:24'

 dataTimestamp: 734474.032914491

 lastEventTime: 734474.032914512

 ticker: 'GOOG'

 bidPrice: 563.68

 askPrice: 564.47

 open: 562.82

 close: 555.71

 low: 562.4

 high: 571.57

 lastPrice: -1

 volume: 36891

 tick: 0.01

 bidSize: 3

 askSize: 3

 lastSize: 0

 contract: [1x1 struct]

contractDetails: [1x1 struct]

Here is another example, this time for a future asset:

>> data = IBMatlab('action','query', 'LocalSymbol','YI JUL 17', ...

 'SecType','FUT', 'Exchange','NYSELIFFE')

data =

 reqId: 727929834

 reqTime: '11-May-2017 10:23:11'

 dataTime: '11-May-2017 10:23:12'

 dataTimestamp: 736826.432780035

 lastEventTime: 736826.432780521

 ticker: ''

 bidPrice: 16.263

 askPrice: 16.271

 open: 16.197

 close: 16.207

 low: 16.18

 high: 16.285

 lastPrice: 16.285

 volume: 25

 tick: 0.01

 bidSize: 3

 askSize: 3

 lastSize: 1

22 IB-Matlab User Guide

As can be seen, the returned data object is a Matlab struct whose fields are self-

explanatory. To access any specific field, use the standard Matlab notation:

>> price = data.bidPrice; %=563.68 in this specific case

Note: reqTime, dataTime, dataTimestamp and lastEventTime fields reflect local time.

If lastPrice is returned with valid data (not -1) then it is usually accompanied by a

lastTimestamp field that reflects the server time in Java units (seconds since midnight

1/1/197028 as a string, for example: ‘1348563149’). We can convert lastTimestamp

into Matlab format by converting the string into a number using Matlab’s datestr and

datenum functions:29

>> datestr(datenum([1970 1 1 0 0 str2num(data.lastTimestamp)]))

ans =

25-Sep-2012 08:52:29

To retrieve live and historic market data, several pre-conditions must be met:

1. The IB account is subscribed to the information service for the stated security

2. The specified security can be found on the specified exchange using the

specified classification properties (a.k.a. contract)

3. The security is currently traded (i.e., its market is currently open)

4. There is no other TWS with live data running on a different computer30

5. If you manage several accounts, they should be associated with the main

account for live data, using the Manage Accounts window in TWS.

If any of these conditions is not met, the information returned by IB will be

empty/invalid (the data fields will have a value of -1 or []). In some cases, IB-Matlab

automatically attempts to re-fetch the data from IB, to ensure that the data is in fact

missing. If condition 3 is not met, the empty data will not be accompanied by any

error message; if condition 1 and/or 2 (but not 3) is not met, an error message will be

displayed in the Matlab command window,31 as the following examples illustrate:

>> data = IBMatlab('action','query', 'symbol','GOOG')

[API.msg2] Requested market data is not subscribed.Error&BEST/STK/Top

{153745220, 354}

data =

 reqId: 779564761

 reqTime: '30-Oct-2017 13:27:49'

 dataTime: '30-Oct-2017 13:27:53'

28 http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Date.html (note the units [seconds/milliseconds] – this can be tricky…)

29 http://www.mathworks.com/support/solutions/en/data/1-9B9H2S/

30 IB only sends live/historic data to a single computer, so retrieving such data requires IB-Matlab to be connected to the TWS

that gets the live data, not to another TWS on a different computer. So if you connect TWS to your live account on computer

A, and another TWS to your paper-trading account on computer B, then IB-Matlab can retrieve data only via computer A.

31 The error messages can be suppressed using the MsgDisplayLevel parameter, and can also be trapped and processed using the
CallbackMessage parameter – see §14.1 below for details

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Date.html
http://www.mathworks.com/support/solutions/en/data/1-9B9H2S/

23 IB-Matlab User Guide

 dataTimestamp: 736998.561032893

 lastEventTime: 736998.561035394

 ticker: 'GOOG'

 bidPrice: -1

 askPrice: -1

 open: -1

 close: -1

 low: -1

 high: -1

 lastPrice: -1

 volume: -1

 tick: 0.01

 contract: [1×1 struct]

 contractDetails: [1×1 struct]

This illustrates a situation where we are not subscribed to data for this specific

security type and/or exchange, and delayed market data is not available. When

delayed market data is available (depending on Exchange and SecType), the delayed

quotes are shown in dedicated fields, together with an explanatory warning message:

>> data = IBMatlab('action','query', 'symbol','AAPL')

[API.msg2] Requested market data is not subscribed. Displaying delayed

market data... {779573827, 10167}

data =

 reqId: 779573829

 reqTime: '30-Oct-2017 14:17:10'

 dataTime: '30-Oct-2017 14:17:11'

 dataTimestamp: 736998.595277546

 lastEventTime: 736998.595283414

 ticker: 'AAPL'

 bidPrice: -1

 askPrice: -1

 open: -1

 close: -1

 low: -1

 high: -1

 lastPrice: -1

 volume: -1

 tick: 0.01

 contract: [1×1 struct]

 contractDetails: [1×1 struct]

 delayed_bidPrice: 163.5

 delayed_askPrice: 163.59

 delayed_lastPrice: 163.5

 delayed_volume: 991

 delayed_close: 163.05

 delayed_open: 0

Note that some of the delayed data fields may be missing or invalid. Specifically, the

delayed_close field is very often not provided, and the delayed_open field is often 0.

24 IB-Matlab User Guide

Note: Delayed data may be sent by IB even if you are subscribed to IB’s real-time

data, in case IB-Matlab is connected to a paper-trading account at the same time that

a live account is also logged-in. In such cases, IB will always stream the real-time

data to the live-account TWS/Gateway, and the delayed data to the paper-trading

TWS/Gateway. IB will only stream real-time live data to a paper-trading account (and

through it to IB-Matlab) when a live trading account is not actively logged-in.

A similar yet different error message is returned when we try to get historical data for

a security type or exchange that is not subscribed:

>> data = IBMatlab('action','history', 'symbol','GOOG')

[API.msg2] Historical Market Data Service error message:

No market data permissions for ISLAND STK {153745241, 162}

data =

 dateTime: {1x0 cell}

 open: []

 high: []

 low: []

 close: []

 volume: []

 count: []

 WAP: []

 hasGaps: []

In this case, there is no delayed data: IB only provides delayed quotes for single-

quote and streaming data. IB will not return historical data if you do not have the

necessary market perrmissions/subscription.

If you specify incorrect or missing security name or classification properties, the data

is similarly not returned, and an error message is displayed:

>> data = IBMatlab('action','query', 'symbol','EUR')

[API.msg2] No security definition has been found for the request.

>> data = IBMatlab('action','query','symbol','GOOG','secType','opt',...

 'expiry','202212', 'strike',97, 'side','CALL')

[API.msg2] The contract description specified for GOOG is ambiguous.

Recheck the contract parameters, or try adding parameters such as SecType,

Exchange, Currency, Multiplier, Expiry (see User Guide sections 3.2, 14.2)

As the last error message suggests, adding specific values for contract properties may

help resolve the problem; see §14.2 for additional details.

In some cases, querying a contract may return some invalid (<0) field values. For

example, querying the NIFTY50 index only returns valid close and lastPrice fields;

other fields return -1. The reason is that NIFTY50 is not a tradable security by itself,

so it has no bid/ask/open/high/low/volume values. Only NIFTY50 futures are tradable

securities, and these indeed return valid field values. Another common reason for

receiving -1 field values is querying when the market is closed. To prevent IB-

Matlab from waiting a long time for the missing fields, set the Timeout parameter.

25 IB-Matlab User Guide

When querying option contracts, IB sometimes appends greeks information, typically

in the modelOptComp field.32 IB often sends this information long after the main bulk

of the data, causing the IBMatlab query to return without it. To ensure that the query

waits until the greeks data is received, set the WaitForGreeks parameter to 1 (or

true), together with a finite Timeout value (otherwise the query might wait forever):

>> data = IBMatlab('action', 'query', 'symbol','GOOG', 'right','C', ...
 'secType','OPT', 'expiry','20230120', 'strike',95,...

 'multiplier',100, 'WaitForGreeks',true, 'timeout',5))

data =

 reqId: 1334289666

 reqTime: '22-Nov-2022 16:51:57'

 dataTime: '22-Nov-2022 16:52:02'

 dataTimestamp: 738847.702803113

 lastEventTime: 738847.702803264

 ticker: 'GOOG'

 bidPrice: 5.25

 askPrice: 5.3

 open: -1

 close: 5.94

 low: 5.36

 high: 6

 lastPrice: 5.36

 volume: 17

 halted: 0

 tick: 0.01

 contract: [1×1 struct]

 contractDetails: [1×1 struct]

 lastTimestamp: '1669128439'

 lastSize: 1

 bidSize: 165

 askSize: 3563

 bidExch: 'CNBQZWT'

 askExch: 'ACIXNBQZWTMHE'

 bidOptComp: [1×1 struct]

 askOptComp: [1×1 struct]

 lastOptComp: [1×1 struct]

 modelOptComp: [1×1 struct]

>> data.modelOptComp

ans =

 EventName: 'tickOptionComputation'

 tickerId: 1334289666

 field: 13

 impliedVol: 0.3266003491091

 delta: 0.54214843505144

 optPrice: 5.21056937905062

 pvDividend: 0

 gamma: 0.0319889840549273

 vega: 0.151219099645397

32 https://interactivebrokers.github.io/tws-api/interfaceIBApi_1_1EWrapper.html#aaabfb00bd637027793c34387690b58d2

https://interactivebrokers.github.io/tws-api/interfaceIBApi_1_1EWrapper.html#aaabfb00bd637027793c34387690b58d2

26 IB-Matlab User Guide

 theta: -0.0474963712975894

 undPrice: 94.84

 omega: 9.86789616255852

 lambda: 9.86789616255852

 rho: 7.30011198156273

 crho: 8.12331873181594

Notes:

1. WaitForGreeks is a synchronous mechanism that is only available for single-

quote (snapshot) non-combo query of derivatives (options/futures). It is not

available for other security types, nor for streaming/combo/historic queries.

2. Some of the top-level data fields are not always available. For example,

outside regular trading hours the bidExch, askExch, bidOptComp, askOptComp,

and lastOptComp fields are usually not available (although modelOptComp is).

3. To receive live greek values it is necessary to have market data subscriptions

for both the option and the underlying contract.33

4. The IB 30-day volatility is the at-market volatility estimated for a maturity

thirty calendar days forward of the current trading day, and is based on option

prices from two consecutive expiration months.

5. All the field values reported beneath undPrice (omega=lambda, rho and crho)

are computed by IB-Matlab based on the reported IB values; the other fields

are reported exactly as reported by IB.

6. The omega and lambda fields are exactly equal; both fields are reported because

different literature and data-sources sometimes use one term or the other. You

can use either of them in your code.

7. Additional greek values (vanna, charm, vomma/volga, veta, speed, zomma,

color and ultima) can be computed using the calcGreeks function (freely

available on the Matlab File Exchange),34 using the data reported by IB-

Matlab and user-specified interest/yield rates.

33 https://interactivebrokers.github.io/tws-api/option_computations.html
34 https://www.mathworks.com/matlabcentral/fileexchange/69544-calcgreeks-calculate-option-greeks-european-black-scholes

https://interactivebrokers.github.io/tws-api/option_computations.html
https://www.mathworks.com/matlabcentral/fileexchange/69544-calcgreeks-calculate-option-greeks-european-black-scholes

27 IB-Matlab User Guide

5.2 Market depth (Level II) data

For some exchanges and security types, and possibly also depending on your IB

account subscription, IB enables the user to retrieve market depth (Level II order

book) information. In IB-Matlab, this information can either be retrieved as a one-

time data snapshot, or in continuous streaming mode. To get snapshot data, set the

QuotesNumber parameter to 1 (=default); to get streaming data set QuotesNumber

to a larger value. This section describes the one-time data snapshot mechanism; see

§7.3 below for a description of the streaming data mechanism, and §11.5 for a usage

example of a continuously-updating order-book GUI.

In general, retrieving market depth is very similar to retrieving single-quote data, the

only difference being that for market depth, the NumberOfRows parameter should

be set to a positive number between 2-5 (i.e., 2, 3, 4 or 5).35

Here is a simple example of retrieving the top 3 rows of the EUR.USD order-book:

>> dataStruct = IBMatlab('action','query', 'symbol','EUR', ...

 'LocalSymbol','EUR.USD', 'SecType','CASH', ...

 'Exchange','IDEALPRO', 'NumberOfRows',3)

dataStruct =

 reqId: 464868253

 reqTime: '16-Dec-2014 14:03:48'

 lastEventDateNum: 735949.585989664

 lastEventDateTime: '16-Dec-2014 14:03:49'

 symbol: 'EUR'

 localSymbol: 'EUR.USD'

 isActive: 0

 quotesReceived: 6

 quotesToReceive: 6

 bid: [1x3 struct]

 ask: [1x3 struct]

 contract: [1x1 struct]

>> dataStruct.bid(1)

ans =

 price: 1.25345

 size: 1000000

 marketMaker: ''

 dateNum: 735949.585989618

 dateTime: '16-Dec-2014 14:03:49'

>> dataStruct.ask(1)

ans =

 price: 1.2535

 size: 8320000

 marketMaker: ''

 dateNum: 735949.585989653

 dateTime: '16-Dec-2014 14:03:49'

35 The default value of NumberOfRows (=1) in indicates a single-quote query rather than a market-depth query.

28 IB-Matlab User Guide

Note that in this case, 6 quotes were received, corresponding to the requested 3 rows

for both the bid and the ask sides. You can request up to 10 market-depth rows (some

exchanges may limit the number of available market-depth rows to a lower number).

Note that in some cases, the market depth of the bid/ask sides may not be the same.

For example, it is possible that at some time there are 5 bid rows, but only 4 ask rows.

Naturally, dataStruct.bid(1) is the highest bid, dataStruct.ask(1) is the lowest ask:

>> [dataStruct.bid.price]

ans =

 1.25345 1.2534 1.25335

>> [dataStruct.ask.price]

ans =

 1.2535 1.25355 1.2536

In some cases (again, depending on the market, security and your IB subscription

level), Level 2 market-maker date may be available. In such cases, the marketMaker

field will contain the name of the exchange hosting the order for that row.

As noted above, market depth is not always available. Only certain combinations of

Exchange, SecType and Currency are supported for Level 2, even if you have the

necessary market-data subscription. For example, the 'SMART' exchange is typically

not supported, only specific exchange names. In all such cases, you may receive an

applicable error message from the IB server, and the returned data will be empty:

>> data = IBMatlab('Action','query', 'Symbol','IBM', 'NumberOfRows',3)

[API.msg2] Deep market data is not supported for this combination of

security type/exchange {464879606, 10092}

data =

 reqId: 464879606

 reqTime: '16-Dec-2014 14:22:06'

 lastEventDateNum: -1

 lastEventDateTime: ''

 symbol: 'IBM'

 localSymbol: ''

 isActive: 1

 quotesReceived: 0

 quotesToReceive: 6

 bid: [0x0 struct]

 ask: [0x0 struct]

 contract: [1x1 struct]

29 IB-Matlab User Guide

5.3 Scanner data

IB’s scanner data functionality returns a list of securities that match the specified scan

criteria. IB provides a long list of predefined scanners,36 including MOST_ACTIVE,

TOP_PERC_GAIN, HOT_BY_VOLUME, HOT_BY_PRICE etc. The scan can be

limited to security type and trading location, as well as to a variety of criteria on the

security attributes (price, volume, maturity date, market cap, Moody/S&P rating,

coupon rate etc.).37 This is an extensive list, which covers much of the demand.

Note: IB scanners are only limited to the predefined scanner types and options above.

We cannot define a generic scan criteria based on attributes that are not on the

predefined list. In such cases, we would need to use other means to scan the markets.

For example, consider using finviz.com, which provides a very detailed online

scanner (free for online browsing; premium service to download CSV data file).38

Many additional screeners are available online.39

To use IB’s market scanner in IB-Matlab, set the Action parameter to 'Scanner', and

either use the default criteria values (see table below) or override them. For example,

to return the current most active stock in NASDAQ (the default criteria):

>> dataStruct = IBMatlab('action','scanner')

dataStruct =

 EventName: 'scannerData'

 reqId: 349661732

 rank: 0

 contractDetails: [1x1 struct]

 distance: []

 benchmark: []

 projection: []

 legsStr: []

 symbol: 'QQQ'

 localSymbol: 'QQQ'

 contract: [1x1 struct]

Additional information about the returned security (QQQ in this case) can be seen in

the contract and contractDetails fields of the returned data structure.

By default, IB-Matlab only returns the top single security matching the scan criteria.

We can change this using the NumberOfRows parameter. IB limits the amount of

returned data, so it is quite possible that we will receive fewer results than requested:

36 http://interactivebrokers.com/en/software/webtrader/webtrader.htm#webtrader/marketscanners/about market scanners.htm

37 http://interactivebrokers.github.io/tws-api/classIBApi_1_1ScannerSubscription.html

38 http://finviz.com/screener.ashx

39 For example: http://nasdaq.com/reference/stock-screener.aspx, http://caps.fool.com/Screener.aspx,

http://finance.google.com/finance#stockscreener, http://screener.finance.yahoo.com/stocks.html,
http://stockscreener.us.reuters.com/Stock/US/index, http://marketwatch.com/tools/stockresearch/screener

http://interactivebrokers.com/en/software/webtrader/webtrader.htm#webtrader/marketscanners/about market scanners.htm
http://interactivebrokers.github.io/tws-api/classIBApi_1_1ScannerSubscription.html
http://finviz.com/screener.ashx
http://nasdaq.com/reference/stock-screener.aspx
http://caps.fool.com/Screener.aspx
http://finance.google.com/finance#stockscreener
http://screener.finance.yahoo.com/stocks.html
http://stockscreener.us.reuters.com/Stock/US/index
http://marketwatch.com/tools/stockresearch/screener

30 IB-Matlab User Guide

>> dataStruct = IBMatlab('Action','scanner', 'NumberOfRows',100)

dataStruct =

1x23 struct array with fields:

 EventName

 reqId

 rank

 contractDetails

 distance

 benchmark

 projection

 legsStr

 symbol

 localSymbol

 contract

>> dataStruct(end)

ans =

 EventName: 'scannerData'

 reqId: 349662602

 rank: 22

 contractDetails: [1x1 struct]

 distance: []

 benchmark: []

 projection: []

 legsStr: []

 symbol: 'AMZN'

 localSymbol: 'AMZN'

 contract: [1x1 struct]

The most important parameters for scanner requests are Instrument (default value:

'STK'), LocationCode (default value: ‘STK.NASDAQ’) and ScanCode (default

value: ‘MOST_ACTIVE’). Additional parameters are listed at the end of this section.

Note: You will only receive scan data that corresponds to your paid IB market

subscription. For example, if you are only subscribed to NASDAQ data but not to

NYSE or other exchanges, then you will only receive NASDAQ scan results,

regardless of your specified LocationCode. In other words, scanner parameters only

narrow down (filter) scan results; they cannot be used to provide unsubscribed data.

IB’s documentation about the possible scanner parameter values is quite limited and

incomplete. If you are unsure of the parameter values that are required for a specific

scan, contact IB’s customer service and ask them for the specific set of “API

ScannerSubscription parameters” that are required for your requested scan.

One feature that could help in determining the possible parameter values is an XML

document that the IB server provides which describes the possible combinations. We

can retrieve this document by specifying Type='parameters' in IB-Matlab:

31 IB-Matlab User Guide

>> xmlStr = IBMatlab('Action','scanner', 'Type','parameters')

xmlStr =

<?xml version="1.0" encoding="UTF-8"?>

<ScanParameterResponse>

 <InstrumentList varName="instrumentList">

 <Instrument>

 <name>US Stocks</name>

 <type>STK</type>

<filters>PRICE,PRICE_USD,VOLUME,VOLUME_USD,AVGVOLUME,AVGVOLU

ME_USD,HALTED,...,FIRSTTRADEDATE,HASOPTIONS</filters>

 <group>STK.GLOBAL</group>

 <shortName>US</shortName>

 </Instrument>

 <Instrument>

 <name>US Futures</name>

 <type>FUT.US</type>

 <secType>FUT</secType>

<filters>PRICE,PRICE_USD,VOLUME,VOLUME_USD,PRODCAT,LEADFUT,C

HANGEPERC,CHANGEOPENPERC,OPENGAPPERC,PRICERANGE,TRADERATE</f

ilters>

 <group>FUT.GLOBAL</group>

 <shortName>US</shortName>

 </Instrument>

 ... (~20K additional lines!)

This XML string is quite long (~1MB, ~20K lines). We can store it in a *.xml file and

open this file in an XML reader (for example, a browser). Alternatively, we can ask

IB-Matlab to parse this XML and present us with a more manageable Matlab struct

that we can then process in Matlab. This is done by setting ParametersType='struct'.

Note that this XML parsing could take a long time (a full minute or even longer):

>> params = IBMatlab('Action','scanner', 'Type','parameters', ...

 'ParametersType','struct') %may take a long time!

params =

 Name: 'ScanParameterResponse'

 InstrumentList: [1x1 struct]

 LocationTree: [1x1 struct]

 ScanTypeList: [1x2 struct]

 SettingList: [1x1 struct]

 FilterList: [1x2 struct]

 ScannerLayoutList: [1x1 struct]

 InstrumentGroupList: [1x1 struct]

 SimilarProductsDefaults: [1x1 struct]

 MainScreenDefaultTickers: [1x1 struct]

 ColumnSets: [1x1 struct]

 SidecarScannerDefaults: [1x1 struct]

>> params.InstrumentList

ans =

 Name: 'InstrumentList'

 Attributes: [1x1 struct]

 Instrument: [1x23 struct]

32 IB-Matlab User Guide

>> params.InstrumentList.Instrument(2)

ans =

 Name: 'Instrument'

 name: 'US Futures'

 type: 'FUT.US'

 filters: [1x108 char]

 group: 'FUT.GLOBAL'

 shortName: 'US'

 secType: 'FUT'

 nscanSecType: []

 permSecType: []

>> params.InstrumentList.Instrument(2).filters

ans =

PRICE,PRICE_USD,VOLUME,VOLUME_USD,PRODCAT,LEADFUT,CHANGEPERC,CHANGEOPEN

PERC,OPENGAPPERC,PRICERANGE,TRADERATE

The parameters that affect scanner data retrieval closely mirror those expected by

IB’s Java API:40

Parameter
Data

type
Default Description

Type string 'Scan' One of:

 'Scan' – scanner data (default)

 'Parameters' – possible

scanner param values

ParametersType string 'XML' One of:

 'XML' (default)

 'struct' – Matlab struct

AbovePrice number 0.0 Filter out contracts with a price

lower than this value

AboveVolume integer 0 Filter out contracts with a volume

lower than this value

AverageOptionVolume

Above

integer 0 Filter out contracts with avg.

options volume lower than this

BelowPrice number Inf Filter out contracts with a price

higher than this value

CouponRateAbove number 0.0 Filter out contracts with a coupon

rate lower than this

CouponRateBelow number Inf Filter out contracts with a coupon

rate higher than this

ExcludeConvertible string ''
(empty string)

Filter out convertible bonds

40 https://interactivebrokers.github.io/tws-api/classIBApi_1_1ScannerSubscription.html

https://interactivebrokers.github.io/tws-api/classIBApi_1_1ScannerSubscription.html

33 IB-Matlab User Guide

Parameter
Data

type
Default Description

Instrument string 'STK' Defines the instrument type

LocationCode string 'STK.NASDAQ' Defines the scanned markets

MarketCapAbove number 0.0 Filter out contracts with a market
cap lower than this

MarketCapBelow number Inf Filter out contracts with a market
cap above this value

MaturityDateAbove string ''
(empty string)

Filter out contracts with a
maturity date earlier than this

MaturityDateBelow string ''
(empty string)

Filter out contracts with a
maturity date later than this

MoodyRatingAbove string ''
(empty string)

Filter out contracts with a Moody
rating below this value

MoodyRatingBelow string ''
(empty string)

Filter out contracts with a Moody
rating above this value

NumberOfRows integer 1 The maximal number of rows of
data to return for the query

ScanCode string 'MOST_ACTIVE' A long list... - see the API doc41

ScannerSettingPairs string ''
(empty string)

For example, a pairing of

'Annual, true' used on the “Top

Option Implied Vol % Gainers”

scan returns annualized volatilities

SPRatingAbove string ''
(empty string)

Filter out contracts with an S&P

rating below this value

SPRatingBelow string ''
(empty string)

Filter out contracts with an S&P

rating above this value

StockTypeFilter string 'ALL' One of:

 'ALL' (default)

 'CORP' – Corporation

 'ADR' – American Depositary
 Receipt

 'ETF' – Exchange Traded Fund

 'REIT' – Real Estate
 Investment Trust

 'CEF' – Closed Ended Fund

41 https://www.interactivebrokers.com/en/software/webtrader/webtrader/marketscanners/about%20market%20scanners.htm. The

latest version of this webpage only contains a description of the scanners, not their scan codes (e.g. “Most active” instead of

MOST_ACTIVE). To get the scan codes, see the Reference chapter, “Available Market Scanners” section (around p. 566) in

IB’s downloadable API documentation: http://institutions.interactivebrokers.com/download/newMark/PDFs/APIprintable.pdf.

Alternatively, ask IB support to tell you the specific scan codes for your requested market scanners. An unofficial list of scan
codes is provided in https://groups.io/g/insync/topic/22402297#1650 ; it is not known whether this list is accurate or complete.

https://www.interactivebrokers.com/en/software/webtrader/webtrader/marketscanners/about%20market%20scanners.htm
http://institutions.interactivebrokers.com/download/newMark/PDFs/APIprintable.pdf
https://groups.io/g/insync/topic/22402297#1650

34 IB-Matlab User Guide

5.4 Contract details and options chain

Contract details for any security can be retrieved using the parameters Action='query'

with Type='contract'. If the security is well-defined, then IB-Matlab will return a

data struct containing various details on the contract, which is basically a merge of

the contract and contractDetails structs that are returned by the single-quote query

(§5.1). For example:

>> dataStruct = IBMatlab('action','contract', 'symbol','IBM')

dataStruct =

 conId: 8314

 symbol: 'IBM'

 secType: 'STK'

 expiry: []

 strike: 0

 right: []

 multiplier: []

 exchange: 'SMART'

 currency: 'USD'

 localSymbol: 'IBM'

 primaryExch: 'NYSE'

 includeExpired: 0

 secIdType: []

 secId: []

 comboLegsDescrip: []

 comboLegs: []

 underComp: []

 summary: [1x1 struct]

 marketName: 'IBM'

 tradingClass: 'IBM'

 minTick: 0.01

 priceMagnifier: 1

 orderTypes: 'ACTIVETIM,ADJUST,ALERT,ALGO,ALLOC,AON,

AVGCOST,BASKET,COND,CONDORDER,DARKPOLL,DAY,DEACT,DEACTDIS,DEACTEOD,DIS,

GAT,GTC,GTD,GTT,HID,IBDARK,ICE,IMB,IOC,LIT,LMT,LOC,MIT,MKT,MOC,MTL,...'

 validExchanges: 'SMART,NYSE,CBOE,ISE,CHX,ARCA,ISLAND,VWAP,

IBSX,DRCTEDGE,BEX,BATS,EDGEA,LAVA,CSFBALGO,JEFFALGO,BYX,IEX,TPLUS2,PSX'

 underConId: 0

 longName: 'INTL BUSINESS MACHINES CORP'

 contractMonth: []

 industry: 'Technology'

 category: 'Computers'

 subcategory: 'Computer Services'

 timeZoneId: 'EST'

 tradingHours: '20150325:0400-2000;20150326:0400-2000'

 liquidHours: '20150325:0930-1600;20150326:0930-1600'

 ...

(many additional data fields, some of them empty)

Note that the data is returned even outside market trading hours, unlike the single-

quote query that typically returns empty pricing data outside trading hours. Also note

that no pricing information is returned, only the contract information.

35 IB-Matlab User Guide

Retrieving the options chain of a security uses the same mechanism. In this case,

when SecType='OPT' (stock options) or 'FOP' (futures options), multiple option

contracts are returned in an array of data structs similar to the above, for those options

that match our query. For example, to retrieve all futures options for the 10-year US

Treasury Note (ZN), which have a contract month of December 2015:

>> dataStruct = IBMatlab('action','contract', 'symbol','ZN', ...

 'secType','FOP', 'expiry','201512', ...

 'exchange','ecbot')

dataStruct =

224x1 struct array with fields:

 conId

 symbol

 ...

>> dataStruct(1)

ans =

 conId: 168043528

 symbol: 'ZN'

 secType: 'FOP'

 expiry: '20151120'

 strike: 128.5

 right: 'P'

 multiplier: '1000'

 exchange: 'ECBOT'

 currency: 'USD'

 localSymbol: 'P OZN DEC 15 12850'

 ...

>> dataStruct(2)

ans =

 conId: 168043533

 symbol: 'ZN'

 secType: 'FOP'

 expiry: '20151120'

 strike: 131

 right: 'P'

 multiplier: '1000'

 exchange: 'ECBOT'

 currency: 'USD'

 localSymbol: 'P OZN DEC 15 13100'

 ...

Note: we need to specify the SecType and Exchange for options, since IB cannot find

the security using the default parameter values ('STK' and 'SMART', respectively):42

>> dataStruct = IBMatlab('action','contract', 'symbol','ZN', ...

 'secType','FOP', 'expiry','201512')

[API.msg2] No security definition has been found for the request

{494601749, 200}

dataStruct =

 []

42 Exchange can be omitted (or set to 'SMART') for stock options but not for futures options; SecType must be set in either case.

36 IB-Matlab User Guide

Also note that the reported expiry field is the last trading date for the contract (in this

case, November 20, 2015), not the contract’s actual expiration date (Dec’ 2015).

We can limit the results by specifying a combination of the Expiry, Strike,

Multiplier and/or Right parameters. For example, to limit ZN options only to Calls:

>> dataStruct = IBMatlab('action','contract', 'symbol','ZN', ...

 'secType','FOP', 'expiry','201512', ...

 'exchange','ecbot', 'right','Call')

dataStruct =

112x1 struct array with fields:

 conId

 symbol

 secType

 ...

Similarly, to get all options (Calls & Puts), in all expiry dates, that have Strike=$130:

>> dataStruct = IBMatlab('action','contract', 'symbol','ZN', ...

 'secType','FOP', 'strike',130, ...

 'exchange','ecbot')

dataStruct =

22x1 struct array with fields:

 conId

 symbol

 secType

 ...

To retrieve the full options-chain without any filtering, remove the limiting parameters.

Note that it might take several long seconds for all the contracts to be sent from IB:

>> dataStruct = IBMatlab('action','contract', 'symbol','IBM', ...

 'secType','OPT', 'exchange','CBOE2')

dataStruct =

900x1 struct array with fields:

 conId

 symbol

 secType

 ...

The options are not ordered, so do not rely on their order in the returned dataStruct.

A different way of retrieving the options chain is explained in §11.4 below, using IB

event callabacks. The difference between the mechanism here and in §11.4 is that the

the command here is synchronous (i.e., Matlab waits for all the data to be received

from IB before returning a unified dataStruct). In §11.4, the contracts data are

received and processed in parallel (asynchronously) to the main Matlab program.

Note: The options chain query only returns the list of contract names/details, without

any market data. We cannot receive the entire list of option prices in a single command;

each contract requires a separate IB-Matlab query (§5.1) to get its market data. To

get the latest market quotes for these contracts, loop over the returned options chain

contracts and query their market data one by one, in separate IB-Matlab queries.

37 IB-Matlab User Guide

5.5 Fundamental data

IB’s fundamental data functionality returns Reuters global fundamental data for

stocks. You must have a subscription to Reuters Fundamental set up in your IB

Account Management before you can receive most of the reports. The following data

reports are available using this functionality:43

 ReportSnapshot (company overview)

 ReportsOwnership (company ownership; note: may be large in size)

 ReportRatios (financial ratios; note: may not be available in some cases)

 ReportsFinSummary (financial summary)

 ReportsFinStatements (financial statements)

 RESC (analyst estimates)

 CalendarReport (company calendar)

 Ratios (fundamental ratios – different from other reports: see below)

Note: Fundamental data is only available for stocks, not for any other security type.

To use IB’s market scanner in IB-Matlab, set the Action parameter to 'Fundamental',

and the Type parameter to one of the report names above, and specify the requested

contract information (Symbol, Exchange, Currency etc.). For example:

>> xmlStr = IBMatlab('Action','fundamental', 'Type','ReportSnapshot',...

 'Symbol','IBM')

xmlStr =

<?xml version="1.0" encoding="UTF-8"?>

<ReportSnapshot Major="1" Minor="0" Revision="1">

 <CoIDs>

 <CoID Type="RepNo">4741N</CoID>

 <CoID Type="CompanyName">International Business Machines Corp.</CoID>

 <CoID Type="IRSNo">130871985</CoID>

 <CoID Type="CIKNo">0000051143</CoID>

 </CoIDs>

 <Issues>

 <Issue ID="1" Type="C" Desc="Common Stock" Order="1">

 <IssueID Type="Name">Ordinary Shares</IssueID>

 <IssueID Type="Ticker">IBM</IssueID>

 <IssueID Type="CUSIP">459200101</IssueID>

 <IssueID Type="ISIN">US4592001014</IssueID>

 <IssueID Type="RIC">IBM</IssueID>

 <IssueID Type="SEDOL">2005973</IssueID>

 <IssueID Type="DisplayRIC">IBM.N</IssueID>

 <IssueID Type="InstrumentPI">261483</IssueID>

 <IssueID Type="QuotePI">1090370</IssueID>

 <Exchange Code="NYSE" Country="USA">New York Stock

Exchange</Exchange>

 <MostRecentSplit Date="1999-05-27">2.0</MostRecentSplit>

 </Issue>

 <Issue ID="2" Type="P" Desc="Preferred Stock" Order="1">

 <IssueID Type="Name">Preference Shares Series A</IssueID>

43 https://interactivebrokers.github.io/tws-api/fundamentals.html

https://interactivebrokers.github.io/tws-api/fundamentals.html

38 IB-Matlab User Guide

 <IssueID Type="Ticker">IBMPP</IssueID>

 <IssueID Type="CUSIP">459200200</IssueID>

 <IssueID Type="ISIN">US4592002004</IssueID>

 <IssueID Type="RIC">IBMPP.PK^C06</IssueID>

 <IssueID Type="InstrumentPI">1883112</IssueID>

 <IssueID Type="QuotePI">25545447</IssueID>

 <Exchange Code="OTC" Country="USA">Over The Counter</Exchange>

 </Issue>

 </Issues>

 <CoGeneralInfo>

 <CoStatus Code="1">Active</CoStatus>

 <CoType Code="EQU">Equity Issue</CoType>

 <LastModified>2016-06-29</LastModified>

 <LatestAvailableAnnual>2015-12-31</LatestAvailableAnnual>

 <LatestAvailableInterim>2016-03-31</LatestAvailableInterim>

 <Employees LastUpdated="2015-12-31">377757</Employees>

 <SharesOut Date="2016-03-31"

TotalFloat="959386999.0">959961852.0</SharesOut>

 <CommonShareholders Date="2015-12-31">444582</CommonShareholders>

 <ReportingCurrency Code="USD">U.S. Dollars</ReportingCurrency>

 <MostRecentExchange Date="2016-07-07">1.0</MostRecentExchange>

 </CoGeneralInfo>

 <TextInfo>

 <Text Type="Business Summary" lastModified="2016-04-

21T03:03:49">International Business Machines Corporation (IBM) is a

technology company...

...

The fundamental data is returned as an XML string by default, as shown above. This

XML string can be quite long, depending on the requested report and security. We

can store this string in a *.xml file and open this file in an XML reader (for example, a

browser). Alternatively, we can ask IB-Matlab to parse this XML and return a simple

Matlab struct by setting ParametersType='struct'. Note: this XML parsing could take

a long time (a full minute or even longer in some cases, such as long RESC reports):44

>> data = IBMatlab('Action','fundamental', 'Type','ReportSnapshot',...

 'Symbol','IBM', 'ParametersType','struct')

data =

 Name: 'ReportSnapshot'

 Attributes: [1×1 struct]

 CoIDs: [1×1 struct]

 Issues: [1×1 struct]

 CoGeneralInfo: [1×1 struct]

 TextInfo: [1×1 struct]

 contactInfo: [1×1 struct]

 webLinks: [1×1 struct]

 peerInfo: [1×1 struct]

 officers: [1×1 struct]

 Ratios: [1×1 struct]

 ForecastData: [1×1 struct]

44 Note: the format of the returned struct was simplified and improved starting in IBMatlab version 2.10 (2019-12-31)

39 IB-Matlab User Guide

>> data.Issues.Issue(2).IssueID(4)

ans =

 Name: 'IssueID'

 Attributes: [1×1 struct]

 Data: 'US4592002004'

>> data.Issues.Issue(2).IssueID(4).Attributes

ans =

 Type: 'ISIN'

In some cases, some fields are not reported for some contracts. For example, in the Issues

section above, SEDOL and DisplayRIC values are only reported for IBM, not for IBMPP.

In some cases, some of the fundamental reports may not be available for a certain

security for some reason, while other reports for the same security may be available:

>> data = IBMatlab('Action','fundamental', 'Symbol','IBM', ...

 'Type','ReportRatios')

[API.msg2] We are sorry, but fundamentals data for the security

specified is not available. failed to fetch {636789740, 430}

data =

 []

>> data = IBMatlab('Action','fundamental', 'Symbol','IBM', ...

 'Type','CalendarReport')

[API.msg2] We are sorry, but fundamentals data for the security

specified is not available. Not allowed {636789744, 430}

data =

 []

The fundamental ratios report (Type='Ratios') differs from other reports: it requires no

Reuters subscription; it is always returned in struct (not XML) format regardless of the

ParametersType; and it is only reported when the security trades. The reason for this

is that this report uses IB’s internal mechanism for reporting fundamental ratios of

streaming quotes (see §7.1 below) with a GenericTickList of '258',45
 rather than Reuters

data. For a description of the various data fields, refer to IB’s documentation.46

>> data=IBMatlab('Action','fundamental','Symbol','IBM','Type','Ratios')

data =

 TTMNPMGN: 16.03988

 NLOW: 116.901

 REVTRENDGR: -3.92708

 TTMEPSXCLX: 13.27684

 QTANBVPS: -24.7614

 TTMPRCFPS: 17.78968

 TTMGROSMGN: 49.38146

 TTMCFSHR: 15.23175

 QCURRATIO: 1.37385

 PRICE2BK: 9.93472

 MKTCAP: 148275.7

 ...

 (and so on: dozens of different fields)

45 http://interactivebrokers.github.io/tws-api/tick_types.html
46 http://interactivebrokers.github.io/tws-api/fundamental_ratios_tags.html

http://interactivebrokers.github.io/tws-api/tick_types.html
http://interactivebrokers.github.io/tws-api/fundamental_ratios_tags.html

40 IB-Matlab User Guide

The parameters that affect fundamental data retrieval are as follows (for the contract

properties, see §3.2 above):

Parameter Data type Default Description

Type string 'Ratios' One of:

 'Ratios' (default) – fundamental ratios

 'ReportSnapshot' – company overview

 'ReportRatios' – financial ratios

 'ReportsOwnership' – company owners

 'ReportsFinSummary' –

 financial summary

 'ReportsFinStatements' –

 financial statements

 'RESC' – analyst estimates

 'CalendarReport' – company calendar

ParametersType string 'XML' One of:

 'XML' (default)

 'struct' – Matlab struct

41 IB-Matlab User Guide

6 Querying historical and intra-day data

Historical data can be retrieved from IB,47 subject to your account subscription rights,

and IB’s lengthy list of pacing violation limitations.48 Note that these are IB server

limitations, not IB-Matlab limitations. As of Nov 2015, these limitations include:

1. Historical data is limited by default to 2000 results (data bars). You may have

access to more results depending on your IB subscription level. If you request

more results than your limit, the entire request is dropped.

2. Historical data is limited by default to the past year. If you purchase additional

concurrent real-time market data-lines from IB you can access up to 5 years of

history. If you request data older than your limit, the entire request is dropped.

3. Historical data requests that use a small (<1 min) bar size can only go back 6

months. If older data is requested, the entire request is dropped.

4. Requesting identical historical data requests within 15 seconds is prohibited.

IB-Matlab will automatically return the previous results in such a case.

5. Requesting 6+ historical data requests having small bar-size and same contract,

exchange, tick type within 2 seconds is prohibited; the request will be dropped.

6. Requesting 60+ historical data requests having small bar-size of any type

within 10-minutes is prohibited; the entire request will be dropped.

7. IB supports only some combinations of Duration and BarSize (details below).

8. Historic data must be queried from the same computer (IP) as the trading TWS.

9. You must have an IB subscription for data from the requested exchange

Also note that historical data retrieval is subject to the same pre-conditions as for

retrieving the current live market data (see §5.1). If any of these limitations is not

met, then an error message will be displayed and no data will be returned.

Subject to these limitations, retrieving information in IB-Matlab is quite simple. For

example, to return the 1-hour bars from the past day, within the regular trading hours:

>> data = IBMatlab('action','history', 'symbol','IBM', ...

 'barSize','1 hour', 'useRTH',1)

data =

 dateNum: [1x7 double]

 dateTime: {1x7 cell}

 open: [161.08 160.95 161.66 161.17 161.57 161.75 162.07]

 high: [161.35 161.65 161.70 161.60 161.98 162.09 162.34]

 low: [160.86 160.89 161.00 161.13 161.53 161.61 161.89]

 close: [160.93 161.65 161.18 161.60 161.74 162.07 162.29]

 volume: [5384 6332 4580 2963 4728 4465 10173]

 count: [2776 4387 2990 1921 2949 2981 6187]

 WAP: [161.07 161.25 161.35 161.31 161.79 161.92 162.14]

 hasGaps: [0 0 0 0 0 0 0]

47 http://interactivebrokers.github.io/tws-api/historical_bars.html
48 http://interactivebrokers.github.io/tws-api/historical_limitations.html

http://interactivebrokers.github.io/tws-api/historical_bars.html
http://interactivebrokers.github.io/tws-api/historical_limitations.html

42 IB-Matlab User Guide

As can be seen, the returned data object is a Matlab struct whose fields are:

 dateNum – a numeric array of date/time values in Matlab’s numeric format49

 dateTime – a cell-array of date strings, or a numeric array of date values in IB

format (see the FormatDate parameter, explained below). Intra-

day bars use local timezone; daily bars use exchange timezone.

 open – the bar’s opening price

 high – the high price during the time covered by the bar

 low – the low price during the time covered by the bar

 close – the bar’s closing price

 volume – the trading volume during the time covered by the bar

 count – number of trades that occurred during the time covered by the bar

Note: only valid when WhatToShow='Trades' (see below)

 WAP – the weighted average price during the time covered by the bar

 hasGaps – whether or not there are gaps (unreported bars) in the data

The fields are Matlab data arrays (numeric arrays for the data and cell-arrays for the

timestamps). To access any specific field, use the standard Matlab notation:

>> data.dateTime

ans =

 '20110225 16:30:00' '20110225 17:00:00' '20110225 18:00:00'

 '20110225 19:00:00' '20110225 20:00:00' '20110225 21:00:00'

 '20110225 22:00:00'

>> lastOpen = data.open(end); % =162.07 in this specific case

As a slightly more complicated example of using these parameters, the following

query fetches historical 5-minute bars for the past week, including bars outside

regular trading hours:

>> data = IBMatlab('action','history', 'symbol','IBM', ...

 'barSize','5 mins', 'useRTH',0, ...

 'DurationValue',1, 'DurationUnits','W');

If your query fails one of IB’s list of limitations on historical data requests (see the

top of this section), an error message will be reported by IB and no data will be

returned. For example:

[API.msg2] Historical Market Data Service error message: Trading TWS

session is connected from a different IP address {527921821, 162}

or:

[API.msg2] Historical Market Data Service error message: No market

data permissions for NYSE STK {527921824, 162}

49 http://www.mathworks.com/help/matlab/ref/datenum.html

http://www.mathworks.com/help/matlab/ref/datenum.html

43 IB-Matlab User Guide

The following parameters affect historical data retrieval:50

Parameter Data type Default Description

EndDateTime string ''

(empty string),

meaning now

'YYYYMMDD hh:mm:ss TMZ' format

(the TMZ time zone is optional51)

BarSize string '1 min' Size of data bars to be returned (within

IB/TWS limits). Valid values include:

 1 sec, 5/10/15/30 secs

 1 min (default)

 2/3/5/10/15/20/30 mins

 1 hour, 2/3/4/8 hours

 1 day, 1 w, 1 m

DurationValue integer 1 Together with DurationUnits this

parameter specifies the historical data

duration, subject to the limitations on

possible Duration/BarSize

DurationUnits string 'D' One of:

 'S' (seconds)

 'D' (days – default)

 'W' (weeks)

 'M' (months)

 'Y' (years)

WhatToShow string (case

insensitive)

'Trades' Determines the type of data to return:52

 'Trades' (default; invalid for Forex)

 'Midpoint'

 'Bid'

 'Ask'

 'Bid_Ask' (see usage note below 53)

 'Adjusted_Last'

 'Historical_Volatility' (STK/ETF/IND)

 'Option_Implied_Volatility' (as above)

 'Rebate_Rate'

 'Fee_Rate'

 'Yield_Bid' (corp. bonds only)

 'Yield_Ask' (corp. bonds only)

 'Yield_Bid_Ask' (corp. bonds only)

 'Yield_Last' (corp. bonds only)

50 http://interactivebrokers.github.io/tws-api/historical_bars.html

51 The list of time zones accepted by IB is listed in §9.1 below
52 http://interactivebrokers.github.io/tws-api/historical_bars.html#hd_what_to_show

http://interactivebrokers.github.io/tws-api/historical_bars.html
http://interactivebrokers.github.io/tws-api/historical_bars.html#hd_what_to_show

44 IB-Matlab User Guide

Parameter Data type Default Description

UseRTH integer or

logical flag

0 = false Determines whether to return all data

available during the requested time span,

or only data that falls within regular

trading hours. Valid values include:

 0 or false (default): all data is

returned even where the market was

outside of its regular trading hours

 1 or true: only data within regular

trading hours is returned, even if the

requested time span falls partially or

completely outside of the RTH.

FormatDate integer 1 Determines the date format applied to

returned data bars. Valid values include:

1) strings: ‘yyyymmdd hh:mm:dd’ (the

time part is omitted if BarSize>=1d)

2) dates are returned as a long integer

(# of seconds since 1/1/1970 GMT).

Only supported for BarSize < 1 day.

Timeout number Inf =

unlimited

Max # of secs to wait for an IB response

to a request. The timeout is ignored after

partial data has been received.

IncludeExpired integer or

logical flag

0=false If true, expired contracts are considered,

otherwise they are not.

As noted earlier, IB only supports certain combinations of BarSize and Duration, as

detailed in the table below. Note that a 1-sec duration is called “1 secs”, not “1 sec”,

while “1 min”, “1 hour”, “1 day”, “1 week” and “1 month” use the singular form.

Other Duration values (that are not specified in the table) are sometimes, but not

always, accepted by IB. For example, 60D (=60 days) is accepted, but 61D is not. In

such cases, you can always find a valid alternative (3M instead of 61D, for example).

IB-Matlab does not prevent users from entering invalid Durations and BarSizes – it

is up to you to verify that your specified parameters are accepted by IB. If they are

not, then IB will report an error message in the Matlab command window:

[API.msg2] Error validating request:-'qd' : cause - Historical data

bar size setting is invalid. Legal ones are: 1 secs, 5 secs, 10 secs,…

53 For Bid_Ask, the time-weighted average bid prices are returned in the open field, and the ask prices in the close field.

45 IB-Matlab User Guide

It is possible to specify BarSize larger than duration. For example, on July 14, if we

specify a duration of 3 weeks, and BarSize='1w', we’d get the results for all Fridays

(=end of trading week) in the past 21 days. If we set BarSize='1m', we’d get two

results: for June 30 (=end of last trading month) and July 14.

IB’s historical data mechanism enables retrieving data as recent as a minute ago, or as

old as a year (or more, if you purchase this option from IB). Some software vendors

differentiate between intra-day and historical information, but as far as IB and IB-

Matlab are concerned, this is merely a semantic difference and there is no actual

difference. Subject to the available options in the Duration-vs.-BarSize table above,

we can select any date/time window that we wish.

In some cases, users may be tempted to use the historical data mechanism to retrieve

real-time data. This is relatively easy to set-up. For example, implement an endless

Matlab loop that sleeps for 60 seconds, requests the latest historical data for the past

minute and then goes to sleep again (advanced Matlab users would improve this by

implementing a recurring timer object that wakes up every minute). In such cases, the

user should consider using the streaming quotes or realtime bars mechanisms, rather

than historical quotes. Streaming data is the subject of the following section.

Note that some securities and exchanges do not support certain historical parameter

combinations. For example, FOREX (currency) historical data requests on the

IDEALPRO exchange do not support WhatToShow='Trades', only 'Midpoint'. IB

displays a very cryptic error message in such cases, and we are only left with the

option of guessing what parameter value to modify, or ask IB’s customer support.

46 IB-Matlab User Guide

Refer to IB’s documentation54 for the latest information on the allowed parameter

values for historical data requests. Here is a table listing the allowed WhatToShow

values for various SecTypes, valid as of 7/2018:55

When no data is returned by IB, IB-Matlab will automatically try to resend the

historical data request using WhatToShow='Trades' (for SecType='IND'), or

WhatToShow='Midpoint' (for any other SecType), if these are different from the

WhatToShow in the original request:

>> data = IBMatlab('action','history', 'symbol','EUR', ...

 'localSymbol','EUR.USD', 'secType','cash', ...

 'exchange','idealpro', 'barSize','1 hour')

[API.msg2] Historical Market Data Service error message: No historical

market data for EUR/CASH@FXSUBPIP Last 3600 {786819168, 162}

No data returned from IB - retrying with WhatToShow='Midpoint'...

data =

 dateNum: [1×18 double]

 dateTime: {1×18 cell}

 ...

Also note that some exchanges return the requested historical data, but do not provide

all of the historical data fields. For example, with FOREX on IDEALPRO, the

volume, count and WAP fields are not returned, and appear as arrays of -1 when

returned to the user in the data struct:

>> data = IBMatlab('action','history', 'symbol','EUR', ...

 'localSymbol','EUR.USD', 'secType','cash', ...

 'exchange','idealpro', 'barSize','1 day', ...

 'DurationValue',3, 'WhatToShow','midpoint')

54 http://interactivebrokers.github.io/tws-api/historical_limitations.html
55 https://interactivebrokers.github.io/tws-api/historical_bars.html#available_products_hd

http://interactivebrokers.github.io/tws-api/historical_limitations.html
https://interactivebrokers.github.io/tws-api/historical_bars.html#available_products_hd

47 IB-Matlab User Guide

data =

 dateNum: [734909 734910 734913]

 dateTime: {'20120210' '20120211' '20120214'}

 open: [1.32605 1.3286 1.32095]

 high: [1.3321 1.329075 1.328425]

 low: [1.321625 1.315575 1.320275]

 close: [1.328575 1.319825 1.325975]

 volume: [-1 -1 -1]

 count: [-1 -1 -1]

 WAP: [-1 -1 -1]

 hasGaps: [0 0 0]

In this example, historical daily (BarSize = '1 day') data from the past 3 days was

requested on 2012-02-13 (Monday). Data was received for 2012-02-09 (Thursday),

2012-02-10 (Friday) and 2012-02-13 (Monday). Data was not received for 2012-02-

11 and 2012-02-12 because the specified security was not traded during the weekend.

Another oddity is that the dates were reported with an offset of 1 (2012-02-10 instead

of 2012-02-09 etc.). The reason is that the information is collected on a daily basis

and reported as of the first second after midnight, i.e., on the following date. This is

indeed confusing, so if you rely on the reported historical data dates in your analysis,

then you should take this into consideration. This 1-day offset only occurs when

UseRTH=0 (which is the default value): if you set UseRTH=1, then the correct dates

will be reported, since regular trading hours end within the same day, not at midnight.

One user has reported that in some cases IB returns empty data for historical index

(SecType='Ind') queries. Restarting TWS/Gateway and re-querying when the

exchange is active appears to solve this problem.

Note that if IncludeExpired is set to 1 (or true), the historic data on expired contracts

is limited to the last year of the contract’s life, and is initially only supported by IB

for expired futures contracts (IBMatlab imposes no limitation, but IB may indeed).

48 IB-Matlab User Guide

7 Streaming data

Streaming data is a near-real-time mechanism, where IB sends ongoing information

to IB-Matlab about quote ticks (bids and asks) and aggregated real-time bars.

7.1 Streaming quotes

The streaming quotes mechanism has two distinct parts:

1. Request IB to start sending the stream of quotes for a specified security. This

is done by using Action='query' and QuotesNumber with a positive >1 value.

The request’s ID (a scalar integer) is returned.

2. Later, whenever you wish to read the latest quote(s), simply use

Action='query' and QuotesNumber= -1 (minus one). This will return the

latest information (a data struct), without stopping the background streaming.

For example, let’s request 100 streaming quotes for EUR.USD:

>> reqId = IBMatlab('action','query', 'symbol','EUR', ...

 'localSymbol','EUR.USD', 'currency','USD', ...

 'secType','cash', 'exchange','idealpro', ...

 'QuotesNumber',100)

reqId =

 147898050

This causes IB to start sending quotes to IB-Matlab in the background, up to the

specified QuotesNumber, without affecting normal Matlab processing. This means

that you can continue to work with Matlab, process/display information etc.

QuotesNumber can be any number higher than 1 for streaming to work (a value of 1

is the standard market-query request described in §5.1). To collect streaming quotes

endlessly, simply set QuotesNumber to the value inf. Note that in Matlab, inf is a

number not a string so do not enclose it in quotes ('inf') when submitting requests.

Also note that the request to start streaming quotes returns the request ID, not data.

The quotes are collected into an internal data buffer in IB-Matlab. A different buffer

is maintained for each contract (or rather, combination of LocalSymbol, SecType

and Expiry). The buffer size can be controlled using the QuotesBufferSize

parameter, which has a default value of 1. This means that by default only the latest

streaming quote of each type (bid/ask) is stored, along with high/low/close data.

If you set a higher value for QuotesBufferSize,56 then up to the specified number of

latest bid quotes will be stored (note: only bid quotes are counted here):

>> reqId = IBMatlab('action','query', 'symbol','GOOG', ...

 'QuotesNumber',100, 'QuotesBufferSize',500)

Note that using a large QuotesBufferSize increases memory usage, which could have

an adverse effect if you use a very large buffer size (many thousands) and/or

streaming for a large number of different securities.57

56 QuotesBufferSize is a numeric parameter like QuotesNumber, so don’t enclose the parameter value within string quotes (‘’)

49 IB-Matlab User Guide

Subsequent requests to retrieve the latest accumulated quotes buffer data, without

stopping the background streaming, should use QuotesNumber = -1 (minus one).

These requests return a Matlab data struct similar to this:

>> dataStruct = IBMatlab('action','query', ...

 'localSymbol','EUR.USD', ...

 'QuotesNumber',-1)

dataStruct =

 reqId: 147898050

 symbol: 'EUR'

 localSymbol: 'EUR.USD'

 isActive: 1

 quotesReceived: 6

 quotesToReceive: 10

 quotesBufferSize: 1

 genericTickList: ''

 data: [1x1 struct]

 contract: [1x1 struct]

Streaming quotes are stored using a combination of the LocalSymbol, SecType, and

Expiry date values that were specified in the initial request for the streaming quotes.

In most cases (as above), we only need to specify the Symbol/LocalSymbol and the

QuotesNumber in the subsequent requests.58 Specifying the other parameters is not

normally necessary, since IB-Matlab already knows them from the initial streaming

request. We only need to specify the SecType and possibly Expiry when there is a

potential conflict between distinct streaming quotes (e.g., streaming quotes of both

the underlying asset and some Futures index of it). This is useful and easy to use, but

also means that you cannot have two simultaneous streams for the same combination

of LocalSymbol, SecType and Expiry, even if using different other parameters.

In the returned dataStruct, we can see the following fields:

 reqId – this is the request ID (scalar integer) for the original streaming

request, the same ID that was returned by IBMatlab in our initial request.

 symbol, localSymbol – the security whose data is being streamed.

 isActive – indicates whether quotes are currently streamed for this security.

When QuotesNumber bid quotes have been received, this flag is set to false (0).

 quotesReceived – number of streaming bid quotes received for this security.

 quotesToReceive – maximal number of streaming bid quotes requested for the

security (=QuotesNumber). When quotesReceived >= quotesToReceive,

streaming is stopped and isActive is set to false (0).59

 quotesBufferSize – size of the data buffer (=QuotesBufferSize).

57 Quotes use about 1.5KB of Matlab memory. So, if QuotesBufferSize=1500, then for 20 symbols IB-Matlab would need

20*1500*1.5KB = 45MB of Matlab memory when all 20 buffers become full (which could take a while).

58 IB-Matlab versions since 2012-01-15 only need to use LocalSymbol; earlier versions of IB-Matlab used Symbol to store the

streaming data. This means that the earlier versions cannot stream EUR.USD and EUR.JPY simultaneously, since they both
have the same symbol (EUR). In practice, for most stocks, Symbol = LocalSymbol so this distinction does not really matter.

59 Note that it is possible that quotesReceived > quotesToReceive, since it takes a short time for the streaming quotes

cancellation request to reach IB, and during this time a few additional real-time quotes may have arrived.

50 IB-Matlab User Guide

 genericTickList – GenericTickList requested in the initial request (see below)

 contract – a sub-struct that holds the contract’s definition. Note: in IBMatlab

v2.18 and older this was a Java object not a Matlab struct.

 Data – this is a sub-struct that holds the actual buffered quotes data.

To get the actual quotes data, simply read the data field of this dataStruct:

>> dataStruct.data

ans =

 dataTimestamp: 734892.764653854

 high: 1.3061

 highTimestamp: 734892.762143183

 low: 1.29545

 lowTimestamp: 734892.762143183

 close: 1.30155

 closeTimestamp: 734892.762143183

 bidPrice: 1.2986

 bidPriceTimestamp: 734892.764653854

 bidSize: 1000000

 bidSizeTimestamp: 734892.764653854

 askPrice: 1.29865

 askPriceTimestamp: 734892.764499421

 askSize: 18533000

 askSizeTimestamp: 734892.764653854

Note that each data item has an associated timestamp, because different data items are

sent separately and independently from IB server. You can convert the timestamps

into human-readable string by using Matlab’s datestr function, as follows:

>> datestr(dataStruct.data.dataTimestamp)

ans =

24-Jan-2012 23:56:32

The dataTimestamp field currently holds the same data as bidPriceTimestamp. Future

versions may possibly indicate the latest timestamp of any quote, not necessarily a bid.

If instead of using QuotesBufferSize=1 (which is the default value), we had used

QuotesBufferSize=3, then we would see not the latest quote but the latest 3 quotes:

>> reqId = IBMatlab('action','query', 'symbol','EUR', ...

 'localSymbol','EUR.USD', 'currency','USD', ...

 'secType','cash', 'exchange','idealpro', ...

 'QuotesNumber',10, 'QuotesBufferSize',3);

% now run the following command at any time to get the latest 3 quotes:

>> dataStruct = IBMatlab('action','query', ...

 'localSymbol','EUR.USD', ...

 'QuotesNumber',-1);

>> dataStruct.data

ans =

 dataTimestamp: [734892.99760235 734892.99760235 734892.997756076]

 high: 1.3061

 highTimestamp: 734892.99740162

 low: 1.29545

 lowTimestamp: 734892.99740162

 bidPrice: [1.30355 1.3035 1.30345]

51 IB-Matlab User Guide

bidPriceTimestamp: [734892.99760235 734892.99760235 734892.997756076]

 bidSize: [2000000 4000000 4000000]

 bidSizeTimestamp: [734892.997756076 734892.997756076 734892.997756076]

 askPrice: [1.30355 1.3036 1.30355]

askPriceTimestamp: [734892.997667824 734892.997667824 734892.997756076]

 askSize: [3153000 2153000 4153000]

 askSizeTimestamp: [734892.997756076 734892.997756076 734892.997756076]

 close: 1.30155

 closeTimestamp: 734892.997407037

Note that the high, low and close fields are only sent once by the IB server, as we

would expect. Only the bid and ask information is sent as a continuous stream of data

from IB. Also note how each of the quote values has an associated timestamp.

To stop collecting streaming quotes for a symbol, resend the query request with

QuotesNumber=0. The request will return the dataStruct with the latest data

accumulated up to that time. To stop streaming quotes for all symbols, stop them one

by one, or disconnect from IB (for example using IBMatlab('disconnect'), see §13).

The ReconnectEvery parameter can be used to bypass occasional problems with

high-frequency streams. In such cases, it has been reported that after several thousand

quotes, IB stops sending streaming quotes data, without any reported error message.60

The ReconnectEvery numeric parameter (default=5000) controls the number of

quotes (total of all streaming securities) before IB-Matlab automatically reconnects

to IB and re-subscribes to the streaming quotes. You can specify any positive numeric

value, or inf to accept streaming quotes without any automated reconnection.

Here is a simulated timeline that illustrates the use of streaming data in IBMatlab:

Time
Events

so far
User command Description

9:50:00 0

IBMatlab('action','query',

'symbol','IBM',

'QuotesNumber',100,

'QuotesBufferSize',100);

Streaming data for IBM starts.
Up to 100 events to accumulate.

9:50:10 23
data = IBMatlab('action','query',

'symbol','IBM','QuotesNumber',-1)
Return the 23 accumulated quotes;
background streaming continues.

9:50:20 42
data = IBMatlab('action','query',

'symbol','IBM','QuotesNumber',-1)
Return the 42 accumulated quotes;
background streaming continues.

9:50:30 57
IBMatlab('action','query',

'symbol','IBM','QuotesNumber',80,

'QuotesBufferSize',80);

Reduce max # of events 10080.
Only 57 events accumulated until
now, so streaming continues.

9:50:40 65
data = IBMatlab('action','query',

'symbol','IBM','QuotesNumber',-1)
Return the 65 accumulated quotes;
background streaming continues.

9:50:50 72
IBMatlab('action','query',

'symbol','IBM','QuotesNumber',0)

Reduce max # of events 800.
72 events accumulated until now,
so streaming stops immediately.

60

 Streaming is also stopped every night by IB, requiring streaming data re-subscription: https://groups.io/g/twsapi/topic/80993205

https://groups.io/g/twsapi/topic/80993205

52 IB-Matlab User Guide

Additional market data about a security can be retrieved using IB’s Generic Tick List

mechanism, which is accessed via the GenericTickList parameter. This parameter is

a string (default='' =empty) that accepts comma-separated integers such as ‘100,101’

or ‘236’.61 Note that the value should be a string (‘236’), not a number (236).

>> data = IBMatlab('action','query', 'symbol','GOOG', ...

 'QuotesNumber',2, ...

 'GenericTickList','236'); % Note: '236', not 236

One of the useful tick-types is 236, which returns information about whether or not

the specified security is shortable. Only some securities and exchanges support this

feature (mainly US stocks), and only for streaming quotes (not snapshot market

queries). When the feature is supported, an additional shortable field is returned with

basic information about the security’s shortability.62 Multiple tick types can be

specified, separated by comma. For example: 'GenericTickList','233,236,258'.63

Note: according to IB,64 “Generic Tick Tags cannot be specified if you elect to use the

snapshot market data subscription”. Using GenericTickList with non-streaming

(snapshot) queries is a common cause of confusion, since the generic ticks

information is not returned.

Here is a usage example to fetch an option’s open interest information (tick type 101):

% send a streaming quotes query with GenerickTickList='101'

queryParams = {'action','query', 'symbol','IBM', 'secType','OPT',...};

IBMatlab(queryParams{:}, 'QuotesNumber',2, 'GenericTickList','101');

% wait up to 6 x 0.5 = 3 secs for data to arrive

attempt = 1;

while attempt <= 6

 pause(0.5);

 data = IBMatlab(queryParams{:}, 'QuotesNumber',-1);

 try data = data.data; catch, end

 try callOI = data.OptionCallOpenInterest; catch, callOI = -1; end

 try putOI = data.OptionPutOpenInterest; catch, putOI = -1; end

 allOIs = [callOI,putOI];

 openInterest = max(allOIs);

 % wait for a valid value (or two 0 values)

 if openInterest > 0 || all(allOIs==0)

 data.openInterest = openInterest;

 break

 end

 attempt = attempt + 1;

end

% stop streaming in case it has not stopped by now

try IBMatlab(queryParams{:}, 'QuotesNumber',0); catch, end

61 https://interactivebrokers.github.io/tws-api/tick_types.html

62 See §11.3 for details about the shortable mechanism, with a full working example that uses callbacks

63 https://interactivebrokers.github.io/tws-api/md_request.html#genticks
64 https://investors.interactivebrokers.com/php/apiguide/interoperability/generictick.htm

https://interactivebrokers.github.io/tws-api/tick_types.html
https://interactivebrokers.github.io/tws-api/md_request.html#genticks
https://investors.interactivebrokers.com/php/apiguide/interoperability/generictick.htm

53 IB-Matlab User Guide

Here is a summary of the IBMatlab parameters that directly affect streaming quotes:

Parameter Data type Default Description

QuotesNumber integer 1 One of:
 inf – continuous endless streaming

quotes for the specified security
 N>1 – stream only N quotes
 1 – get only a single quote (i.e., non-

streaming snapshot) – (default)
 0 – stop streaming quotes
 -1 – return the latest accumulated

quotes data while continuing to
stream new quotes data

QuotesBufferSize integer 1 Number of streaming quotes stored in a

cyclic buffer. Once this number of quotes has

been received, the oldest quote is discarded

whenever a new quote arrives.

GenericTickList string '' Used to request additional (non-default)

information: volume, last trade info, etc.65

ReconnectEvery integer 5000 Number of quotes (total of all securities)

before automated reconnection to IB and re-

subscription to the streaming quotes.

 inf – accept streaming quotes without

automated reconnection

 N>0 – automatically reconnect and re-

subscribe to streaming quotes after N

quotes are received.

LocalSymbol string '' Used to identify and store streamed quotes.

SecType string 'STK' Used to identify and store streamed quotes.

Expiry string '' Used to identify and store streamed quotes.

Notes:
 IB does not send ‘flat’ ticks (quotes where price does not change). Also, IB

streaming data is NOT tick-by-tick, but rather snapshots of the market (every
5ms for Forex, 10ms for Options, and 250ms for all other security types).

 By default, IB limits the streaming to 100 concurrent requests (contracts).
Users can purchase additional 100-contract blocks (“Quote Booster”) from IB.

 IB’s messages rate limitation (50/sec, see §3.1) does not directly affect
streaming quotes, only messages sent to the IB server. There is no known IB
limitation on streamed messages rate. However, a practical limitation is ~50-
100 quotes/sec due to your client computer processing time.

 Streaming data retrieval is subject to the same pre-conditions as for retrieving
the current live market data (see §5.1).

65 https://interactivebrokers.github.io/tws-api/tick_types.html

https://interactivebrokers.github.io/tws-api/tick_types.html

54 IB-Matlab User Guide

7.2 Realtime bars

The realtime bars mechanism is similar to streaming quotes in the sense that it

enables the user to receive information about a security every several seconds, until

the specified QuotesNumber of bars have been received. The mechanism is also

similar to historical data in the sense that the bars information is aggregated. Each bar

contains the OHLCV information just as for historical data bars (see §6 for details).

Similarly to streaming quotes, the realtime bars mechanism has two distinct parts:

1. Request IB to start sending the stream of bars for a specified security. This is

done by using Action='realtime_bars' and QuotesNumber with a positive

(>0) value. If QuotesNumber=1 (the default value), then the data for the

single bar is returned immediately; Otherwise, only the request ID is returned.

2. Later, whenever you wish to read the latest bar(s) data, simply use

Action='realtime_bars' and QuotesNumber= -1 (minus one). This will return

the latest information without stopping the background streaming.

Like streaming quotes, the streamed bars are stored based on a unique combination of

their LocalSymbol, SecType and Expiry. As with streaming quotes, there is the

ability to automatically reconnect to IB after every specified number of received bars.

Note that IB currently limits the realtime bars to 5-second bars only.66 Also, only

some combinations of securities, exchanges and data types (the WhatToShow

parameter) are supported. If you have doubts about whether a specific combination is

supported, ask IB customer service (the limitation is on the IB server, not IBMatlab).

Users can process realtime bars in one of two ways:

 use a Matlab timer to query the latest accumulated bars data (via

QuotesNumber = -1), or:

 use the CallbackRealtimeBar parameter to set a dedicated Matlab callback

function that will be invoked whenever a new bar is received (every 5 secs).67

Here is a simple example of using realtime bars for a single (snapshot) bar

(QuotesNumber = 1), representing the previous 5 seconds:

>> data = IBMatlab('action','realtime', 'symbol','IBM')

data =

 dateNum: 735551.017997685

 dateTime: {'13-Nov-2013 00:25:55'}

 open: 183

 high: 183

 low: 183

 close: 183

 volume: 0

 WAP: 183

 count: 0

66 http://interactivebrokers.github.io/tws-api/realtime_bars.html
67 See §11 for details about setting up callback functions to IB events

http://interactivebrokers.github.io/tws-api/realtime_bars.html

55 IB-Matlab User Guide

And here is a slightly more complex example, with QuotesNumber=3. The data

struct that is returned in this case is correspondingly more complex:

>> reqId = IBMatlab('action','realtime', 'symbol','AMZN', ...

 'QuotesNumber',3, 'QuotesBufferSize',10)

reqId =

 345327051

(now wait 15 seconds or more for the 3 bars to be received)

>> dataStruct = IBMatlab('action','realtime', 'symbol','AMZN',

 'QuotesNumber',-1)

dataStruct =

 reqId: 345327051

 symbol: 'AMZN'

 localSymbol: ''

 isActive: 0

 quotesReceived: 3

 quotesToReceive: 3

 quotesBufferSize: 10

 whatToShow: 'TRADES'

 useRTH: 0

 data: [1x1 struct]

 contract: [1x1 struct]

>> dataStruct.data

ans =

 dateNum: [735551.008912037 735551.008969907 735551.009027778]

 dateTime: {1x3 cell}

 open: [349.97 349.97 349.97]

 high: [349.97 349.97 349.97]

 low: [349.97 349.97 349.97]

 close: [349.97 349.97 349.97]

 volume: [0 0 0]

 WAP: [349.97 349.97 349.97]

 count: [0 0 0]

>> dataStruct.data.dateTime

ans =

 '13-Nov-2013 00:12:50' '13-Nov-2013 00:12:55' '13-Nov-2013 00:13:00'

You may sometimes see warning messages of the following form:

[API.msg2] Can't find EID with tickerId:345313582 {345313582, 300}

These messages can safely be ignored. They represent harmless requests by IBMatlab

to IB, to cancel realtime bar requests that were already cancelled on the IB server.

Realtime bar requests are subject to both historical data pacing limitations (see §6 for

details) and streaming data pacing limitations (§7.1). You may be able to loosen the

limitations by purchasing additional data slots from IB. Discuss your alternatives with

IB customer service, if you encounter pacing violation messages:

[API.msg2] Invalid Real-time Query: Historical data request pacing

violation {8314, 420}

As with streaming quotes (§7.1), streaming realtime bars can be stopped by resending

the query request with QuotesNumber=0 or by disconnecting from IB (§13).

56 IB-Matlab User Guide

Here is a summary of the IBMatlab parameters that directly affect realtime bars:

Parameter Data type Default Description

Action string '' Needs to be 'realtime_bars' for this feature
QuotesNumber integer 1 One of:

 inf – continuous endless streaming
bars for the specified security

 N>1 – stream only N bars
 1 – get only a single bar (i.e., non-

streaming snapshot) – (default)
 0 – stop streaming quotes
 -1 – return latest accumulated bars

data while continuing to stream data
QuotesBufferSize integer 1 Controls the number of streaming bars

stored in a cyclic buffer. Once this number
of bars has been received, the oldest bar is
discarded whenever a new bar arrives.

GenericTickList string '' Used to request additional (non-default)
information: volume, last trade info, etc.68

LocalSymbol string '' Used to identify and store streamed bars.
SecType string 'STK' Used to identify and store streamed bars.
Expiry string '' Used to identify and store streamed bars.
WhatToShow string (case

insensitive)
'Trades' Determines the nature of data being

extracted. Valid values include:
 'Trades' (default)
 'Midpoint'
 'Bid'
 'Ask'

UseRTH integer or
logical flag

0 =
false

Determines whether to return all data in the
requested time span, or only data that falls
within regular trading hours:
 0 or false (default): all data is returned,

even outside of regular trading hours
 1 or true: only data within the regular

trading hours is returned, even if the
requested time span falls outside RTH.

ReconnectEvery integer 5000 Number of quotes (total of all securities)
before automated reconnection to IB and re-
subscription to the realtime bars.

 inf – accept realtime bars without
automated reconnection

 N>0 – automatically reconnect and
re-subscribe to realtime bars after N
bars are received.

68 https://interactivebrokers.github.io/tws-api/tick_types.html

https://interactivebrokers.github.io/tws-api/tick_types.html

57 IB-Matlab User Guide

7.3 Streaming market depth (Level II) data

The streaming market depth mechanism69 is also similar to streaming quotes in the

sense that it enables the user to receive Level II information about a security every

several seconds, until the specified QuotesNumber have been received. In fact, the

only difference between streaming market depth data and streaming quotes data is

that for market depth, the NumberOfRows parameter is set to an integer value

between 2-5 (i.e., 2, 3, 4, or 5), and a slightly-different returned dataStruct:

>> reqId = IBMatlab('action','query', 'symbol','EUR', ...

 'localSymbol','EUR.USD', 'currency','USD', ...

 'secType','cash', 'exchange','idealpro', ...

 'NumberOfRows',3, 'QuotesNumber',1000)

reqId =

 464879608

>> dataStruct = IBMatlab('action','query', 'localSymbol','EUR.USD', ...

 'NumberOfRows',3, 'QuotesNumber',-1)

dataStruct =

 reqId: 464879608

 reqTime: '16-Dec-2014 14:46:47'

 lastEventDateNum: 735949.615954282

 lastEventDateTime: '16-Dec-2014 14:46:57'

 symbol: 'EUR'

 localSymbol: 'EUR.USD'

 isActive: 1

 quotesReceived: 362

 quotesToReceive: 1000

 bid: [1x3 struct]

 ask: [1x3 struct]

 contract: [1x1 struct]

>> dataStruct.bid(1)

ans =

 price: 1.2546

 size: 6560000

 marketMaker: ''

 dateNum: 735949.615954271

 dateTime: '16-Dec-2014 14:46:57'

Streaming market-depth update events can be captured and processed using the

CallbackUpdateMktDepth and CallbackUpdateMktDepthL2 parameters. A usage

example of a continuously-updating order-book GUI is provided in §11.5.

Note: market-depth quotes are sent from the IB server at a much higher rate than

streaming quotes. For EUR.USD at a specific date-time, there were 2-3 streaming

quotes per second, compared to 30-50 market-depth updates per second.

As with streaming quotes (§7.1), streaming market-depth updates can be stopped by

resending the query request with QuotesNumber=0 or disconnecting from IB (§13).

69 See §5.2 above for a description of the market depth mechanism and its reported data fields.

58 IB-Matlab User Guide

8 Sending trade orders

8.1 General usage

Five order types are supported in IB-Matlab, which use the following values for

IBMatlab’s Action parameter: ‘Buy’, ‘Sell’, ‘SShort’, ‘SLong’, ‘Close’.70

Several additional IBMatlab parameters affect trade orders. The most widely-used

properties are Type (default='LMT'), Quantity and LimitPrice. Additional properties

are explained below. Here is a simple example for buying and selling a security:

orderId = IBMatlab('action','BUY','symbol','GOOG','quantity',100,...

 'type','LMT', 'limitPrice',600);

orderId = IBMatlab('action','SELL','symbol','GOOG','quantity',100,...

 'type','LMT', 'limitPrice',600);

In this example, we have sent an order to Buy/Sell 100 shares of GOOG on the

SMART exchange, using an order type of Limit and limit price of US$600. IBMatlab

returns the corresponding orderId assigned by IB – we can use this orderId later to

modify open orders, cancel open orders, or follow-up in TWS or in the trade logs.

Important: The IB server accepts up to 50 messages per second. If you exceed this

rate, you will receive an error message from IB. This is important when submitting

multiple orders to IB in a loop (baskets are not currently supported by the IB API).

IBMatlab always returns an orderId (positive integer number) if the order is

successfully created. This does not mean that the order is accepted: it may be rejected

or held by the IB server or exchange. In such cases, a followup error message is sent

from the IB server and appears as a red message in the Matlab console. For example:

[API.msg2] The following order "ID:662631663" size exceeds the Size

Limit of 500. Restriction is specified in Precautionary Settings of

Global Configuration/Presets. {662631703, 451}

[API.msg2] Order Message:

SELL 12 GOOG NASDAQ.NMS

Warning: your order will not be placed at the exchange until

2016-10-06 09:30:00 US/Eastern {662631843, 399}

The order’s Type parameter is described in detail below (§8.3). In addition to

specifying the Symbol, Type, Quantity and LimitPrice, several other parameters

may need to be specified to fully describe the order.

All the order parameters listed below are optional, except for Action and Quantity.71

Depending on the order Type, additional parameters may also be mandatory (e.g.,

LimitPrice and AuxPrice). Here is a summary of order parameters in IBMatlab:72

70 SShort is only relevant only for institutional accounts configured with Long/Short account segments or clear orders outside of

IB, which need to distinguish between shorting/selling a position. In most acounts, orders are cleared by IB so you would only

specify SELL for both shorting and selling (IB automatically infers the action type based on the currently-held position).

SLong is available in specially-configured institutional accounts to indicate that long position not yet delivered is being sold.

71 Quantity should only be omitted if Action='close' or FAMethod='PctChange' – see §8.2 and §8.5 below.
72 Also see the corresponding API documentation: https://interactivebrokers.github.io/tws-api/classIBApi_1_1Order.html

https://interactivebrokers.github.io/tws-api/classIBApi_1_1Order.html

59 IB-Matlab User Guide

Parameter Type Default Description

Action string (none) One of: 'Buy', 'Sell', 'SShort', 'SLong' 73 or

'Close' (see §8.2 below)

Quantity number 0 Number of requested shares. Must be > 0.

Type string 'LMT' Refer to the order-types table in §8.3 below

LimitPrice number 0 Limit price used in Limit order types

AuxPrice number 0 Extra numeric data used by some order types

(e.g., STP and TRAIL)

TrailingPercent number 0 Trailing percent for TRAIL order types (§8.4)

TrailStopPrice number 0 The stop price used when Type='Trail Limit'

TIF string 'GTC' Time-in-Force. Not all TIFs are available for

all orders. Can be one of:
 'Day' – Good until end of trading day
 'DTC' – Day Till Cancelled
 'GTC' – Good Till Cancelled (default)
 'GTD' – Good Till Date (uses the

GoodTillDate parameter below) 74
 'GAT' – Good After Time/date (uses

GoodAfterTime parameter below) 75
 'IOC' – Immediate or Cancel
 'FOK' – Fill or Kill76
 'OPG' – Open Price Guarantee77
 'AUC' – Auction, submitted at the

Calculated Opening Price78

GoodTillDate string '' Format: 'YYYYMMDD hh:mm:ss TMZ'

(TMZ is optional79)

GoodAfterTime string '' Format: 'YYYYMMDD hh:mm:ss TMZ'

(TMZ is optional80)

73 SShort is only relevant only for institutional accounts configured with Long/Short account segments or clear orders outside of

IB, which need to distinguish between shorting/selling a position. In most acounts, orders are cleared by IB so you would only
specify SELL for both shorting and selling (IB automatically infers the action type based on the currently-held position).

SLong is available in specially-configured institutional accounts to indicate that long position not yet delivered is being sold.

74 GTD requires enabling Advanced Time In Force Attributes in TWS / IB Gateway’s Configuration:
(http://interactivebrokers.com/en/software/webtrader/webtrader/orders/advanced%20time%20in%20force%20attributes.htm)

75 GAT requires enabling Advanced Time In Force Attributes in the Preferences page of TWS / IB Gateway

(http://interactivebrokers.com/en/software/webtrader/webtrader/orders/advanced%20time%20in%20force%20attributes.htm).
For additional information see http://interactivebrokers.com/en/software/tws/usersguidebook/ordertypes/good_after_time.htm

76 FOK requires the entire order to be filled, as opposed to IOC that allows a partial fill. For additional information on FOK see

http://interactivebrokers.com/en/software/tws/usersguidebook/ordertypes/fill_or_kill.htm
77 An OPG is used with a Limit order to indicate a Limit-on-Open order

(http://interactivebrokers.com/en/software/tws/usersguidebook/ordertypes/limit-on-open.htm), or with a Market order to

indicate a Market-on-Open order (http://interactivebrokers.com/en/software/tws/usersguidebook/ordertypes/market-on-
open.htm)

78 For additional information on AUC see http://interactivebrokers.com/en/software/tws/usersguidebook/ordertypes/auction.htm

79 The list of time zones accepted by IB is listed in §9.1 below
80 The list of time zones accepted by IB is listed in §9.1 below

http://interactivebrokers.com/en/software/webtrader/webtrader/orders/advanced%20time%20in%20force%20attributes.htm
http://interactivebrokers.com/en/software/webtrader/webtrader/orders/advanced%20time%20in%20force%20attributes.htm
http://interactivebrokers.com/en/software/tws/usersguidebook/ordertypes/good_after_time.htm
http://interactivebrokers.com/en/software/tws/usersguidebook/ordertypes/fill_or_kill.htm
http://interactivebrokers.com/en/software/tws/usersguidebook/ordertypes/limit-on-open.htm
http://interactivebrokers.com/en/software/tws/usersguidebook/ordertypes/market-on-open.htm
http://interactivebrokers.com/en/software/tws/usersguidebook/ordertypes/market-on-open.htm
http://interactivebrokers.com/en/software/tws/usersguidebook/ordertypes/auction.htm

60 IB-Matlab User Guide

Parameter Type Default Description

OutsideRTH integer or

logical

flag

0=false 0 or false: order should not execute

outside regular trading hours

 1 or true: order can execute outside

regular trading hours if required.81

Hold integer or

logical

flag

0=false 0 or false: order is sent to IB immediately

 1 or true: order is prepared in IB-Matlab but

not sent to IB. The user can them modify

the order properties before sending it to IB.

See §9.6 below for additional details.

Transmit integer or

logical

flag

1=true 0 or false: order is sent to IB but waits in

TWS until user clicks <Transmit> (§9.6)

 1 or true: order should immediately be sent

by IB to the exchange for execution

WhatIf integer or

logical

flag

0=false 0 or false: regular order sent to exchange

 1 or true: dummy order to compute margin

impact (see §8.6 below for details)

AccountName string '' IB account used for this trade. Useful if you

manage multiple accounts, else leave empty.

FAProfile string '' Financial Advisor profile for trades allocation

(§8.5). Only relevant for Financial Advisor

accounts, otherwise leave empty.

FAGroup string '' Financial Advisor account group for trades

allocation (§8.5). Only relevant for Financial

Advisor accounts, otherwise leave empty.

FAMethod string '' Method by which trades allocate within the

stated FAGroup (§8.5). Only relevant for

Financial Advisor accounts, else leave empty.

FAPercentage number 0 Percentage of position change used when

FAMethod='PctChange' (§8.5). Relevant for

Financial Advisor accounts, else leave as-is.

OrderId integer (auto-

assigned)

If specified, and if the specified OrderId is

still open, then the specified order data will be

updated, rather than creating a new order. Use

this to modify open orders (see §10 below).

81 OutsideRTH=true requires setting the corresponding preset option in TWS/Gateway Configuration (Presets-Stocks-Timing).

If this preset option is not set, OutsideRTH will be ignored and the order will not be executed outside Regular Trading Hours.
https://www.interactivebrokers.com/en/index.php?f=22063#05

https://www.interactivebrokers.com/en/index.php?f=22063#05

61 IB-Matlab User Guide

Parameter Type Default Description

ParentId integer 0 Useful for setting child orders of a parent

order: these orders are only active when their

parent OrderId is active or gets triggered. This

is used in hedged- and bracket orders (see

§9.3 below), but can also be used otherwise.

BracketTypes cell array

of 2

strings

Buy:
{'STP',
'LMT'}

Sell:
{'LMT',
'STP'}

Types of child bracket orders. The first string

in the cell array defines the order type for the

lower bracket; the second string defines the

order type for the upper bracket. See related

BracketDelta parameter above, and §9.3

below for additional details.

BracketDelta number []=empty Price offset for stop-loss and take-profit

bracket child orders (see §9.3 below).

BracketDelta may be a single value or a

[lowerDelta,upperDelta] pair of values > 0

Note: value(s) must be positive:

- low bracket will use limitPrice – lowerDelta

- high bracket will use limitPrice + upperDelta

OCAGroup string '' One-Cancels-All group name. This can be

specified for several trade orders so that

whenever one of them gets cancelled or filled,

the others get cancelled automatically.82

OCAType integer 2 One of (where allowed/applicable):

 1 = Cancel on fill with block

 2 = Reduce on fill with block

 3 = Reduce on fill without block

HedgeType string '' One of:83

 'D' – Delta (parent option, child stock)

 'B' – Beta

 'F' – FX

 'P' – Pair

Relevant only for hedge orders, otherwise

leave empty (or do not specify at all).

Note: hedge orders must be child orders

(ParentId>0) with Quantity=0.

82 http://interactivebrokers.com/en/index.php?f=617
83 http://interactivebrokers.github.io/tws-api/hedging.html, http://interactivebrokers.com/en/software/tws/attachedordertop.htm

http://interactivebrokers.com/en/index.php?f=617
http://interactivebrokers.github.io/tws-api/hedging.html
http://interactivebrokers.com/en/software/tws/attachedordertop.htm

62 IB-Matlab User Guide

Parameter Type Default Description

HedgeParam number []=empty Beta = x for Beta hedge orders (0=unused);

Ratio = y for Pair hedge orders.

Relevant only for Beta/Pair hedge orders,

otherwise leave empty (or do not specify).

TriggerMethod integer 0 One of:84

 0=Default

 1=Double-Bid-Ask

 2=Last

 3=Double-Last

 4=Bid-Ask

 7=Last-or-Bid-Ask

 8=Mid-point

OrderRef string '' A comment that is attached to the order,

displayable in TWS as an Order Attribute

8.2 Close orders

When setting Action to ‘Close’, IBMatlab fetches the current portfolio position for the

specified Symbol or LocalSymbol, and issues a trade order to liquidate this position.

For example, if we have 15 shares of GOOG in our portfolio, the following commands

are equivalent (internally, the first (CLOSE) command is automatically converted

into the second (SELL) command before being sent to IB):

orderId = IBMatlab('action','CLOSE','symbol','GOOG',...

 'type','LMT', 'limitPrice',600);

orderId = IBMatlab('action','SELL','symbol','GOOG','quantity',15,...

 'type','LMT', 'limitPrice',600);

The main benefit of using Action=’Close’ is that you do not need to know the exact

number of shares in the portfolio. If IBMatlab does not find the specified contract in

the portfolio, then the command simply returns with an orderId of -1.

Naturally, when Action=’Close’, any user-specified Quantity value is ignored – the

order quantity is determined based on the actual portfolio position.

Financial advisors should note that Action=’Close’ commands are not supported for

multiple accounts at once, only for a single account at a time. If you try to issue the

command for multiple accounts (as shown in §4.1, §4.2), then an error will be thrown

asking you to specify the AccountName parameter to a single account. Alternatively,

use the PctChange FAMethod to close the open positions (as shown in §8.5). If you

only manage a single IB account, then the AccountName parameter is ignored and

you do not need to worry about this limitation.

84 http://interactivebrokers.com/en/software/tws/usersguidebook/configuretws/modify_the_stop_trigger_method.htm

http://interactivebrokers.com/en/software/tws/usersguidebook/configuretws/modify_the_stop_trigger_method.htm

63 IB-Matlab User Guide

8.3 Order types

IB supports many order types. Some of these may not be available on your TWS

and/or the requested exchange and security type.85 Also, some order types are not

supported by IB on paper-trading accounts, only live accounts.86 You need to

carefully ensure that the order type is accepted by IB before using it in IBMatlab.

Here is the list of order types supported by IBMatlab, which is a subset of the list in

IB’s documentation (if you encounter an order type that you need and is not on this

list, try using it in IBMatlab – perhaps it will indeed be accepted by the IB server):

Class
Order type

full name

Order type

abbreviation
Description

L
im

it
 r

is
k

Limit LMT Buy or sell a security at a specified price or better.

Market-to-

Limit
MTL

A Market-To-Limit order is sent as a Market order to

execute at the current best price. If the entire order

does not immediately execute at the market price, the

remainder of the order is re-submitted as a Limit

order with the limit price set to the price at which the

market order portion of the order executed.

Market with

Protection
MKT PRT

A Market With Protection order is sent as a Market

order to execute at the current best price. If the entire

order does not immediately execute at the market

price, the remainder of the order is re-submitted as a

Limit order with the limit price set by Globex to a

price slightly higher/lower than the current best price

Stop STP

A Stop order becomes a Market order to buy (sell)

once market price rises (drops) to the specified

trigger price (the AuxPrice parameter).

Stop Limit STP LMT

A Stop Limit order becomes a Limit order to buy

(sell) once the market price rises (drops) to the

specified trigger price (the AuxPrice parameter).

85 http://interactivebrokers.com/en/index.php?f=4985, http://interactivebrokers.github.io/tws-api/available_orders.html,

http://interactivebrokers.com/en/software/tws/twsguide.htm#ordertypestop.htm
86 http://interactivebrokers.com/en/software/am/am/manageaccount/paper_trading_limitations.htm

http://interactivebrokers.com/en/index.php?f=4985
http://interactivebrokers.github.io/tws-api/available_orders.html
http://interactivebrokers.com/en/software/tws/twsguide.htm#ordertypestop.htm
http://interactivebrokers.com/en/software/am/am/manageaccount/paper_trading_limitations.htm

64 IB-Matlab User Guide

Class
Order type

full name

Order type

abbreviation
Description

L
im

it
 r

is
k

Trailing

Limit if

Touched

TRAIL LIT

A Trailing Limit-If-Touched sell order sets a trigger

price at a fixed amount (AuxPrice parameter) or %

(TrailingPercent parameter) above the market price.

If the market price falls, the trigger price falls by the

same amount; if the market price rises, the trigger

price remains unchanged. If the market price rises all

the way to the trigger price the order is submitted as

a Limit order.

(and vice versa for buy orders)

Trailing

Market If

Touched

TRAIL MIT

A Trailing Market-If-Touched sell order sets a

trigger price at a fixed amount (AuxPrice parameter)

or % (TrailingPercent parameter) above the market

price. If the market price falls, the trigger price falls

by the same amount; if it rises, the trigger price

remains unchanged. If the market price rises all the

way to the trigger price, the order is submitted as a

Market order.

(and vice versa for buy orders)

Trailing

Stop
TRAIL

A Trailing Stop sell order sets the stop trigger price

at a fixed amount (AuxPrice parameter) or %

(TrailingPercent parameter) below the market price.

If the market price rises, stop trigger price rises by

the same amount; if it falls, the trigger price remains

unchanged. If market price falls all the way to trigger

price, the order is submitted as a Market order.

(and vice versa for buy orders)

(see details and usage example in §8.4 below)

Trailing

Stop Limit

TRAIL

LIMIT

A Trailing Stop Limit sell order sets the stop trigger

price at a fixed amount (AuxPrice parameter) or %

(TrailingPercent parameter) below market price. If

the market price rises, the stop trigger price rises by

the same amount; if the market price falls, the trigger

price remains un-changed. If the price falls all the

way to the trigger price, the order is submitted as a

Limit order (see usage example below).

(and vice versa for buy orders)

(see details and usage example in §8.4 below)

65 IB-Matlab User Guide

Class
Order type

full name

Order type

abbreviation
Description

E
x
ec

u
ti

o
n

 s
p

ee
d

Market MKT

An order to buy (sell) a security at the offer (bid)

price currently available in the marketplace. There is

no guarantee that the order will fully or even

partially execute at any specific price.

Market-if-

Touched
MIT

A Market-if-Touched order becomes a Market order

to buy (sell) once the market price drops (rises) to the

specified trigger price.

Market-on-

Close
MOC

Market-on-Close executes as a Market order during

closing time, as close to the closing price as possible.

Pegged-to-

Market
PEG MKT

A Limit order whose price adjusts automatically

relative to market price using specified offset amount

Relative REL

An order whose price is dynamically derived from
the current best bid (offer) in the marketplace. For a
buy order, the price is calculated by adding the
specified offset (or %) to the best bid. A limit price
may optionally be entered to specify a cap for the
amount you are willing to pay.

(and vice versa for sell orders)

P
ri

ce
 i

m
p

ro
v

em
en

t

Box Top BOX TOP
A Market order that automatically changes to Limit

order if it does not execute immediately at market.

Limit-on-

Close
LOC

Limit-on-close will execute at the market close time,

at the closing price, if the closing price is at or better

than the limit price, according to the exchange rules;

Otherwise the order will be cancelled.

Limit if

Touched
LIT

A Limit-if-Touched order becomes a Limit order to

buy (sell) once the market price drops (rises) to the

specified trigger price.

Pegged-to-

Midpoint
PEG MID

A Limit order whose price adjusts automatically

relative to midpoint price using specified offset amt.

TWAP -

best efforts
TWAP

Achieves the Time-Weighted Average Price on a

best-effort basis (see details in §9.2 below).

VWAP -

best efforts
VWAP

Achieves the Volume-Weighted Average Price on a

best-effort basis (see details in §9.1 below).

VWAP –

guaranteed

Guarrante-

edVWAP

The VWAP for a stock is calculated by adding the
dollars traded for every transaction in that stock
(“price” x “number of shares traded”) and dividing
the total shares traded. By default, a VWAP order is
computed from the open of the market to the market
close, and is calculated by volume weighting all
transactions during this time period. IB allows you to
modify the cut-off, expiration times using Time in
Force (TIF) and Expiration Date fields respectively.

66 IB-Matlab User Guide

8.4 Trail orders

Here is a usage example for sending a TRAIL order:87 In this example, we previously

purchased 100 shares of IBM at an average price of $139.156 and now wish to lock-in

a profit and limit our loss. We set a trailing stop order with the trailing amount $0.20

below the current market price of $139.71. To do this, create a sell order, with

Type='TRAIL' and AuxPrice=0.20 (the trailing amount):

orderId = IBMatlab('action','SELL', 'symbol','IBM', 'quantity',100,...

 'type','TRAIL', 'auxPrice',0.20);

The trigger (stop) price will follow (trail) market movements upwards, and remains

stable when the market falls. The trigger (stop) price is initially set to $139.71 - $0.20

= $139.51, and rises with the market. When the market price reaches $139.89, the

corresponding stop price is updated to $139.89 - $0.20 = $139.69. When the market

price then falls to $139.73, the stop price remains stable at $139.69:

When the market price drops all the way to the stop price, the order is submitted as a

Market order, which immediately fills (depending on market fluidity).

We can specify the trailing offset as either a fixed amount (AuxPrice parameter) or a

percentage (TrailingPercent parameter), but not both.

As a related example, we can use a TRAIL LIMIT order:88 Here we want a Limit (not

Market) order when the market price drops to the trigger (stop) price. So, we provide

a limit offset price in addition to trailing amount/%, using the TrailStopPrice

parameter. In our example, when market (last) price was $168.38 we set AuxPrice=

0.10, TrailStopPrice=168.32, and LimitPrice=168.35, i.e. a limit offset of $-0.03:

orderId = IBMatlab('action','SELL', 'symbol','IBM', 'quantity',1,...

 'type','TRAIL LIMIT', 'auxPrice',0.10, ...

 'TrailStopPrice',168.32, 'LimitPrice',168.50);

As long as the market rises and last price >= TrailStopPrice + AuxPrice, both the

trigger (stop) price and limit price will rise. Once the price drops to the latest stop

price ($168.39, which is $0.10 below the highest market price up to now: $168.49),

the order will change into a LMT order with a limit price of $168.39+$0.03=$168.42

and marked as triggered (Status field in TWS will change from to).

87 http://interactivebrokers.com/en/index.php?f=605
88 http://interactivebrokers.com/en/index.php?f=606

http://interactivebrokers.com/en/index.php?f=605
http://interactivebrokers.com/en/index.php?f=606

67 IB-Matlab User Guide

Note 1: IB’s API changed the meaning of TrailStopPrice in 2016, so test carefully!

Note 2: Trail orders with a limit (TRAIL LIMIT, TRAIL LIT), require either a fixed

offset amount (TWS Global ConfigPresets) or a specified LimitPrice, but not both.

Depending on your TWS version, TWS global configuration might have a fixed default

offset amount ($0.01) that conflicts with the specified LimitPrice, causing an IB error:

orderId = IBMatlab('action','SELL', 'symbol','CHS', 'quantity',200,...

 'type','TRAIL LIT', 'AuxPrice',0.30, ...

 'TrailStopPrice',4.80, 'LimitPrice', 4.85);

[API.msg2] Error validating request:-'bN' : cause - You must specify

one value: limit price or limit price offset value. {1065098216, 321}

In such cases, the order will be held in TWS and will not be transmitted for execution.

You will need to interactively modify the order’s parameters in TWS (remove either

the offset amount or limit price), before it can be transmitted to IB for execution.

To avoid this problem and transmit TRAIL LIMIT/LIT orders directly from IB-Matlab,

either set LimitPrice to Inf (if you want to use a fixed offset without a fixed limit), or

remove (replace with a blank value) the default offset amount in TWS Global Config

Presets (if you want to use a specified LimitPrice without a fixed offset).

68 IB-Matlab User Guide

8.5 Financial Advisor (multi-client) orders

Financial Advisor (FA, or “multi-client”) accounts in IB have the ability to manage

multiple individual accounts under a single parent account. IB does not expose FA

functionalities to individual-account holders – such users should skip this section.

When sending a trade order to an FA account, we need to tell IB which sub-

account(s) should be affected by the order. The possible alternatives are:

 Execute the trade order in a specific sub-account.

 Execute the trade order in multiple sub-accounts, using an Allocation Profile

(that was previously-defined in TWS89).

 Execute the trade order in multiple sub-accounts, using an Account Group

(that was previously-defined in TWS90) and a specified allocation method.

We can also set-up a default allocation in TWS,91 avoiding the need to specify the

allocation separately for each trade order. The following discussion assumes that such

a default allocation is not used, or that it is overridden on a per-trade basis.

For example, assume that our parent account is called DF1230 and it has three sub-

accounts (DU1231, DU1232, and DU1233).

To send the trade to a specific account, simply state the AccountName parameter:

orderId = IBMatlab('action','BUY', 'symbol','IBM', 'quantity',100,...

 'type','MKT', 'AccountName','DU1232');

To send the trade to multiple specific sub-accounts using a predefined allocation

profile, state the FAProfile parameter with the requested profile name:

orderId = IBMatlab('action','BUY', 'symbol','IBM', 'quantity',100,...

 'type','MKT', 'FAProfile','myProfile1');

To send the trade to multiple specific sub-accounts using a predefined accounts

group, state the FAGroup and FAMethod parameters, and possibly also the

FAPercentage parameter (only if FAMethod = 'PctChange'):

% Enter into position: allocate to sub-accounts based on their netliq

orderId = IBMatlab('action','BUY', 'symbol','IBM', 'quantity',100,...

 'type','MKT', 'FAGroup','EntryGroup', ...

 'FAMethod','NetLiq');

% Exit position: each sub-account's position reduced by 100%

orderId = IBMatlab('action','SELL', 'symbol','IBM', ... % no Quantity

 'type','MKT', 'FAGroup','ExitGroup', ...

 'FAMethod','PctChange', 'FAPercentage',-100);

89 http://interactivebrokers.com/en/software/tws/usersguidebook/financialadvisors/create_a_share_allocation_profile.htm

90 http://interactivebrokers.com/en/software/tws/usersguidebook/financialadvisors/create_an_account_group_for_share_allocation.htm
91 http://interactivebrokers.com/en/software/tws/usersguidebook/financialadvisors/set_default_allocations.htm

http://interactivebrokers.com/en/software/tws/usersguidebook/financialadvisors/create_a_share_allocation_profile.htm
http://interactivebrokers.com/en/software/tws/usersguidebook/financialadvisors/create_an_account_group_for_share_allocation.htm
http://interactivebrokers.com/en/software/tws/usersguidebook/financialadvisors/set_default_allocations.htm

69 IB-Matlab User Guide

Note how in this latest example, we’ve used the NetLiq method to enter into a

position (split up amongst the sub-accounts defined in our EntryGroup, based on the

accounts relative net liquidation values), but we exit the position using the PctChange

method (i.e., sell securities such that the new position in each sub-account is -100%

of its current position). This is a very typical entry/exit usage scenario.

The benefit of using PctChange to exit a position is that we do not need to calculate

or even know the total Quantity nor the actual current position in each of the sub-

accounts. We cannot use NetLiq to exit the position (as we have to enter it), since the

different sub-accounts may possibly have a different NetLiq relative ratio between

themselves, so the liquidation order would leave a few extra shares in some sub-

acounts and a few missing (shorted) shares in the other sub-accounts.

Note that FAMethod only works with FAGroup and is a mandatory parameter when

FAGroup is specified. In other words, we cannot specify FAMethod with

FAProfile, nor specify FAGroup without a corresponding FAMethod.

When specifying FAMethod=PctChange, it is an error to specify the Quantity, since

the quantity is automatically calculated by IB. Also, the trade order will only have an

effect if the trade Action and the current total position would result in a trade having

the same direction as the requested FAPercentage.

For example, if we currently have 20 shares of IBM in DU1231, 30 shares in DU1232

and 50 shares in DU1233 (i.e., a total of 100 shares), then the exit order above would

result in a valid trade order that would sell 100 shares of IBM at MKT and reduce

each of the sub-accounts’ holdings to 0 shares (-100% of their current holdings).

On the other hand, if we used Action=BUY (rather than SELL), then the direction of

the action and position (i.e., increase the position) would not match the direction of

the requested FAPercentage (-100%, i.e. decrease position). The IB-calculated order

size would be 0, the order would not execute, and IB will send us an error message:

orderId = IBMatlab('action','BUY', 'symbol','IBM', ... % no Quantity

 'type','MKT', 'FAGroup','ExitGroup', ...

 'FAMethod','PctChange', 'FAPercentage',-100);

[API.msg2] The order size cannot be zero. {640996954, 434}

Action FAPercentage Long position Short position

Buy
Positive (>0) Trade increases position Error (no trade)

Negative (<0) Error (no trade) Trade decreases position

Sell
Positive (>0) Error (no trade) Trade increases position

Negative (<0) Trade decreases position Error (no trade)

70 IB-Matlab User Guide

If you state a FAMethod that is not officially supported by IB, IB-Matlab issues a

warning but sends the request to IB anyway, in the hope that the method is supported

after all. If IB does not support it, the request is ignored and IB sends an error message:

IBMatlab('action','BUY', 'symbol','IBM', 'quantity',100,...

 'type','MKT', 'FAGroup','EntryGroup', 'FAMethod','XYZ');

Warning: FAMethod 'XYZ' may possibly not be supported by IB

(Type "warning off YMA:IBMatlab:FAMethod" to suppress this warning.)

[API.msg2] Order rejected - reason: Invalid value in field # 6159

{640973648, 201}

Note that Action=’Close’ commands (§8.2) are not supported for multiple accounts at

once, only for a single account at a time. If you try to issue the command for multiple

accounts (as shown in §4.1, §4.2), then an error will be thrown, asking you to specify

the AccountName parameter to a single account. Alternatively, use the PctChange

method to close the open positions as shown above.

The following parameters affect Financial Advisor (FA) trade orders:

Parameter Type Default Description

AccountName String ''

The specific IB account used for this trade.

Useful when you manage multiple IB accounts,

otherwise leave empty.

FAProfile String ''

Financial Advisor profile for trade allocation.

Only relevant for Financial Advisor (multi-client)

accounts, otherwise leave empty.

FAGroup String ''

Financial Advisor account group for trade

allocation. Only relevant for Financial Advisor

(multi-client) accounts, otherwise leave empty.

FAMethod String ''

Method by which trades will be allocated within

the stated FAGroup. Only relevant for Financial

Advisor accounts, otherwise leave empty.

IB officially supports the following methods:

 NetLiq

 EqualQuantity or Equal (depends on TWS version)

 AvailableEquity

 PctChange (requires FAPercentage)

FAPercentage Number 0

Percentage of position change used when

FAMethod = 'PctChange'. Only relevant for

Financial Advisor accounts, otherwise leave as-is.

When this FAPercentage parameter is specified,

the Quantity parameter may NOT be specified.

71 IB-Matlab User Guide

8.6 Potential impact of an order (“what-if”)

It is possible to investigate the margin and commission impact of a potential order

using the WhatIf parameter. By default this parameter has a value of false, meaning

that a regular trade order will be sent to the markets. But if you set WhatIf to a value

of true (or 1) then IB will not really sent the trade order to the market – IB will just

calculate and return the potential impact of the specified order on your account,

including the updated account margin and the trade’s estimated commission:

>> data = IBMatlab('action','buy', 'symbol','IBM', 'type','MKT', ...

 'quantity',1, 'whatif',true)

data =

 status: 'PreSubmitted'

 initMargin: 38.59

 maintMargin: 38.59

 equityWithLoan: 1004892.14

 commission: Inf

 minCommission: 0.34685725

 maxCommission: 0.35345725

 commissionCurrency: 'USD'

 warningText: []

Note that the returned data is a Matlab struct, not a scalar orderId as for regular trade

orders.

Also note: in IB-Matlab v2.19 (11/2022) and newer, values of Inf indicate an

undefined/uninitialized value; in IB-Matlab v2.18 and older such values were

reported as 1.79769313486232e+308 (realmax) or 2147483647 (intmax).

72 IB-Matlab User Guide

9 Specialized trade orders

Several specialized order types are supported by IBMatlab, each of which has

dedicated parameters for configuration. These order types include VWAP (best

effort), TWAP, bracket orders, automated orders, combo orders, and options

exercise/lapse.

9.1 VWAP (best-effort) orders

When the order Type is ‘VWAP’ (the best-effort type, since the guaranteed type has

Type='GuaranteedVWAP'), IB treats the order as a Market order with a VWAP algo

strategy.92 IBMatlab enables specifying the algo strategy’s properties, as follows:

Parameter Data type Default Description

Type String 'LMT' Set to 'VWAP' for this IBAlgo type

MaxPctVol number 0.1=10% Percent of participation of average

daily volume up to 0.5 (=50%).

StartTime String '9:00:00 EST' Format: 'YYYYMMDD hh:mm:ss

TMZ' (TMZ is optional)

EndTime String '16:00:00 EST' (same as StartTime above)

AllowPastEndTime integer or

logical flag

1=true If true, allow the algo to continue to

work past the specified EndTime if

the full quantity has not been filled.

NoTakeLiq integer or

logical flag

0=false If true, discourage the VWAP algo

from hitting the bid or lifting the

offer if possible.

SpeedUp integer or

logical flag

0=false If true, compensates for the

decreased fill rate due to presence

of limit price.

MonetaryValue number 0 Cash quantity

Here is an example for specifying a best-effort VWAP trade order:

orderId = IBMatlab('action','SELL','symbol','GOOG','quantity',10,...

 'type','VWAP','limitPrice',600,'MaxPctVol',0.3,...

 'StartTime','20120215 10:30:00 EST', ...

 'EndTime', '10:45:00 EST', ...

 'AllowPastEndTime',false, ...

 'NoTakeLiq',true);

When we run the command above in Matlab, we see the following in IB’s TWS:

92 http://interactivebrokers.github.io/tws-api/ibalgos.html#vwap,

http://interactivebrokers.com/en/software/tws/usersguidebook/algos/vwap.htm

http://interactivebrokers.github.io/tws-api/ibalgos.html#vwap
http://interactivebrokers.com/en/software/tws/usersguidebook/algos/vwap.htm

73 IB-Matlab User Guide

Note that IB automatically routes the trade to its internal servers (IBALGO) rather

than directly to the relevant exchange as it would do in most other cases. Also note

that the VWAP order is NOT guaranteed to execute. Best-effort VWAP algo orders

result in lower commissions than the Guaranteed VWAP, but the order may not fully

execute and is not guaranteed, so if you need to ensure this, use Guaranteed VWAP.

StartTime and EndTime dictate when the VWAP algo will begin/end working,

regardless of whether or not the entire quantity has been filled. EndTime supersedes

the TIF (time in force) parameter. Note that the order will automatically be cancelled

at the designated EndTime regardless of whether the entire quantity has filled unless

AllowPastEndTime=1. If an EndTime is specified, then set AllowPastEndTime=1

(or true) to allow the VWAP algo to continue to work past the specified EndTime if

the full quantity has not been filled.

Note: If you specify and StartTime and EndTime, TWS confirms the validity of the

time period using yesterday’s trading volume. If the time period you define is too

short, you will receive a message with recommended time adjustments.

In the example above, note the optional date (20120215) in StartTime. In the

EndTime parameter no date was specified so today’s date will be used, at 10:45 EST.

The time-zone part is also optional, but we strongly recommend specifying it, to prevent

ambiguities. Only a few major time zones are accepted; you can always convert a

time to one of these time zones. The list of IB-supported time-zones is given below:93

Time zone supported by IB Description

GMT Greenwich Mean Time

EST Eastern Standard Time

MST Mountain Standard Time

PST Pacific Standard Time

AST Atlantic Standard Time

JST Japan Standard Time

AET Australian Eastern Standard Time

Setting the NoTakeLiq parameter value to true (or 1) may help to avoid liquidity-

taker fees, and could result in liquidity-adding rebates. But it may also result in

greater deviations from the benchmark and partial fills, since the posted bid/offer may

not always get hit as the price moves up/down. IB will use best efforts not to take

liquidity, however, there will be times that it cannot be avoided.

VWAP orders are treated as LMT orders so the LimitPrice parameter is mandatory.94

Note: IB only enables VWAP algo orders for US equities on live accounts (i.e., not

on paper-trading accounts95).

93 Some additional timezones are also supported, e.g. HKT for Hong-Kong Time. Such timezones are not officially supported and

IB may possibly stop accepting them at some point. Also note that the timezone must be specified using a 3-letter acronym,

not other notations such as US/Eastern or America/New_York etc. as may be reported by the contract details query (§5.4).
94 IB-Matlab versions prior to 1.92 (July 14, 2017) used MKT orders for the VWAP algo

74 IB-Matlab User Guide

9.2 TWAP (best-effort) orders

When the order Type is ‘TWAP’, IB treats the order as a Limit order with a TWAP

algo strategy.96 IBMatlab enables specifying the algo strategy’s properties, as follows:

Parameter Data type Default Description

Type string 'LMT' Set to 'TWAP' for this IBAlgo type

StrategyType string 'Marketable' One of:

 'Marketable' (default)

 'Matching Midpoint'

 'Matching Same Side'

 'Matching Last'

StartTime string '9:00:00 EST' Format: 'YYYYMMDD hh:mm:ss

TMZ' (TMZ is optional)

EndTime string '16:00:00 EST' (same as StartTime above)

AllowPastEndTime integer or

logical flag

1=true If true, allow the algo to continue to

work past the specified EndTime if

the full quantity has not been filled.

Note: StartTime, EndTime and AllowPastEndTime were described in §9.1.

Here is an example for specifying a TWAP trade order:

orderId = IBMatlab('action','SELL', 'symbol','GOOG', 'quantity',10,...

 'type','TWAP', 'limitPrice',600, ...

 'StrategyType','Matching Last', ...

 'StartTime','20120215 10:30:00 EST', ...

 'EndTime', '10:45:00 EST', ...

 'AllowPastEndTime',false);

Note that, as with VWAP, IB automatically routes the trade to its internal servers

(IBALGO) rather than directly to the relevant exchange as it would do in most other

cases. Also note that the TWAP order is NOT guaranteed to execute. The order will

trade if and when the StrategyType criterion is met.

Note: IB only enables TWAP algo orders for US equities.

95 http://interactivebrokers.com/en/software/am/am/manageaccount/paper_trading_limitations.htm

96 http://interactivebrokers.github.io/tws-api/ibalgos.html#twap,
http://interactivebrokers.com/en/software/tws/usersguidebook/algos/twap.htm

http://interactivebrokers.com/en/software/am/am/manageaccount/paper_trading_limitations.htm
http://interactivebrokers.github.io/tws-api/ibalgos.html#twap
http://interactivebrokers.com/en/software/tws/usersguidebook/algos/twap.htm

75 IB-Matlab User Guide

9.3 Bracket (child) orders

Bracket orders are trades which aim to limit losses while locking-in profits, by

sending two opposite-side child orders to offset a parent order.97 This mechanism

ensures that the child orders are made active only when the parent order executes.

Both of the bracket child orders have the same amount as the parent order, and belong

to the same OCA (One-Cancels-All) group, so that if one of the child orders is

triggered and gets executed, the opposing order is automatically cancelled. Similarly,

canceling the parent order will automatically cancel all its child orders.

Buy orders are bracketed by a high-side sell Limit (Type='LMT') order and a low-

side sell Stop (Type='STP') order; Sell orders are bracketed by a high-side buy Stop

order and a low side buy Limit order.

In IB-Matlab, brackets can only be assigned to parent Buy or Sell orders having

Type='LMT' or 'STPLMT'. Specifying bracket orders is very simple, using the

BracketDelta parameter. This parameter (default=[] = empty) accepts a single

number value or an array of two numeric values, which specify the offset from the

parent order’s LimitPrice:

 If BracketDelta is a 2-value array [lowerDelta,upperDelta], then lowerDelta

is used as the offset for the lower child, and upperDelta is used for the upper

child. The corresponding child order limits will be set to LimitPrice-

lowerDelta and LimitPrice+upperDelta, respectively.

 If BracketDelta is a single (scalar) value, then this value is used as offset for

both child orders: LimitPrice-offset and LimitPrice+offset, respectively.

IBMatlab returns the orderId of the parent order; the child orders have order IDs that

are orderId+1 and orderId+2, respectively.

For example, the following trade order:

parentOrderId = IBMatlab('action','BUY', 'symbol','GOOG', ...

 'quantity',100, 'type','LMT', ...

 'limitPrice',600, 'BracketDelta',[20,50]);

Will result in the following situation in IB:

In this screenshot, notice that the parent order is shown as active (blue; IB status:

“Order is being held and monitored”) at the bottom. This order has a Last-Key value

of “4” and is a simple Buy at Limit 600 order.

97 http://interactivebrokers.com/en/trading/orders/bracket.php, http://ibkb.interactivebrokers.com/node/1043

http://interactivebrokers.com/en/trading/orders/bracket.php
http://ibkb.interactivebrokers.com/node/1043

76 IB-Matlab User Guide

The child orders are shown above their parent as inactive (red; IB status: “Waiting for

parent order to fill”). These orders have type=LMT (for the 650 take-profit order) and

STP (for the 580 stop-loss order). Note that the child orders have a Last-Key value

that derives from their parent (4.2, 4.1 respectively) and the same OCA group name,

which is automatically generated based on the order timestamp.

It is possible to specify child bracket orders of different types than the default LMT

and STP. This can be done using the BracketTypes parameter. For example, to set an

upper bracket of type MIT (Market-If-Touched) rather than LMT for the preceding

example, we could do as follows:

parentOrderId = IBMatlab('action','BUY', 'symbol','GOOG', ...

 'quantity',100, 'type','LMT', ...

 'limitPrice',600, 'BracketDelta',[20,50], ...

 'BracketTypes',{'STP','MIT'});

Another method to achieve this modification would be to use the relevant child order

ID (which is parentOrderId+2 for the upper child) and modify its type from LMT to

MIT (see §10.2 below for details).

The following parameters specifically affect bracket orders:

Parameter Data type Default Description

BracketDelta number []=empty Price offset for stop-loss and take-profit

bracket child orders.

Note: BracketDelta may be a single value or a

[lowerDelta,upperDelta] pair of values

Note: value(s) must be positive:

- low bracket will use limitPrice – lowerDelta

- high bracket will use limitPrice + upperDelta

BracketTypes cell array

of 2 strings

Buy:

{'STP',

'LMT'}

Sell:

{'LMT',

'STP'}

Types of child bracket orders.

The first string in the cell array defines the

order type for the lower bracket; the second

string defines the order type for the upper

bracket.

See related BracketDelta parameter above.

77 IB-Matlab User Guide

As an alternative to using IBMatlab’s BracketDelta and BracketTypes, users can

also create child orders directly, thereby creating non-standard bracket setups, using

the ParentId, OCAType and OCAGroup parameters. The Transmit parameter

(§9.6) is also typically used, to ensure that the parent order is not transmitted before

the child orders are attached.

For example, the following code snippet creates a parent order with 3 child orders: a

take-profit order, a stop-loss order, and an end-of-day exit order:98

% First create (but do not transmit) the parent order

parentId = IBMatlab('action','BUY', 'symbol','GOOG', ...

 'quantity',100, 'type','LMT', ...

 'LimitPrice',600, 'transmit',false);

% Attach a take-profit child order

takeProfitId = IBMatlab('action','SELL', 'symbol','GOOG', ...

 'quantity',100, 'type','MIT', 'AuxPrice',650,...

 'ParentId', parentId, ...

 'OCAType',3 ,'OCAGroup','abc #123');

% Attach a stop-loss child order

stopLossId = IBMatlab('action','SELL', 'symbol','GOOG', ...

 'quantity',100, 'type','STP', 'AuxPrice',580,...

 'ParentId', parentId, ...

 'OCAType',3 ,'OCAGroup','abc #123');

% Attach an end-of-day exit child order

eodExitId = IBMatlab('action','SELL', 'symbol','GOOG', ...

 'quantity',100, 'type','MOC', ...

 'ParentId', parentId, ...

 'OCAType',3 ,'OCAGroup','abc #123');

% Pause a bit to enable IB time to process the orders

pause(0.5);

% Transmit the modified parent order

IBMatlab('action','BUY', 'orderId',parentId, 'transmit',true, ...

 'symbol','GOOG', 'quantity',100, ...

 'type','LMT', 'LimitPrice',600);

98 In this example, OCAType=3 because this is the only OCA type that IB permits with a MOC child order (without the MOC

child, you can also use OCA types 1 or 2).

78 IB-Matlab User Guide

9.4 Automated orders

Automated orders are similar to orders of types REL and TRAIL. The idea is to

modify a Limit order’s LimitPrice based on instantaneous market bid and ask quotes

plus (or minus) a certain number of security tick value. At a certain point in time, the

order, if not fulfilled or cancelled by then, can automatically be transformed from

LMT to some other type (e.g., MKT).

IBMatlab implements automated orders using a timer that periodically checks the

latest bid/ask quotes for the specified security and modifies the order’s LimitPrice

(and possibly the order Type) accordingly.

Unlike IB’s REL and TRAIL order types (and their variants, e.g., TRAIL MIT etc.),

which update the LimitPrice continuously, IBMatlab’s automated orders are only

updated periodically. This could be problematic for highly-volatile securities: in such

cases users should use IB’s standard REL and TRAIL. However, for low-volatility

securities, the flexibility offered by IBMatlab’s automated orders could be useful.

The following parameters affect automated orders in IBMatlab:

Parameter Data type Default Description

LimitBasis string (none) Either 'BID' or 'ASK'. LimitBasis cannot be

used together with LimitPrice.

LimitDelta integer 0 Units of the security’s minimal tick value

LimitBounds [number,

number]

[0,inf] The LimitPrice will only fluctuate between

the specified lower & upper bounds

LimitRepeatEvery number 0 Update timer period in seconds

LimitPause number 0 Update timer suspend time in seconds

LimitUpdateMode number 0 Mode of the periodic LimitPrice update:

 0: LimitPrice increases or decreases

based on the latest market bid/ask price

 1: LimitPrice only increases; if market

price decreases, LimitPrice remains as-is

 -1: LimitPrice only decreases; if the

price increases, LimitPrice remains as-is

LimitChangeTime string (now+

10 hrs)

Time at which to change the order Type

automatically, if it was not fulfilled or

cancelled by then. Format: 'YYYYMMDD

hh:mm:ss' local time

LimitChangeType string 'MKT' The new order type to be used at

LimitChangeTime

Tick number 0 Override the security’s reported tick value,

used by LimitDelta. This is useful for

securities/exchanges that do not report a

valid tick value in market queries (see §5.1).

79 IB-Matlab User Guide

IBMatlab uses Matlab timers for the implementation of automated orders having

LimitRepeatEvery > 0. These timers invoke their callback function once every

LimitRepeatEvery seconds. In each invocation, the current market data for the

security is checked against the specifications (LimitUpdateMode, LimitBounds etc.).

If it is determined that the trade order should be modified, then an update command is

sent to the IB server with the new LimitPrice (see §10.2 below). This process could

take some time and therefore it is strongly suggested to use a LimitRepeatEvery value

larger than 5 or 10 [secs], otherwise Matlab might use a large percent of its CPU time

in these timer callbacks. Each automated order uses an independent timer, so having

multiple concurrent automated orders would only exasperate the situation. Therefore,

the more such concurrent orders you have, the longer LimitRepeatEvery should be.

Note: using IBMatlab’s automated orders, implied by setting a non-empty LimitBasis

parameter value, automatically sets the order type to LMT, regardless of the order

Type requested by the user. LimitPrice cannot be used together with LimitBasis.

For example, the tick value for GOOG is 0.01. To send a Limit BUY order, which is

updated to BID – 2 ticks (i.e., BID – 0.02) every 15 seconds, run the following:

orderId=IBMatlab('action','BUY', 'symbol','GOOG', 'quantity',100,...

 'type','LMT', 'LimitBasis','BID',...

 'LimitDelta',-2, 'LimitRepeatEvery',15);

When trying to use the automated orders feature, you may discover that the limit

price is not updated although the market price moves up or down. In most likelihood,

this is due to the tick price not being available for some reason, and the simple

solution is to specify it directly using the Tick parameter:

orderId=IBMatlab('action','BUY', 'symbol','GOOG', 'quantity',100,...

 'type','LMT', 'LimitBasis','BID', 'tick',0.01,...

 'LimitDelta',-2, 'LimitRepeatEvery',15);

The LimitPause parameter enables a suspension of the order for the specified

duration between each timer invocation. At the beginning of each suspension, the

order is cancelled. At the end of each suspension, the order is resubmitted with

updated LimitPrice and Quantity (depending on the number of executed Quantity

until that time). For example, if LimitRepeatEvery=15 and LimitPause=3, then the

order will be active between t=0 and t=15, then again between t=18 and t=33, then

again between t=36 and t=51, and so on.

High frequency traders often game REL and various types of pegged orders, e.g., by

temporarily causing price to move up or down such that these orders trigger at less

than optimal prices. Order delays reduce this possibility, as temporary price

movements may revert before the order is re-released. The regular periodic update

feature (LimitRepeatEvery) helps in this regard, but using LimitPause would

increase the possibility of price improvement (e.g., for a buy order the price could

drop below the original bid).

80 IB-Matlab User Guide

9.5 Combo orders

IB enables traders to trade a spread of securities as a single atomic combination

(combo) order. For example, a trader might trade a calendar spread of some security

options or futures, e.g. Sell November, Buy December. Each of these securities (legs)

is treated separately, but the combination is treated as a single entity. Combo-orders

typically improve trading certainty, reduce risk of partial or mis-executions, and

reduce the trading costs significantly compared to trading the securities separately.

To use combo-trades in IBMatlab, specify the leg parameters (Symbol,

LocalSymbol, SecType, Exchange, Currency, Multiplier, Expiry, Strike, and

Right) in a cell array wherever the different legs have different values. In addition,

you must specify the ComboActions parameter:

orderId = IBMatlab('action','buy', 'exchange','CFE', 'quantity',1, ...

 'SecType','FUT', 'LocalSymbol',{'VXZ2','VXX2'}, ...

 'ComboActions',{'Buy','Sell'})

Alternatively, you could use cell arrays also for the fields that are the same for all

legs. The following is equivalent to the command above:

orderId = IBMatlab('action','buy', 'exchange',{'CFE','CFE'}, ...

 'quantity',1, 'SecType',{'FUT','FUT'}, ...

 'LocalSymbol',{'VXZ2','VXX2'}, ...

 'ComboActions',{'Buy','Sell'})

The same syntax can be used for querying the market data of a specific combo:

data = IBMatlab('action','query', 'exchange','GLOBEX', ...

 'secType','FUT', 'localSymbol',{'ESZ2','ESH3'}, ...

 'ComboActions',{'Sell','Buy'}

Note that querying market data for a combo might well return negative prices. For

example, in the specific query example above, the following data was received:

data =

 reqId: 230455081

 reqTime: '26-Oct-2012 04:24:22'

 dataTime: '26-Oct-2012 04:24:23'

 dataTimestamp: 7.3517e+05

 ticker: ''

 bidPrice: -6.8500

 askPrice: -6.7500

 bidSize: 748

 askSize: 287

 open: -1

 close: -1

 low: -1

 high: -1

 lastPrice: -1

 volume: -1

 tick: 0.2500

 contract: [1x1 struct]

 contractDetails: [1x2 struct]

81 IB-Matlab User Guide

Only instantaneous market bid/ask data is reliably returned for combo queries – the

open, close, low, high, lastPrice and volume fields are often returned empty (-1).

IB may rejects combo requests (query/trade), due to a variety of possible reasons:

1. IB only supports combos for a small subset of securities – generally speaking,

US options and futures. For example, Forex is NOT supported as of 2016.

2. IB will reject a combo that has been incorrectly configured (see details below)

3. IB will reject a combo if you are not subscribed for real-time quotes for any of

its legs.

4. IB does not support combos on the demo account, only on live and paper-

trade accounts.99 The availability of combo functionality may depend on your

IB account’s subscription plan and the specific combo that you try to use.

5. Some combo queries can only be received using streaming quotes (§7.1), but

not snapshot quotes (§5.1), due to an IB server bug/limitation. A workaround

for this limitation is included in IB-Matlab since version 1.97.

In all such cases, query requests will return -1 data in all data fields, including

bidPrice/askPrice; trade order commands will simply be ignored by IB.

Unfortunately, IB does not report an informative error message when a combo trade

order or market query is rejected. We are left guessing as to the reason: perhaps one

or more legs is incorrectly configured or not supported or not subscribed for real-time

data; perhaps the market is closed; etc. Contact IB to check your specific case.

When specifying combo legs, you can specify the optional ComboRatios parameter,

as an array of positive values that shall be used to determine the relative weights of

the legs. IBMatlab uses default ratios of [1,1], i.e. the same ratio for all legs.100

When specifying combo legs, we need to be aware of exchange limitations. In general

combos use the default ratio of 1:1, but in some cases some other ratio is needed. For

example, the ComboRatios for the ZN/ZT spread (10-vs-2-year US Treasury-Notes)

must be set to 1:2 since the ECBOT exchange does not currently (1/1/2016) support

any other ratio. This ratio changes over time: the ratio was 1:2 in early 2013, then

changed to 3:5, then 1:2 again.101 If you specify an incorrect ratio, or when the market

is closed, IB will send an ICS (Inter-Commodity Spread) error message. For example:

[API.msg2] Invalid ICS spread {360280114, 318}

In cases where you cannot figure out the exact set of parameters for a combo, it might

help to try to create the combo directly in TWS: If the combo is supported by TWS

then it might also be available to the API (and IBMatlab). But if the combo is not

supported by TWS then it will also certainly not work in IBMatlab.

99 https://quant.stackexchange.com/questions/8744/what-is-the-difference-between-the-interactive-brokers-demo-account-and-a-

personal-paper-trader-account; http://interactivebrokers.com/en/software/am/am/manageaccount/paper_trading_limitations.htm

100 Discussion of combo ratios and limit prices: https://groups.io/g/twsapi/topic/77368761#45604
101 The latest spread ratios on CME can be found here: http://cmegroup.com/trading/interest-rates/intercommodity-spread.html

https://quant.stackexchange.com/questions/8744/what-is-the-difference-between-the-interactive-brokers-demo-account-and-a-personal-paper-trader-account
https://quant.stackexchange.com/questions/8744/what-is-the-difference-between-the-interactive-brokers-demo-account-and-a-personal-paper-trader-account
http://interactivebrokers.com/en/software/am/am/manageaccount/paper_trading_limitations.htm
https://groups.io/g/twsapi/topic/77368761#45604
http://cmegroup.com/trading/interest-rates/intercommodity-spread.html

82 IB-Matlab User Guide

The combo legs must all use the same exchange and generally also the same

currency. However, combo legs do not need to have the same underlying security

Symbol. If you wish to use a combo spread of two securities with a different symbol,

you could use the internal symbol for the spread using the ComboBagSymbol

parameter. For example, the ZN/ZT spread has the internal symbol ‘TUT’:102

IBMatlab('action','query', 'SecType','FUT', 'exchange','ECBOT', ...

 'ComboBagSymbol','TUT', ... % the spread's symbol is TUT

 'LocalSymbol',{'ZN MAR 16','ZT MAR 16'}, ...

 'ComboActions',{'Sell','Buy'}, 'ComboRatios',[1,2])

ans =

 reqId: 576662704

 reqTime: '24-Dec-2015 05:18:49'

 dataTime: '24-Dec-2015 05:18:53'

 dataTimestamp: 7.3632e+05

 lastEventTime: 7.3632e+05

 ticker: ''

 bidPrice: -0.0078

 askPrice: 0.0078

 open: -1

 close: 0

 low: 0.0078

 high: 0.0078

 lastPrice: 0.0078

 volume: -1

 halted: 0

 tick: 0.0078

 contract: [1x1 struct] <= Note: legs info in comboLegs field

 contractDetails: [1x2 struct] <= Note: contractDetails for 2 legs

 bidSize: 592

 askSize: 25

 lastSize: 2

 lastTimestamp: '1450947638'

Sometimes IB fails to return snapshot query data for combos (as for TUT above), due

to IB server limitations/bugs. In such cases, using streaming quotes (see Chapter 7)

may be a good workaround:

IBMatlab('action','query', 'SecType','FUT', 'exchange','ECBOT', ...

 'ComboBagSymbol','TUT', ... % the spread's symbol is TUT

 'LocalSymbol',{'ZN MAR 13','ZT MAR 13'}, ...

 'ComboActions',{'Sell','Buy'}, 'ComboRatios',[1,2], ...

 'QuotesNumber',2);

pause(1.5); % wait a bit for data to be received from IB server

data = IBMatlab('action','query', 'QuotesNumber',-1, ...

 'LocalSymbol',{'ZN MAR 13','ZT MAR 13'});

When specifying the spread’s LocalSymbol, be careful to enter all the spaces. For

example, the ZN LocalSymbol has 4 spaces between “ZN” and “MAR”. IB is very

102 Other similar predefined CME spreads can be found in http://cmegroup.com/trading/interest-rates/intercommodity-spread.html

and http://cmegroup.com/trading/interest-rates/files/TreasurySwap_SpreadOverview.pdf

http://cmegroup.com/trading/interest-rates/intercommodity-spread.html
http://cmegroup.com/trading/interest-rates/files/TreasurySwap_SpreadOverview.pdf

83 IB-Matlab User Guide

sensitive about this: if you specify a LocalSymbol that is even slightly incorrect, IB

will complain that it cannot find the specified contract. See §14.2 for additional details.

To complete the picture, here’s an example order to purchase a bear spread for 9/2018

E-mini S&P 500 Future Options (SecType='FOP'; note the negative LimitPrice):

orderId = IBMatlab('action','buy', 'exchange','GLOBEX', 'quantity',1,...

 'SecType','FOP', 'type','LMT', 'limitPrice',-4, ...

 'symbol','ES', 'expiry',201809, 'right','Call', ...

 'strike',[2720,2730], 'ComboActions',{'Sell','Buy'})

or alternatively:

orderId = IBMatlab('action','buy', 'exchange','GLOBEX', 'quantity',1,...

 'SecType','FOP', 'type','LMT', 'limitPrice',-4, ...

 'localSymbol', {'ESU8 C2720', 'ESU8 C2730'}, ...
 'ComboActions',{'Sell','Buy'})

The following parameters affect combo orders in IBMatlab:

Parameter Data type Default Description

Symbol string or cell-

array of strings

(none) The symbol(s) of the underlying leg

assets.

LocalSymbol string or cell-

array of strings

'' The local exchange symbol of the

underlying leg asset. If left empty, IB

tries to infer it from the other parameters.

SecType string or cell-

array of strings

'STK' One of: 'STK', 'OPT', 'FUT', 'IND', 'FOP'

(but not 'CASH' or 'BAG') for the legs.

Exchange string or cell-

array of strings

'SMART' The exchange that should process the

request for the corresponding legs.

Currency string or cell-

array of strings

'USD' The currency for the corresponding legs.

Multiplier number [] The contract multiplier (for options)

Expiry string or cell-

array of strings

'' 'YYYYMM' or 'YYYYMMDD' format,

for each of the combo legs.

Strike number or

numeric array

0.0 The strike price (for options) of the

corresponding legs.

Right string or cell-

array of strings

'' One of: ‘P’, ‘PUT’, ‘C’, ‘CALL’ for each

of the combo legs.

ComboActions cell-array of

strings

{} Array of corresponding leg actions. For

example: {'Sell', 'Buy'}

ComboRatios numeric array

of positive

numbers

[1,1] Array of corresponding leg weights. Any

number is accepted – only the relative

values matter, so [1,1.5]=[2,3]=[4,6].

ComboBag

Symbol

string '' The exchange symbol of the combo-bag

spread. When left empty, IBMatlab will

use the last leg’s LocalSymbol and

Symbol for the parent bag contract.

84 IB-Matlab User Guide

9.6 Setting special order attributes

Most of the important order parameters that are supported by IB are also supported as

IBMatlab parameters. However, IB also supports additional properties that in some

cases may be important.

For example, we may wish to specify the security identifier (via the contract object’s

secIDType and secId properties103), or to specify the All-or-None flag (via the order

object’s allOrNone property104).

These properties are not available as IBMatlab parameters, but they can still be

specified using the ibConnector Java object returned by IBMatlab as a second output

value, as explained in §15 below. The contract and order objects can be created and

updated in two alternative ways:

 We can use ibConnector to create the initial contract and order Java objects,

modify their requested properties, then use ibConnector again to send the

order to IB. §15.3 shows a usage example of this.

 We can use IBMatlab’s Hold parameter (see §8.1) to prepare the contract and

order Java objects, modify their properties, then use ibConnector to send the

order to IB. The difference vs. the previous method is that we don’t need to

create the contract/order objects – IBMatlab takes care of this for us.

In all cases, we would use the ibConnector.placeOrder function to send the updated

contract and order objects to IB for execution. Here is a usage example:105

% Prepare initial contract and order objects using the Hold mechanism

[orderId, ibConnector, contract, order] = ...

 IBMatlab('action','BUY', 'Hold',true, ...);

% Modify some contract properties

contract.m_secIdType = 'ISIN';

contract.m_secId = 'US0378331005'; % =Apple Inc.

contract.m_multiplier = '100'; % only relevant for option/future

% Modify some order properties

order.m_clearingIntent = 'Away'; % Possible values: IB, Away, PTA

order.m_settlingFirm = 'CSBLO'; % =Credit Suisse Securities Europe

order.m_allOrNone = true; % set the order to be All-or-None

order.m_sweepToFill = true; % set the order to be Sweep-to-Fill

order.m_orderRef = 'my trading algo'; % user-specified trading note

% Send the modified order to IB

ibConnector.placeOrder(orderId, contract, order);

Note: the order object is only returned from IBMatlab for trading orders (i.e., Action

= 'Buy', 'Sell', 'SShort' or 'SLong'), but not other IBMatlab actions.

103 https://interactivebrokers.com/php/whiteLabel/Interoperability/Socket_Client_Java/java_properties.htm

104 https://interactivebrokers.com/php/whiteLabel/Interoperability/Socket_Client_Java/java_properties.htm
105 Note that many properties can also be set via direct IBMatlab parameters e.g. SecId, SecIdType, Multiplier, OrderRef.

https://interactivebrokers.com/php/whiteLabel/Interoperability/Socket_Client_Java/java_properties.htm
https://interactivebrokers.com/php/whiteLabel/Interoperability/Socket_Client_Java/java_properties.htm

85 IB-Matlab User Guide

Some additional order fields that can be set in this manner include:

 m_hidden – true for a hidden order routed via the INet (Island) exchange106

 m_displaySize –integer >0 for an Iceberg order107

 m_volatility – value >0 for specifying option limit price in terms of volatility

[percent], typically used together with m_volatilityType [1=daily, 2=annual]

 additional contract and order fields are listed in IB’s API documentation108

Note: field names of IB’s Java objects (e.g. contract, order) have a m_ prefix (e.g.

contract.m_secId, order.m_orderRef). IB-Matlab v2.19 onward reports such objects

as Matlab structs without the m_ prefix (e.g. contract.secId, order.orderRef) when

returning data (see §5), but whenever we use the Java objects we need to add the m_

prefix to the field names. In the example above, contract and order are Java objects,

so we must use the m_ prefix of field names to modify the Java field values.

When changing an order immediately following creation, IB might reject the request.

In such cases, adding a short pause(0.5) normally solves the problem:

[API.msg2] Unable to modify this order as it is still being processed

The Hold and Transmit parameters should not be confused: Hold delays the order in

IB-Matlab (you will not see it in TWS); Transmit delays the order within TWS:

Using Transmit, orders can be sent to TWS and delayed (not sent for execution), until

the user clicks the <Transmit> (or <Cancel>) button. Prepare such orders as follows:

IBMatlab('action','BUY', 'Transmit',false, ...);

This will create the order in TWS without transmitting it. You will see the order in

TWS’s API tab with a button to transmit:

106 http://interactivebrokers.com/en/trading/orders/hidden.php

107 http://interactivebrokers.com/en/trading/orders/iceberg.php
108 http://interactivebrokers.com/php/whiteLabel/Interoperability/Socket_Client_Java/java_properties.htm

http://interactivebrokers.com/en/trading/orders/hidden.php
http://interactivebrokers.com/en/trading/orders/iceberg.php
http://interactivebrokers.com/php/whiteLabel/Interoperability/Socket_Client_Java/java_properties.htm

86 IB-Matlab User Guide

Right-clicking anywhere in the row will present a menu with additional options:

While the order is waiting in TWS for transmission, its attributes can be modified,

either directly in TWS, or programmatically (see §10).

87 IB-Matlab User Guide

9.7 Exercising and lapsing options

To exercise or lapse an option, use Action='exercise' or 'lapse' (respectively). You

must specify the quantity of contracts and the exchange (IB’s SMART exchange

cannot be used).109 You can also indicate whether to override IB’s default handling

action (exercise in-the-money options only). For example:

orderId = IBMatlab('action','exercise', 'symbol','GOOG', ...

 'secType','OPT', 'expiry','201509', ...

 'multiplier',100, 'strike',600, 'right','C', ...

 'quantity',5, 'exchange','AMEX', 'override',true)

Assuming that the information is correct and that I have 5 unlapsed GOOG 9/2015

Call-600 options in my portfolio, then these 5 options will be exercised and turn into

500 shares (5 options * 100 multiplier) of the underlying GOOG, at USD 600 each.

At the time of this writing, GOOG trades at USD 542.34, so the exercise is not in the

money and would be rejected if I had not stated Override=true. Because of the

override the exercise order is executed at a nominal loss of USD 57.66 (=600-542.34)

per share (excluding commissions).

If the option is not in-the-money and you try to exercise without specifying the

Override parameter (or if you set the Override value to the default=false), you will

receive an error from IB:

[API.msg2] Error processing request: Exercise ignored because option

is not in-the-money. {498825899, 322}

If the options do not exist in your portfolio you will receive a different error message:

[API.msg2] Error processing request: No unlapsed position exists in

this option in account DU123456. {498752361, 322}

If you have several IB accounts, then the AccountName parameter must be specified,

otherwise you will receive yet a different error message:

[API.msg2] Error validating request:-'kd': cause - The account code is

required for this operation. {498752362, 321}

You can only lapse an option on its last trading day. If you try to lapse it on a

different date, you will receive two separate error messages from IB:

[API.msg2] Order rejected - reason: trade date must match last trade

date of the contract {498825901, 201}

[API.msg2] Error processing request: Exercise/Lapse failed due to

server rejection {498825901, 322}

Finally, as of the time of this writing, IB only supports exercising/lapsing options, not

FOP (future-on-option) or warrants. Customers wishing to exercise or lapse such

contracts must submit a manual request ticket to IB.

109 http://interactivebrokers.github.io/tws-api/classIBApi_1_1EClient.html#aad70a7b82ad3b5e7ae3e9f0b98dc2a5b

http://interactivebrokers.github.io/tws-api/classIBApi_1_1EClient.html#aad70a7b82ad3b5e7ae3e9f0b98dc2a5b

88 IB-Matlab User Guide

The following parameters affect exercising/lapsing options in IBMatlab:

Parameter Data type Default Description

Action string (none) Either 'exercise' or 'lapse'.

Symbol string (none) The symbol of the underlying asset.

LocalSymbol string '' The local exchange symbol of the option

contract. When left empty, IB infers it from

Symbol and the other properties.

SecType string (none) Needs to be 'OPT'. IB does not currently

allow exercising any other SecType.

Exchange string (none) The exchange that should process the

request – cannot be set to 'SMART'.

Currency string 'USD' The currency for the option contract.

Multiplier number [] The option contract multiplier.

Expiry string '' 'YYYYMM' or 'YYYYMMDD' format.

Strike number 0.0 The strike price of the option contract.

Right string '' One of: ‘P’, ‘PUT’, ‘C’, ‘CALL’.

Quantity integer 0 Number of contracts to exercise or lapse.

Override integer or

logical flag

0=false 0 or false: use default action (exercise in-

the-money options only)

 1 or true: override the default action

AccountName string ''

The specific IB account ID to use.

Useful when you handle multiple IB

accounts, otherwise leave empty.

89 IB-Matlab User Guide

9.8 Algorithmic trading orders

In addition to VWAP (§9.1) and TWAP (§9.2), IB-Matlab supports multiple algo-

trading strategies, provided by both IB (“IBAlgo”) and 3rd-parties. Some important

IBAlgos (Arrival Price,110 Close Price,111 Dark Ice,112 Percentage of Volume,113

Balance Impact/Risk,114 Minimize Impact115) have dedicated IBMatlab convenience

parameters; numerous other algos can be specified using a pair of generic parameters.

Algo properties are specified in IBMatlab as follows (Kind: D=dedicated; G=generic):

Parameter Kind Data type Default Description

Type D string 'LMT' Set to one of the following:

 'VWAP' (see §9.1)

 'TWAP' (see §9.2)

 'ArrivalPx'

 'ClosePx'

 'DarkIce'

 'PctVol'

 'BalanceImpactRisk'

 'MinImpact'

MaxPctVol D number 0.1=10% Max % participation of average

daily volume up to 0.5 (=50%).

PctVol D number 0.1=10% Target % participation of avg

daily volume up to 0.5 (=50%).

StartTime D string '9:00:00 EST' Format: 'YYYYMMDD

hh:mm:ss TMZ' (TMZ optional)

EndTime D string '16:00:00 EST' (same as StartTime above)

AllowPastEndTime D integer or

logical flag

1=true If true, allow the algo to

continue to work past the

specified EndTime if the full

quantity has not been filled.

NoTakeLiq D integer or

logical flag

0=false If true, avoid hitting the bid or

lifting the offer, if possible.

110 http://interactivebrokers.github.io/tws-api/ibalgos.html#arrivalprice, http://interactivebrokers.com/en/index.php?f=1122,

http://interactivebrokers.com/en/software/tws/usersguidebook/algos/arrival_price.htm
111 http://interactivebrokers.github.io/tws-api/ibalgos.html#closepx,

http://interactivebrokers.com/en/software/tws/usersguidebook/algos/closeprice.htm

112 http://interactivebrokers.github.io/tws-api/ibalgos.html#darkice,
http://interactivebrokers.com/en/software/tws/usersguidebook/algos/dark_ice.htm

113 http://interactivebrokers.github.io/tws-api/ibalgos.html#pctvol,

http://interactivebrokers.com/en/software/tws/usersguidebook/algos/percentage_of_volume_strategy.htm

114 http://interactivebrokers.github.io/tws-api/ibalgos.html#balanceimpact,

http://interactivebrokers.com/en/software/tws/usersguidebook/algos/balance_impact_and_risk.htm

115 http://interactivebrokers.github.io/tws-api/ibalgos.html#minimpact,
http://interactivebrokers.com/en/software/tws/usersguidebook/algos/minimize_impact.htm

http://interactivebrokers.github.io/tws-api/ibalgos.html#arrivalprice
http://interactivebrokers.com/en/index.php?f=1122
http://interactivebrokers.com/en/software/tws/usersguidebook/algos/arrival_price.htm
http://interactivebrokers.github.io/tws-api/ibalgos.html#closepx
http://interactivebrokers.com/en/software/tws/usersguidebook/algos/closeprice.htm
http://interactivebrokers.github.io/tws-api/ibalgos.html#darkice
http://interactivebrokers.com/en/software/tws/usersguidebook/algos/dark_ice.htm
http://interactivebrokers.github.io/tws-api/ibalgos.html#pctvol
http://interactivebrokers.com/en/software/tws/usersguidebook/algos/percentage_of_volume_strategy.htm
http://interactivebrokers.github.io/tws-api/ibalgos.html#balanceimpact
http://interactivebrokers.com/en/software/tws/usersguidebook/algos/balance_impact_and_risk.htm
http://interactivebrokers.github.io/tws-api/ibalgos.html#minimpact
http://interactivebrokers.com/en/software/tws/usersguidebook/algos/minimize_impact.htm

90 IB-Matlab User Guide

Parameter Kind Data type Default Description

SpeedUp D integer or

logical flag

0=false If true, compensate for decreased

fill rate due to a limit price.

Only relevant for VWAP algo.

RiskAversion D string ‘Neutral’ One of:

 'Neutral' (default)

 'Get Done'

 'Aggressive'

 'Passive'

ForceCompletion D integer or

logical flag

0=false If true, attempt completion by

end of day.

DisplaySize D integer 1 The order quantity (size) you

want to display to the market.

The algo will randomize the

size by 50% on either side.

Only relevant for DarkIce algo.

MonetaryValue D number 0 Cash quantity

AlgoStrategy G string '' Any algo name listed in
https://interactivebrokers.github.io

/tws-api/algos.html

AlgoParams G cell-array {} Cell array of name,value pairs.

Example: {'MaxPctVol',0.25,
'RiskAversion','Aggressive'}

Note: StartTime, EndTime, AllowPastEndTime, NoTakeLiq, SpeedUp and

MonetaryValue were described in §9.1.

Only a few important IBAlgos have dedicated IB-Matlab parameters, listed above.

All other strategies/algos are supported by using the AlgoStrategy and AlgoParams

parameters, which cover the dedicated convenience parameters as well as many others.

Here is an example for an Arrival Price order using dedicated convenience parameters:

orderId = IBMatlab('action','BUY', 'symbol','GOOG', 'quantity',10, ...

 'TIF','Day', 'limitPrice',600, 'type','ArrivalPx',...

 'MaxPctVol',0.01, 'RiskAversion','Passive', ...

 'StartTime','20120215 10:30:00 EST', ...

 'EndTime', '10:45:00 EST', ...

 'ForceCompletion',true, 'AllowPastEndTime',false);

And the same Arrival Price order using the generic AlgoStrategy and AlgoParams:

algoParams = {'maxPctVol',0.01, 'riskAversion','Passive', ...

 'startTime','20120215 10:30:00 EST', ...

 'endTime', '10:45:00 EST', ...

 'forceCompletion',true, 'allowPastEndTime',false};

orderId = IBMatlab('action','BUY', 'symbol','GOOG', 'quantity',10,...

 'TIF','Day', 'limitPrice',600, ...

 'algoStrategy','ArrivalPx', 'algoParams',algoParams);

https://interactivebrokers.github.io/tws-api/algos.html
https://interactivebrokers.github.io/tws-api/algos.html

91 IB-Matlab User Guide

IB regularly adds/modifies algo strategies and their corresponding parameters. Some

algo properties (parameters) are only relevant to some algos but not others, and this list

is also dynamic. For an up to date listing of the available algos and parameters, visit

https://interactivebrokers.github.io/tws-api/algos.html.

IB only enables algo strategy orders for a subset of security types and exchanges. For

example, as of December 2019 IBAlgos are limited to US stocks, while QBAlgos are

limited to futures. Refer to the specific algo’s documentation for details.

IB supports some algos only in TWS, not via the API. For example, as of December

2019, IB officially supports Fox River algos only in TWS, not the API.116 If you

specify such algos in IBMatlab, IB may possibly reject the requested order. When IB

adds any new algo provider, algo strategy and/or algo parameter, you can

immediately use them in IBMatlab via the AlgoStrategy, AlgoParams parameters.

As with VWAP and TWAP, IB automatically routes all IBAlgo trades to its internal

servers (IBALGO), ignoring the specified Exchange. In contrast, all 3rd-party (non-

IB) algos require routing the order through the corresponding 3rd-party algo servers:

CSFB (Credit-Suisse First Boston) algos117 require setting Exchange='CSFBALGO';

Jefferies algos118 require Exchange='JEFFALGO'; and QB (Quantitative Brokers)119

algos require Exchange='QBALGO'. Here is an example of a CSFB 'Inline' algo order:

algoParams = {'StartTime','20120215 10:30:00 EST', ...

 'EndTime', '10:45:00 EST', ...

 'ExecStyle','Patient', 'Auction','Default',...

 'MinPercent',10, 'MaxPercent',20, 'DisplaySize',100,...

 'BlockFinder',false, 'BlockPrice',40,

 'MinBlockSize',100, 'MaxBlockSize',100, 'IWouldPrice',35};

orderId = IBMatlab('action','BUY', 'symbol','GOOG', 'quantity',10,...

 'Exchange','CSFBALGO', ... % note the Exchange

 'algoStrategy','Inline', 'algoParams',algoParams);

Additional notes:

 As with standard LMT orders, some algo orders are not guaranteed to execute.

 Many algos are only available in the live account, and cannot be tested in a

paper-trading account. None of the algos are available in IB’s Demo account.

 IBAlgo orders cannot use the default TIF value of 'GTC' – use 'Day' instead.

 IBAlgo orders are treated as LMT orders, so you must specify the LimitPrice

parameter in all IBAlgo orders.120 For better control over the order, avoid

using the dedicated convenience algo parameters; use AlgoStrategy and

AlgoParams instead. These do not override any order or contract parameter,

so you can set (for example) Type='MKT' if you wish.

116 https://interactivebrokers.com/en/software/tws/twsguide.htm#algostop.htm%3FTocPath%3DAlgos%7C_____0;

https://interactivebrokers.com/en/index.php?f=4985#thirdy-party-algos
117 https://interactivebrokers.github.io/tws-api/csfb.html

118 https://interactivebrokers.github.io/tws-api/jefferies.html

119 https://interactivebrokers.github.io/tws-api/qbalgos.html
120 IB-Matlab versions prior to 1.92 (July 14, 2017) used MKT orders for the VWAP algo

https://interactivebrokers.github.io/tws-api/algos.html
https://interactivebrokers.com/en/software/tws/twsguide.htm#algostop.htm%3FTocPath%3DAlgos%7C_____0
https://interactivebrokers.com/en/index.php?f=4985#thirdy-party-algos
https://interactivebrokers.github.io/tws-api/csfb.html
https://interactivebrokers.github.io/tws-api/jefferies.html
https://interactivebrokers.github.io/tws-api/qbalgos.html

92 IB-Matlab User Guide

10 Accessing and cancelling open trade orders

10.1 Retrieving the list of open orders

To retrieve the list of open IB orders use Action='orders' or 'open' as follows:

>> data = IBMatlab('action','orders')

data =

1x3 struct array with fields:

 orderId

 contract

 order

 orderState

 status

 filled

 remaining

 avgFillPrice

 permId

 parentId

 lastFillPrice

 clientId

 whyHeld

 message

This returns a Matlab struct array, where each array element represents a different

open order. In this particular case, we see the parent order and two open bracket

child-orders from §9.3 above.

You can access any of the orders using the standard Matlab dot notation:

>> data(1)

ans =

 orderId: 154410310

 contract: [1x1 struct]

 order: [1x1 struct]

 orderState: [1x1 struct]

 status: 'Submitted'

 filled: 0

 remaining: 100

 avgFillPrice: 0

 permId: 989560927

 parentId: 0

 lastFillPrice: 0

 clientId: 8981

 whyHeld: []

 message: [1x162 char]

93 IB-Matlab User Guide

>> data(2)

ans =

 orderId: 154410311

 contract: [1x1 struct]

 order: [1x1 struct]

 orderState: [1x1 struct]

 status: 'PreSubmitted'

 filled: 0

 remaining: 100

 avgFillPrice: 0

 permId: 989560928

 parentId: 154410310

 lastFillPrice: 0

 clientId: 8981

 whyHeld: 'child,trigger'

 message: [1x182 char]

Each of the order structs contains the following data fields:121

 orderId – this is the ID returned by IBMatlab when you successfully submit a

trade order. It is the ID that is used by IB to uniquely identify the trade.

 contract – this is a struct object that contains the contract information,

including all the relevant information about the affected security

 order – this is another struct object that contains information about the

specific trade order’s parameters

 orderState – this is another struct object that contains information about the

current status of the open order. An order can be open with several possible

states, and this is reported in this struct’s fields.122

 status – indicates the order status e.g., ‘Submitted’, ‘PreSubmitted’, etc.

 filled – indicates the number of shares that have been executed in the order

 remaining – number of shares remaining to be executed in the order

 avgFillPrice – average price of the filled (executed) shares; 0 if no fills

 permId – the permanent ID used to store the order in the IB server

 parentId – the order ID of the order’s parent order; 0 if no parent

 lastFillPrice – last price at which shares in the order were executed

 clientId – ID of the client used for sending the order (see §13 below)

 whyHeld – specific reasons for holding the order in an open state

 message – a detailed message string stating the order’s state. This is basically

just a string that contains all the fields above and their values.

121 http://interactivebrokers.github.io/tws-api/interfaceIBApi_1_1EWrapper.html#a17f2a02d6449710b6394d0266a353313
122 http://interactivebrokers.github.io/tws-api/classIBApi_1_1OrderState.html

http://interactivebrokers.github.io/tws-api/interfaceIBApi_1_1EWrapper.html#a17f2a02d6449710b6394d0266a353313
http://interactivebrokers.github.io/tws-api/classIBApi_1_1OrderState.html

94 IB-Matlab User Guide

For example:

>> data(2).contract

ans =

 conId: 30351181

 symbol: 'GOOG'

 secType: 'STK'

 expiry: []

 strike: 0

 right: '?'

 multiplier: []

 exchange: 'SMART'

 currency: 'USD'

 localSymbol: 'GOOG'

 primaryExch: []

 includeExpired: 0

 secIdType: []

 secId: []

 comboLegsDescrip: []

 comboLegs: []

 underComp: []

>> data(1).order

ans =

 CUSTOMER: 0

 FIRM: 1

 OPT_UNKNOWN: '?'

 OPT_BROKER_DEALER: 'b'

 OPT_CUSTOMER: 'c'

 OPT_FIRM: 'f'

 OPT_ISEMM: 'm'

 OPT_FARMM: 'n'

 OPT_SPECIALIST: 'y'

 AUCTION_MATCH: 1

 AUCTION_IMPROVEMENT: 2

 AUCTION_TRANSPARENT: 3

 EMPTY_STR: ''

 orderId: 154410311

 clientId: 8981

 permId: 989560928

 action: 'SELL'

 totalQuantity: 100

 orderType: 'STP'

 lmtPrice: 580

 auxPrice: 0

 tif: 'GTC'

 ocaGroup: '989560927'

 ocaType: 3

 transmit: 1

 parentId: 154410310

 (plus many more internal order properties...)

95 IB-Matlab User Guide

>> data(1).orderState

ans =

 status: 'Submitted'

 initMargin: Inf

 maintMargin: Inf

 equityWithLoan: Inf

 commission: Inf

 minCommission: Inf

 maxCommission: Inf

 commissionCurrency: 'USD'

 warningText: []

Note: in IB-Matlab v2.19 (11/2022) and newer, values of Inf indicate an

undefined/uninitialized value; in IB-Matlab v2.18 and older such values were

reported as 1.79769313486232e+308 (realmax) or 2147483647 (intmax).

Note: IB warns123 that “It is possible that orderStatus() may return duplicate

messages. It is essential that you filter the message accordingly.”

We can filter the results based on a specific OrderId and/or Symbol. For example:

% Filter by order ID

>> data = IBMatlab('action','orders', 'OrderId',154410310)

data =

 orderId: 154410310

 contract: [1x1 struct]

 order: [1x1 struct]

 orderState: [1x1 struct]

 (etc.)

% Filter by symbol: note that symbol filtering is case insensitive

>> data = IBMatlab('action','orders', 'symbol','goog')

Of course, it is possible that there are no open orders that match the filtering criteria:

>> data = IBMatlab('action','orders', 'symbol','xyz')

data =

 []

We can use the returned data to filter the results by any of the order/contract fields:

data = IBMatlab('action','orders', 'symbol','goog');

for idx = length(data):-1:1 % only report orders having lmtPrice<600

 if data(idx).order.lmtPrice>=600, data(idx)=[]; end

end

Note that you can only retrieve (and modify) open orders that were originally sent by

your IB-Matlab ClientID. Trades placed directly in TWS, or via another API client

that connects to TWS, or by another IB-Matlab connection session with a different

ClientID, are not normally accessible. If this limitation affects your work, use a static

ClientID of 0, thereby enabling access to all open orders placed by any IB-Matlab

session (since they will all have the same ClientID=0) as well as directly on TWS

(which uses the same ClientID=0).124 See §13 for additional details on ClientID.

123 http://interactivebrokers.github.io/tws-api/order_submission.html#order_status
124 http://interactivebrokers.github.io/tws-api/open_orders.html

http://interactivebrokers.github.io/tws-api/order_submission.html#order_status
http://interactivebrokers.github.io/tws-api/open_orders.html

96 IB-Matlab User Guide

10.2 Modifying open orders

To modify parameters of open orders, we need to first ensure they are really open

(duh!). This sounds trivial, but one would be surprised at how common a mistake is to

try to update an order that has already been filled or cancelled.

When we are certain that the order is open, we can resend the order with modified

parameters, along with the OrderId parameter. The OrderId parameter tells

IBMatlab (and IB) to modify that specific order, rather than to create a new order:

[orderId, ibConnector] = IBMatlab('action','BUY','symbol','GOOG',...

 'quantity',100,'type','LMT','limitPrice',600);

% Let some time pass...

% If the requested order is still open

if ~isempty(IBMatlab('action','orders', 'OrderId',orderId))

 % Send the trade with modified parameters

 IBMatlab('action','BUY', 'symbol','GOOG', 'quantity',50, ...

 'type','MKT', 'OrderID',orderId);

end

Note: orders placed manually via TWS all have an OrderId of 0, unless we run the

following command in Matlab. TWS orders placed from then on will get unique IDs.

Naturally, we also need to set ClientId=0 to access the TWS orders (see §10.1):

ibConnector.reqAutoOpenOrders(true); % see §15 for details

10.3 Cancelling open orders

To cancel open orders, we need (as above) to first ensure that they are really open

(again, duh!), although in this case it does not really matter so much if we are trying

to cancel a non-existing order. The only side-effect will be a harmless message sent to

the Matlab command window, no real harm done.

To cancel the trade, simply use Action='cancel' with the specific order ID:

% If the requested order is still open

if ~isempty(IBMatlab('action','orders', 'OrderId',orderId))

 % Cancel the requested order

 data = IBMatlab('action','cancel', 'OrderID',orderId);

end

To cancel ALL open orders simply discard the OrderId parameter from the command:

data = IBMatlab('action','cancel'); % cancel ALL open orders

In both cases, the returned data is an array of structs corresponding to the cancelled

order(s), as described in §10.1 above.

Alternatively, we can use the Java connector object for this (see §15 for details):

% Place an order, return the orderId and the Java connector object

[orderId, ibConnector] = IBMatlab('action','BUY', ...);

% Cancel the order using the underlying Java connector object

ibConnector.cancelOrder(orderId);

97 IB-Matlab User Guide

11 Processing IB events

11.1 Processing events in IB-Matlab

IB uses an asynchronous event-based mechanism for sending information to clients.

This means that we do not simply send a request to IB and wait for the answer.

Instead, we send a request, and when IB is ready it will send us one or more (or zero)

events in response. These events carry data, and by analyzing the stored event data we

(hopefully) receive the answer that we were waiting for.

These callbacks are constantly being “fired” (i.e., invoked) by asynchronous

messages from IB, ranging from temporary market connection losses/reconnections,

to error messages and responses to market queries. Some of the events are triggered

by user actions (market or portfolio queries, for example), while others are triggered

by IB (e.g., disconnection notifications). The full list of IB events (and their data) is

documented in the online API documentation.125

Matlab has built-in support for asynchronous events, called callbacks in Matlab

jargon.126 Whereas Matlab callbacks are normally used in conjunction with Graphical

User Interfaces (GUI), they can also be used with IB-Matlab, which automatically

converts all the Java events received from IB into Matlab callbacks.

There are two types of callbacks that you can use in IB-Matlab:

 Generic callback – this is a catch-all callback function that is triggered upon

any IB event. Within this callback, you would need to write some code to

distinguish between the different event types in order to process the events’

data. A skeleton for this is given below. The parameter controlling this

callback in IBMatlab is called CallbackFunction.

 Specific callback – this is a callback function that is only triggered when the

specific event type is received from IB. Since the event type is known, you

can process its event data more easily than in the generic callback case.

However, you would need to specify a different specific callback for each of

the event types that you wish to process.

The parameters controlling the specific callbacks in IBMatlab are called

CallbackXXX, where XXX is the name of the IB event (the only exception to this

rule is CallbackMessage, which handles the IB error event – the reason is that this

event sends informational messages in addition to errors,127 so IB’s event name is

misleading in this specific case).

125 https://interactivebrokers.github.io/tws-api/interfaceIBApi_1_1EWrapper.html

126 http://www.mathworks.com/help/matlab/creating_guis/writing-code-for-callbacks.html
127 http://interactivebrokers.github.io/tws-api/error_handling.html

https://interactivebrokers.github.io/tws-api/interfaceIBApi_1_1EWrapper.html
http://www.mathworks.com/help/matlab/creating_guis/writing-code-for-callbacks.html
http://interactivebrokers.github.io/tws-api/error_handling.html

98 IB-Matlab User Guide

When you specify any callback function to IBMatlab, either the generic kind

(CallbackFunction) or a specific kind (CallbackXXX), the command action does

not even need to be related to the callback (for example, you can set

CallbackExecDetails together with Action='query').

data = IBMatlab('action','query', ..., ...

 'CallbackExecDetails',@IBMatlab_CallbackExecDetails);

where IBMatlab_CallbackExecDetails() is a Matlab function created by you that

accepts two input arguments (which are automatically populated in run-time):

 ibConnector – the Java connector object that is described in §15 below

 eventData – a Matlab struct that contains the event’s data in separate fields128

An example for specifying a Matlab callback function is:

function IBMatlab_CallbackExecDetails(ibConnector, eventData)

 % do the callback processing here

end

You can pass external data to your callback functions using the callback cell-array

format. For example, to pass two extra data values:129

callbackDetails = {@IBMatlab_CallbackExecDetails, 123, 'abc'};

IBMatlab('action','query',..., 'CallbackExecDetails',callbackDetails);

function IBMatlab_CallbackExecDetails(ibConn,eventData,extra1,extra2)

 % do the callback processing here

end

When you specify any callback function to IBMatlab, you only need to set it once, in

any IBMatlab command. Unlike most IBMatlab parameters, which are not

remembered across IBMatlab commands and need to be re-specified, callbacks do not

need to be re-specified. They are remembered from the moment they are first set,

until such time as Matlab exits or the callback parameter is changed.130

To reset a callback (i.e., remove the callback invocation), simply set the callback

parameter value to [] (empty square brackets) or '' (empty string):

data = IBMatlab('action','query', ..., 'CallbackExecDetails','');

128 Until IBMatlab v2.00, eventData contained Java objects whose fields could be inspected via the struct function e.g.

struct(eventData.contract). Starting in v2.01, such objects are regular Matlab structs. In IB-Matlab v2.19 the struct

field names changed, by removing the m_ field prefix (e.g. eventData.contract.m_symbol .symbol).

129 http://www.mathworks.com/help/matlab/creating_guis/writing-code-for-callbacks.html#brqow8p
130 It is not an error to re-specify the callbacks in each IBMatlab command, it is simply useless and makes the code less readable

http://www.mathworks.com/help/matlab/creating_guis/writing-code-for-callbacks.html#brqow8p

99 IB-Matlab User Guide

Matlab callbacks are invoked even if you use the Java connector object (see §15) for

requesting data from IB. This is actually very useful: we can use the connector object

to send a request to IB, and then process the results in a Matlab callback function.

Using Matlab callbacks with the Java connector object can be used, for example, to

implement combo trades,131 as an alternative to the built-in mechanism described in

§9.5 above. In this case, separate contracts are created for the separate combo legs,

then submitted to IB via the Java connector’s reqContractDetails() method, awaiting

the returned IDs via the Matlab callback to the ContractDetails event (see

CallbackContractDetails in the table below). Once the IDs for all the legs are

received, com.ib.client.ComboLeg objects132 are created. The completed order can

then be submitted to IB for trading via the Java connector’s placeOrder() method. All

this may appear a bit difficult to implement, but in fact can be achieved in only a few

dozen lines of code. This example illustrates how Matlab callbacks can seamlessly

interact with the underlying Java connector’s methods.

Here is the list of callback events in IBMatlab (for information about any IB event,

see https://interactivebrokers.github.io/tws-api/interfaceIBApi_1_1EWrapper.html):

IBMatlab parameter IB Event
Triggered

by

IBMatlab?
Called when?

CallbackAccountDownloadEnd accountDownloadEnd Yes

in response to account queries,

after all UpdateAccount events

were sent, to indicate end of data

CallbackAccountSummary accountSummary Yes

for every single field in the

summary data when the account

data is requested (see §4.1)

CallbackAccountSummaryEnd accountSummaryEnd Yes
indicates end of data after all

AccountSummary events are sent

CallbackBondContractDetails bondContractDetails Yes
in response to market queries;

not really used in IBMatlab

CallbackCommissionReport commissionReport Yes

immediately after a trade

execution, or when requesting

executions (see §12.1 below)

CallbackConnectionClosed connectionClosed Yes

when IB-Matlab loses its

connection (or reconnects) to

TWS/Gateway

CallbackContractDetails contractDetails Yes

in response to market queries;

used in IBMatlab only to get the

tick value

CallbackContractDetailsEnd contractDetailsEnd Yes
indicates end of data after all

ContractDetails events were sent

131 http://interactivebrokers.github.io/tws-api/basic_orders.html#combolimit

132 http://interactivebrokers.github.io/tws-api/classIBApi_1_1ComboLeg.html;
http://interactivebrokers.com/php/whiteLabel/Interoperability/Socket_Client_Java/java_properties.htm

https://interactivebrokers.github.io/tws-api/interfaceIBApi_1_1EWrapper.html
http://interactivebrokers.github.io/tws-api/basic_orders.html#combolimit
http://interactivebrokers.github.io/tws-api/classIBApi_1_1ComboLeg.html
http://interactivebrokers.com/php/whiteLabel/Interoperability/Socket_Client_Java/java_properties.htm

100 IB-Matlab User Guide

IBMatlab parameter IB Event
Triggered

by

IBMatlab?
Called when?

CallbackCurrentTime currentTime Yes

numerous times during regular

work; returns the current server

system time

CallbackDeltaNeutralValidation deltaNeutralValidation No
in response to a Delta-Neutral

(DN) RFQ

CallbackExecDetails execDetails Yes

whenever an order is partially or

fully filled, or in response to the

Java connector’s reqExecutions()

CallbackExecDetailsEnd execDetailsEnd Yes
indicates end of data after all the

ExecDetails events were sent

CallbackFundamentalData fundamentalData Yes
in response to requesting

fundamental data for a security

CallbackHistoricalData historicalData Yes

in response to a historical data

request, for each of the result

bars separately

CallbackManagedAccounts managedAccounts Yes

when a successful connection is

made to a Financial Advisor

account, or in response to calling

the Java connector’s

reqManagedAccts()

CallbackMarketDataType marketDataType No

when the market type is set to

Frozen or RealTime, to announce

the switch, or in response to

calling the Java connector’s

reqMarketDataType()

CallbackMessage error Yes

whenever IB wishes to send the

user an error or informational

message. See §14.1 below.

CallbackNextValidId nextValidId No after connecting to IB

CallbackOpenOrder openOrder Yes
in response to a user query for

open orders, for each open order

CallbackOpenOrderEnd openOrderEnd Yes

after all OpenOrder events have

been sent for a request, to

indicate end of data

CallbackOrderStatus orderStatus Yes

in response to a user query for

open orders (for each open order),

or when an order’s status changes

CallbackPosition position Yes

in response to a user query for

portfolio positions (for each

position in the portfolio)

CallbackPositionEnd positionEnd Yes
indicates end of data after all

Position events have been sent

CallbackTickPrice tickPrice Yes
in response to a market query,

for price fields (e.g., bid)

101 IB-Matlab User Guide

IBMatlab parameter IB Event
Triggered

by

IBMatlab?
Called when?

CallbackTickSize tickSize Yes
in response to a market query,

for size fields (e.g., bidSize)

CallbackTickString tickString Yes

in response to a market query,

for string fields (e.g.,

lastTimestamp)

CallbackTickGeneric tickGeneric Yes
in response to a query with a

GenericTickList param

CallbackTickEFP tickEFP No

when the market data changes.

Values are updated immediately

with no delay

CallbackTickOptionComputation tickOptionComputation No

when the market of an option or

its underlier moves. TWS’s

option model volatilities, prices,

and deltas, along with the present

value of dividends expected on

that underlier are received

CallbackTickSnapshotEnd tickSnapshotEnd Yes
when all events in response to a

snapshot query request have

been sent, to indicate end of data

CallbackRealtimeBar realtimeBar Yes
in response to a realtime bars

request, for each bar separately

CallbackReceiveFA receiveFA No
in response to calling the Java

connector’s requestFA()

CallbackScannerData scannerData Yes
in response to a user query for

scanner data, for each result row

CallbackScannerDataEnd scannerDataEnd Yes
indicates end of data after the

last scannerData event was sent

CallbackScannerParameters scannerParameters Yes
in response to a user query for

scanner parameters XML

CallbackUpdateAccountTime updateAccountTime Yes

together with the Update-

AccountValue callbacks, to

report on the event time

CallbackUpdateAccountValue updateAccountValue Yes

for every single property in the

list of account properties, when

the account data is requested (see

§4) or updated

CallbackUpdateMktDepth updateMktDepth Yes when market depth has changed

CallbackUpdateMktDepthL2 updateMktDepthL2 Yes
when the Level II market depth

has changed

CallbackUpdateNewsBulletin updateNewsBulletin No

for each new bulletin if the client

has subscribed by calling the Java

connector’s reqNewsBulletins()

CallbackUpdatePortfolio updatePortfolio Yes
when account updates are

requested or occur

102 IB-Matlab User Guide

11.2 Example – using CallbackExecDetails to track executions

The execDetails event is triggered whenever an order is fully or partially executed.

Let us trap this event and send the execution information into a CSV file for later use

in Excel (also see §12 below):

orderId = IBMatlab('action','BUY', 'symbol','GOOG', 'quantity',1, ...

 'limitPrice',600, ...

 'CallbackExecDetails',@IBMatlab_CallbackExecDetails);

Where the function IBMatlab_CallbackExecDetails is defined as follows (for

example, in a file called IBMatlab_CallbackExecDetails.m):133

%https://interactivebrokers.com/php/whiteLabel/Interoperability/Socket_Client_Java/java_properties.htm

function IBMatlab_CallbackExecDetails(ibConnector, eventData, varargin)

 % Extract the basic event data components
134

 contractData = eventData.contract;

 executionData = eventData.execution;

 % Example of extracting data from the contract object:

 symbol = eventData.contract.symbol;

 secType = eventData.contract.secType;

 % ... several other contract data field available – see above webpage

 % Example of extracting data from the execution object:

 orderId = eventData.execution.orderId;

 execId = eventData.execution.execId;

 time = eventData.execution.time;

 exchange = eventData.execution.exchange;

 side = eventData.execution.side;

 shares = eventData.execution.shares;

 price = eventData.execution.price;

 permId = eventData.execution.permId;

 liquidation = eventData.execution.liquidation;

 cumQty = eventData.execution.cumQty;

 avgPrice = eventData.execution.avgPrice;

 % ... several other execution data field available – see above webpage

 % Convert the data elements into a comma-separated string

 csvline = sprintf('%s,%d,%s,%d,%d,%f\n', time, orderId, symbol, ...

 shares, cumQty, price);

 % Now append this comma-separated string to the CSV file

 fid = fopen('executions.csv', 'at'); % 'at' = append text

 fprintf(fid, csvline);

 fclose(fid);

end % IBMatlab_CallbackExecDetails

133 This file can be downloaded from: http://UndocumentedMatlab.com/files/IBMatlab_CallbackExecDetails.m

134 Until IBMatlab v2.00, eventData contained Java objects whose fields could be inspected via the struct function e.g.

struct(eventData.contract). Starting in v2.01, such objects are regular Matlab structs. In IB-Matlab v2.19 the struct

field names changed, by removing the m_ field prefix (e.g. eventData.contract.m_symbol .symbol).

https://interactivebrokers.com/php/whiteLabel/Interoperability/Socket_Client_Java/java_properties.htm
http://undocumentedmatlab.com/files/IBMatlab_CallbackExecDetails.m

103 IB-Matlab User Guide

11.3 Example – using CallbackTickGeneric to check if a security is shortable

In this example, we attach a user callback function to tickGeneric events in order to

check whether a security is shortable135 (also see §5.1 above).

Note: according to IB,136 “Generic Tick Tags cannot be specified if you elect to use

the Snapshot market data subscription”, and therefore we need to use the streaming-

quotes mechanism, so QuotesNumber>1:

orderId = IBMatlab('action','Query', 'symbol','GOOG', ...

 'GenericTicklist','236', 'QuotesNumber',2, ...

 'CallbackTickGeneric',@IBMatlab_CallbackTickGeneric);

where the function IBMatlab_CallbackTickGeneric is defined as follows:137

function IBMatlab_CallbackTickGeneric(ibConnector, eventData, varargin)

 % Only check the shortable tick type =46, according to

 % https://interactivebrokers.github.io/tws-api/tick_types.html#shortable

 if eventData.field == 46 % 46=Shortable (see footnote below)

 % Get this event's tickerId (=orderId as returned from the

 % original IBMatlab command)

 tickerId = eventData.tickerId;

 % Get the corresponding shortable value

 shortableValue = eventData.generic; % (see footnote below)

 % Now check whether the security is shortable or not

 title = sprintf('Shortable info for request %d', tickerId);

 if (shortableValue > 2.5) % 3.0

 msgbox('>1000 shares available for a short',title,'help');

 elseif (shortableValue > 1.5) % 2.0

 msgbox('This contract will be available for short sale if

shares can be located', title, 'warn');

 elseif (shortableValue > 0.5) % 1.0

 msgbox('Not available for short sale', title, 'warn');

 else

 msg=sprintf('Unknown shortable value: %g',shortableValue);

 msgbox(msg, title, 'error');

 end

 end % if shortable tickType

end % IBMatlab_CallbackTickGeneric

Note that in this particular example we could also have simply used the streaming

quotes data, instead of using the callback:

>> dataS = IBMatlab('action','query','symbol','GOOG','quotesNumber',-1);

>> shortableValue = dataS.data.shortable; % =3 for GOOG

135 https://interactivebrokers.github.io/tws-api/tick_types.html#shortable. Additional details: https://ibkr.info/it/article/2024

136 https://investors.interactivebrokers.com/php/apiguide/interoperability/generictick.htm

137 This code is downloadable from: http://UndocumentedMatlab.com/files/IBMatlab_CallbackTickGeneric.m. Depending on your
TWS/IBG installation version, tickGeneric’s eventData double-precision value field is called either “generic” or “value”.

https://interactivebrokers.github.io/tws-api/tick_types.html#shortable
https://interactivebrokers.github.io/tws-api/tick_types.html#shortable
https://ibkr.info/it/article/2024
https://investors.interactivebrokers.com/php/apiguide/interoperability/generictick.htm
http://undocumentedmatlab.com/files/IBMatlab_CallbackTickGeneric.m

104 IB-Matlab User Guide

11.4 Example – using CallbackContractDetails to get a contract’s full options chain

In this example, we attach a user callback function to contractDetails events in order

to receive the full list of LocalSymbols and associated contract properties of an

underlying security’s options chain.138

As noted in §5.4, it is not possible to receive the entire list of option prices in a single

command; each market price requires a separate request with a specific LocalSymbol.

However, we can use the contractDetails event to extract the full list of option

LocalSymbols in a single command. This relies on the fact that when the Right and

Strike parameters of an option security are empty, IB returns the full list of contracts

matching the other specifications.

We first define our callback function for the event:

function IBCallbackContractDetails(ibConnector, eventData)

 contract = eventData.contractDetails.summary;

 fprintf([contract.localSymbol '\t' ...

 contract.secType '\t' ...

 contract.symbol '\t' ...

 contract.expiry '\t' ...

 contract.right '\t' ...

 contract.multiplier '\t' ...

 num2str(contract.strike) '\n']);

end % IBCallbackContractDetails

Now we ask IB for the current market data of the futures options for Light Sweet

Crude Oil (CL) with empty Right and Strike. We can safely ignore the IB warning

about ambiguous or missing security definition:

>> data=IBMatlab('action','query', 'symbol','CL', 'secType','FOP',...

 'exchange','NYMEX', 'currency','USD', ...

 'expiry','201306', 'right','', 'strike',0.0, ...

 'CallbackContractDetails',@IBCallbackContractDetails)

[API.msg2] The contract description specified for CL is ambiguous;

you must specify the multiplier. {286356018, 200}

LOM3 P6650 FOP CL 20130516 P 1000 66.5

LOM3 P8900 FOP CL 20130516 P 1000 89

LOM3 P11150 FOP CL 20130516 P 1000 111.5

LOM3 C6400 FOP CL 20130516 C 1000 64

LOM3 C8650 FOP CL 20130516 C 1000 86.5

LOM3 C10900 FOP CL 20130516 C 1000 109

LOM3 C6650 FOP CL 20130516 C 1000 66.5

LOM3 C8900 FOP CL 20130516 C 1000 89

... (over 400 different contracts)

138 A synchronous alternative for retrieving the options chain is explained in §5.4 above

105 IB-Matlab User Guide

The returned data struct will naturally contain empty market data, but its

contractDetails field will contain useful data about the requested security: 139

>> data
data =

 reqId: 286356019
 reqTime: '30-Apr-2013 12:55:28'
 dataTime: '30-Apr-2013 12:55:31'

 dataTimestamp: 735354.538562743
 lastEventTime: 735354.538562743
 ticker: 'CL'

 bidPrice: -1

 askPrice: -1
 open: -1

 close: -1
 low: -1
 high: -1

 lastPrice: -1
 volume: -1
 tick: 0.01

 contract: [1x1 struct]
 contractDetails: [1x1 struct]

>> data.contract % these are the details for only one of the options

ans =
 conId: 50318947
 symbol: 'CL'

 secType: 'FOP'
 expiry: '20130516'
 strike: 111.5

 right: 'P'
 multiplier: '1000'
 exchange: 'NYMEX'

 currency: 'USD'
 localSymbol: 'LOM3 P11150'
 ...

>> data.contractDetails
ans =
 summary: [1x1 struct]

 marketName: 'LO'
 tradingClass: 'LO'
 minTick: 0.01

 priceMagnifier: 1
 orderTypes: [1x205 char]
 validExchanges: 'NYMEX'

 underConId: 43635367
 longName: 'Light Sweet Crude Oil'
 contractMonth: '201306'

 industry: []
 category: []
 subcategory: []

 timeZoneId: 'EST'
 tradingHours: '20130430:1800-1715;20130501:1800-1715'
 liquidHours: '20130430:0000-1715,1800-2359;20130501:0000-1715,1800-2359'

 ...

139 Until IBMatlab v2.00, eventData contained Java objects whose fields could be inspected via the struct function e.g.

struct(eventData.contract). Starting in v2.01, such objects are regular Matlab structs. In IB-Matlab v2.19 the struct

field names changed, by removing the m_ field prefix (e.g. eventData.contract.m_symbol .symbol).

106 IB-Matlab User Guide

11.5 Example – using CallbackUpdateMktDepth for realtime order-book GUI update

In this example, we wish to update a real-time GUI display of the order-book (at least

the top few rows of the book), based on Level II data.

As noted in §7.3 above, market-depth events may be sent at a very high rate from the

IB server, and so it is not feasible or useful to update the Matlab GUI for each update.

Instead, we update the GUI with the latest data at a steady rate of 2 Hz (twice a

second). This can be achieved in two different ways: one alternative is to set-up a

periodic timer that will run our GUI-update callback every 0.5 secs, which will call

IBMatlab(…,’QuotesNumber’,-1) to fetch the latest data and update the GUI.

Another alternative, shown here below, is to attach a user callback function to

updateMktDepth140 and updateMktDepthL2141 events, updating an internal data struct,

but only updating the GUI if 0.5 secs or more have passed since the last GUI update:

% IBMatlab_MktDepth - sample Market-Depth usage function

function IBMatlab_MktDepth(varargin)

 % Initialize data

 numRows = 5;

 depthData = cell(numRows,6);

 lastUpdateTime = -1;

 GUI_refresh_period = 0.5 * 1/24/60/60; % =0.5 secs

 % Prepare the GUI

 hFig = figure('Name','IB-Matlab market-depth example', ...

 'NumberTitle','off','CloseReq',@figClosedCallback,...

 'Menubar','none', 'Toolbar','none', ...

 'Resize','off', 'Pos',[100,200,520,170]);

 color = get(hFig,'Color');

 headers = {'Ask exch.','Ask size','Ask price', ...

 'Bid price','Bid size','Bid exch.'};

 formats = {'char','numeric','long', 'long','numeric','char'};

 hTable = uitable('Parent',hFig, 'Pos',[10,40,500,120], ...

 'Data',depthData, ...

 'ColumnName',headers, 'ColumnFormat',formats);

 hButton = uicontrol('Parent',hFig, 'Pos',[50,10,60,20], ...

 'String','Start', 'Callback',@buttonCallback);

 hLabel1 = uicontrol('Parent',hFig, 'Pos',[120,10,100,17], ...

 'Style','text', 'String','Last updated:', ...

 'Horizontal','right', 'Background',color);

 hLabelTime = uicontrol('Parent',hFig, 'Pos',[225,10,100,17], ...

 'Style','text', 'String','(not yet)', ...

 'Horizontal','left', 'Background',color);

 % Send the market-depth request to IB using IB-Matlab

 contractParams = {'symbol','EUR', 'localSymbol','EUR.USD', ...

 'secType','cash', 'exchange','idealpro', ...

 'NumberOfRows',5, varargin{:}};

140 http://interactivebrokers.github.io/tws-api/interfaceIBApi_1_1EWrapper.html#ab0d68c4cf7093f105095d72dd7e7a912
141 http://interactivebrokers.github.io/tws-api/interfaceIBApi_1_1EWrapper.html#ad8afb71cd866b423a84555f500992968

http://interactivebrokers.github.io/tws-api/interfaceIBApi_1_1EWrapper.html#ab0d68c4cf7093f105095d72dd7e7a912
http://interactivebrokers.github.io/tws-api/interfaceIBApi_1_1EWrapper.html#ad8afb71cd866b423a84555f500992968

107 IB-Matlab User Guide

 reqId = IBMatlab('action','query', 'QuotesNumber',inf, ...

 contractParams{:}, ...

 'CallbackUpdateMktDepth', @mktDepthCallbackFcn,...

 'CallbackUpdateMktDepthL2',@mktDepthCallbackFcn);

 % Figure close callback function - stop the market-depth streaming

 function figClosedCallback(hFig, eventData)

 % Delete the figure window and stop any pending data streaming

 delete(hFig);

 IBMatlab('action','query', contractParams{:}, 'QuotesNumber',0);

 end % figClosedCallback

 % Start/stop button callback function

 function buttonCallback(hButton, eventData)

 currentString = get(hButton,'String');

 if strcmp(currentString,'Start')

 set(hButton,'String','Stop');

 else

 set(hButton,'String','Start');

 end

 end % buttonCallback

 % Callback functions to handle IB Market Depth update events

 function mktDepthCallbackFcn(ibConnObj, eventData)

 % Ensure that it's the correct MktDepth event

 if eventData.tickerId == reqId

 % Get the updated data row

 % Note: Java indices start at 0, Matlab starts at 1

 row = eventData.position + 1;

 % Get the size & price data fields from the event's data

 size = eventData.size;

 price = eventData.price;

 % Prevent extra LS digits in uitable display

 price = single(price + 0.00000001);

 % Exchange (marketMaker) data is only available in L2:

 try

 exchange = eventData.marketMaker;

 catch

 exchange = '';

 end

 % Update the internal data table

 if eventData.side == 0 % ask

 if eventData.operation == 0 % insert

 depthData(row+1:end,1:3) = depthData(row:end-1,1:3);

 depthData(row,1:3) = {exchange, size, price};

 elseif eventData.operation == 1 % update

 depthData(row,1:3) = {exchange, size, price};

 elseif eventData.operation == 2 % delete

 depthData(row:end-1,1:3) = depthData(row+1:end,1:3);

108 IB-Matlab User Guide

 depthData(end,1:3) = {[],[],[]};

 else

 % should never happen!

 end

 else % bid (same as ask but the data columns are reversed)

 if eventData.operation == 0 % insert

 depthData(row+1:end,4:6) = depthData(row:end-1,4:6);

 depthData(row,4:6) = {price, size, exchange};

 elseif eventData.operation == 1 % update

 depthData(row,4:6) = {price, size, exchange};

 elseif eventData.operation == 2 % delete

 depthData(row:end-1,4:6) = depthData(row+1:end,4:6);

 depthData(end,4:6) = {[],[],[]};

 else

 % should never happen!

 end

 end

 % Update the GUI if more than 0.5 secs have passed and

 % the <Stop> button was not pressed

 isStopped = strcmp(get(hButton,'String'),'Start');

 if now - lastUpdateTime > GUI_refresh_period && ~isStopped

 set(hTable,'Data',depthData);

 set(hLabelTime,'String',datestr(now,'HH:MM:SS'));

 lastUpdateTime = now;

 end

 end

 end % mktDepthCallbackFcn

end % IBMatlab_MktDepth

109 IB-Matlab User Guide

12 Tracking trade executions

IB-Matlab provides several distinct ways to programmatically track trade executions:

12.1 User requests

To retrieve the list of trade executions done in the IB account today,142 use

Action='executions' as follows (note the similarities to the orders query, §10.1 above):

>> data = IBMatlab('action','executions')

data =

 1x3 struct array with fields:

 orderId

 execId

 time

 exchange

 side

 shares

 symbol

 price

 permId

 liquidation

 cumQty

 avgPrice

 contract

 execution

 commission

This returns a Matlab struct array, where each array element represents a different

execution event.

You can access any of the orders using the standard Matlab dot notation:

>> data(1)

ans =

 orderId: 154735358

 execId: '00018037.4ff27b0e.01.01'

 time: '20120216 18:50:14'

 exchange: 'ISLAND'

 side: 'BOT'

 shares: 1

 symbol: 'GOOG'

 price: 602.82

 permId: 300757703

 liquidation: 0

 cumQty: 1

 avgPrice: 602.82

 contract: [1x1 struct]

 execution: [1x1 struct]

 commission: [1x1 struct]

142 To view executions from previous days, open the Trades Log in TWS and request executions while the Trades Log is displayed

110 IB-Matlab User Guide

>> data(2)

ans =

 orderId: 154737092

 execId: '00018037.4ff2a3b8.01.01'

 time: '20120216 18:58:57'

 exchange: 'BEX'

 side: 'SLD'

 shares: 3

 symbol: 'GOOG'

 price: 605.19

 permId: 300757711

 liquidation: 0

 cumQty: 3

 avgPrice: 605.19

 contract: [1x1 struct]

 execution: [1x1 struct]

 commission: [1x1 struct]

Each of the order structs contains the following data fields:143

 orderId – ID returned by IBMatlab when a trade order is submitted, used by IB

to uniquely identify the trade. TWS orders have a fixed order ID of zero (0).

 execId – unique ID assigned to this execution

 time – time of execution (local user time, not IB server time)

 exchange – name of the exchange which executed the trade

 side – BOT (=buy) or SLD (=sell)

 shares – number of executed shares

 symbol – security’s symbol (use the contract field to get the LocalSymbol)

 price – execution price

 permId – permanent ID used to store the order in the IB server

 liquidation – identifies the position as one to be liquidated last, should the

need arise

 cumQty – cumulative number of shares filled in this trade (used for partial fills)

 avgPrice – weighted average price of partial executions for this trade

 contract – this struct object contains the contract information, including all

the relevant information about the affected security

 execution – this struct object contains information about the specific

execution’s parameters

 commission – this struct object contains information about the execution’s

commission, realized P&L and yield. This information is not always available/

reported. For example, P&L is only reported when you close a position, etc.

143 http://interactivebrokers.github.io/tws-api/classIBApi_1_1Execution.html

http://interactivebrokers.github.io/tws-api/classIBApi_1_1Execution.html

111 IB-Matlab User Guide

For example:

>> data(2).contract

ans =

 conId: 30351181

 symbol: 'GOOG'

 secType: 'STK'

 expiry: []

 strike: 0

 right: []

 multiplier: []

 exchange: 'BEX'

 currency: 'USD'

 localSymbol: 'GOOG'

 primaryExch: []

 includeExpired: 0

 secIdType: []

 secId: []

comboLegsDescrip: []

 comboLegs: []

 underComp: []

>> data(2).execution

ans =

 orderId: 154737092

 clientId: 8101

 execId: '00018037.4ff2a3b8.01.01'

 time: '20120216 18:58:57'

 acctNumber: 'DU90912'

 exchange: 'BEX'

 side: 'SLD'

 shares: 3

 price: 605.19

 permId: 300757711

 liquidation: 0

 cumQty: 3

 avgPrice: 605.19

 orderRef: []

 evRule: []

 evMultiplier: 0

>> data(2).commission

ans =

 execId: '00018037.4ff2a3b8.01.01'

 commission: 1.107675

 currency: 'USD'

 realizedPNL: 15.527415

 yield: Inf

 yieldRedemptionDate: 0

Note: in IB-Matlab v2.19 (11/2022) and newer, values of Inf indicate an

undefined/uninitialized value; in IB-Matlab v2.18 and older such values were

reported as 1.79769313486232e+308 (realmax) or 2147483647 (intmax).

112 IB-Matlab User Guide

We can filter the results based on a specific Symbol and/or OrderId. For example:

>> data = IBMatlab('action','executions', 'OrderId',154737092)

data =

 orderId: 154737092

 execId: '00018037.4ff2a3b8.01.01'

 (etc.)

Or alternatively (note that symbol filtering is case insensitive):

>> data = IBMatlab('action','executions', 'symbol','goog')

Of course, it is possible that there are no executions that match the filtering criteria:

>> data = IBMatlab('action','executions', 'symbol','xyz')

data =

 []

12.2 Automated log files

IB-Matlab automatically stores two log files of trade executions. Both files have the

same name, and different extensions:

 A CSV (comma separated values) text file named <LogFileName>.csv. A

separate line is stored for each execution event. This file can be opened in

Excel as well as by any text editor.

 A MAT (Matlab compressed format) binary file named <LogFileName>.mat

that stores the struct array explained in §12.1 above, excluding the sub-structs

contract and execution.

The default file name (<LogFileName>) for these files is IB_tradeslog_yyyymmdd,

where yyyymmdd is the current date. For example, on 2012-02-15 the log files will

be called IB_tradeslog_20120215.csv and IB_tradeslog_20120215.mat. The log file

name will remain unchanged until you modify it or restart Matlab.

The log filename can be modified by setting the LogFileName parameter (default =

‘./IB_tradeslog_YYYYMMDD.csv’) when you specify a trade order:

newLogFileName = ['./IB_tradeslog_' datestr(now,'yyyymmdd') '.csv'];

orderId = IBMatlab('Action','Buy', 'LogFileName',newLogFileName, ...);

Note the leading ‘./’ in the default value of LogFileName – you can use any other

folder path if you want to store the log files in a different folder than the current

Matlab folder. Also note that the new LogFileName should end with ‘.csv’.

Also note that commission information is NOT included in the log file, since it is

reported by IB in a separate message (CommissionReport) which is sent after the

execution message th is logged in the file.

113 IB-Matlab User Guide

It should be noted that using these log files, which is done by default, can have a

significant performance impact in cases of rapid partial executions. For example, if

we buy 1000 shares of a security whose normal ask size is 5 shares, then we should

expect about 200 separate execution messages when the order is filled. This in turns

translates into 200 separate file saves, for each of the two log files (CSV, MAT). This

could cause MATLAB to appear frozen for quite a long time until all this I/O is done.

To solve the performance issue in cases where the execution logs are not really

needed, set the LogFileName parameter to the empty string ('') to prevent logging.

12.3 Using CallbackExecDetails

You can set the CallbackExecDetails parameter to a user-defined Matlab function

that will process each execution event at the moment that it is reported. Section §11.2

above contains a working example of such a function.

As noted in §11.1, you only need to set CallbackExecDetails once (this is normally

done in the same IBMatlab command that sends the trade order). You do not need to

re-specify this callback in subsequent IBMatlab commands, unless you wish to

override the parameter with a different function, or to cancel it (in which case you

would set it to [] or '').

114 IB-Matlab User Guide

13 TWS connection parameters

When using IB-Matlab, there is no need to worry about connecting or disconnecting

from the IB client (TWS/Gateway) – IB-Matlab handles these activities automatically,

without requiring user intervention. The user only needs to ensure that TWS/Gateway

is active and logged-in when the IBMatlab command is invoked in Matlab.

IBMatlab connects to whichever TWS is currently active. If you login to TWS with a

paper-trade login, IBMatlab will work on the simulated account, and similarly for a

live account. TWS’s account type is transparent to IBMatlab: the only way to control

whether IBMatlab will use simulated/live trading is to use the appropriate TWS login.

IB-Matlab automatically connects to IB when any request that requires IB is made and

the connection is not live. This happens upon the first IBMatlab request (when the

initial connection needs to be established); after TWS/Gateway closed; after calling

IBMatlab('disconnect') or ibConnector.disconnectFromTWS (see §15.1); after Matlab

restarts; when specifying a new ClientID; and in a few other special cases.144

data = IBMatlab('action',...); % do whatever

IBMatlab('disconnect'); % disconnect from IB

data = IBMatlab('action','portfolio'); % will automatically reconnect

To programmatically check whether IB-Matlab is currently connected to IB, do this:

[~,ibConnector] = IBMatlab;

flag = ibConnector.isConnected; % true/false

IB-Matlab does not require any special configuration when connecting to IB. It uses

a random client ID when first connecting to TWS or the IB Gateway, and this is

perfectly ok for the majority of use-cases.

However, in some specific cases, users may wish to control the connection properties.

This is supported in IB-Matlab using the following input parameters:

Parameter Data type Default Description

ClientId integer (random)
A number that identifies IB-Matlab to

TWS/Gateway. 0 acts as another TWS.

Host string
'localhost' =

'127.0.0.1'

IP address of the computer that runs

TWS/Gateway.

Port integer 7496
Port number used by TWS/Gateway for

API communication.

AccountName string ''

The specific IB account used for queries or

trades. Useful when you handle multiple

IB accounts (§8.5), otherwise leave empty.

The ClientID, Host and Port properties should match the API configuration of the

TWS/Gateway applications, as described in §2 above (installation steps #5,6).

144 See discussion of the ReconnectEvery parameter (§7.1 above).

115 IB-Matlab User Guide

In reconnections of any kind, IB-Matlab automatically tries to reuse the same ClientID

as in the previous connection, even if you do not explicitly specify the ClientID. If the

initial connection fails, IB-Matlab automatically tries a different (random) ClientID.

If IB-Matlab cannot connect to IB using either the specified or a random ClientID,

IB-Matlab will try to connect using other common Port values (4001, 4002 that are

commonly used by IB Gateway; and 7496, 7497 that are commonly used by TWS).

This mechanism enables IB-Matlab to seamlessly connect to TWS or IB Gateway,

whichever of them happens to be active, without requiring users to specify the Port.

To prevent IB-Matlab from trying to connect using these standard Port values,

specify the required Port parameter as a string with a trailing '!', for example:

IBMatlab(...,'port',1234); %will also try ports 4001,4002,… as needed

IBMatlab(...,'port','1234!'); %will only try port #1234, not others

Setting a static ClientID can be used to modify open orders (and track executions)

placed in a different IB-Matlab session (after the original IB-Matlab client has discon-

nected from IB and a new IB-Matlab has connected). IB prevents clients from accessing

orders placed by other clients, unless all IB-Matlab sessions use the same ClientID.

ClientID=0 is special: it simulates TWS and enables IB-Matlab to receive/modify/

cancel open orders that were interactively entered directly in TWS (not via IB-Matlab).

Instead of ClientID 0, you can use any value that you pre-configured as Master API

Client ID in TWS’s API configuration (see §2 installation steps #5,6). Using a Master

API Client ID enables IB-Matlab to track/modify orders placed in IB using any ClientID.

If you only connect IB-Matlab and no other API client to TWS, and if you only use

the static ClientID 0, then you do not need to worry about Master API Client ID setup.

When a new ClientID is specified for any IBMatlab command, IBMatlab

automatically disconnects the previous client ID and reconnects as the new ClientID.

In the IB Gateway, this will be seen as a dark-gray tab contents for the old ClientID

and a light-gray tab contents for the connected ClientID:

data = IBMatlab('action','executions', 'ClientID',8103)

116 IB-Matlab User Guide

Note that TWS and the IB Gateway have a limitation that they can only be connected

to a single IB-Matlab client at any time. Also, TWS and the IB Gateway cannot be

logged-in at the same time to the same IB account. These IB limitations mean that you

cannot simultaneously connect multiple IB-Matlab instances to the same IB account.

On the other hand, it is possible to control multiple IB accounts from the same TWS

application, and in such a case IB-Matlab can access all of these accounts when it

connects to TWS, using the AccountName parameter. Please refer to your TWS

documentation (or IB’s customer service) to set up your TWS accordingly.

For additional information regarding the usage of IB-Matlab with multiple accounts,

typically used by Financial Advisors, refer to §8.5 above.

117 IB-Matlab User Guide

It is also possible to run TWS with one IB account, and IB Gateway with another

account, either on the same computer as IB-Matlab, or on another machine. You can

then connect one or more IB-Matlab instances to these IB applications at the same

time. Simply ensure that your Host, Port and AccountName parameters are OK for

any IBMatlab command. IB-Matlab can maintain simultaneous connections to both

TWS and IB Gateway, on different Ports, as long as they are both on the same Host.

TWS & IB Gateway on the same host (computer) can be controlled by a single IB-Matlab

Another use is to connect IB-Matlab on one computer (which has Matlab installed)

to TWS/Gateway on another computer, which may not necessarily have Matlab. In

this case, simply set the Host and possibly also the Port parameters.145 However, you

cannot connect to separate TWS/Gateways on separate computers: all TWS/Gateways

must reside on the same Host (which is not necessarily IB-Matlab’s computer):

Separate TWS/Gateways on separate hosts (computers) cannot be controlled by a single IB-Matlab

To control two or more TWS/Gateways, it is better to use distinct IB-Matlab

instances, i.e., distinct Matlab sessions, each running its own IB-Matlab instance and

145 IB only sends live/historic data to a single computer, so retrieving such data requires IB-Matlab to be connected to the TWS

that gets the live data, not to another TWS on a different computer. So if you connect TWS to your live account on computer
#1, and another TWS to your paper-trading account on computer #2, then IB-Matlab can retrieve data only via computer #1.

118 IB-Matlab User Guide

connecting to a single IB client (TWS or Gateway). This helps prevent mix-ups in the

AccountName or Port that may occur when IB-Matlab controls separate IB clients:

Or alternatively (this requires two separate IB-Matlab licenses):146

Note: For IB-Matlab to work, the IB client (TWS or IB Gateway) must be running

and connected to IB’s servers. Depending on your setup, the client may periodically

log out (once a day, or once a week on Sunday147). You will need to login again for

IB-Matlab to be able to communicate with IB. To keep the connection active

continuously, you can either use an IB Gateway version earlier than 974, or use a 3rd-

party program such as IBC to automatically keep TWS connected.148

IB servers occasionally disconnect API clients (for example, during routine server

maintenance), causing stale API connections.149 IB-Matlab may still be connected to

TWS/Gateway, but cannot receive data or send trade orders. In such cases, IB-Matlab

needs to disconnect and reconnect to IB, as shown at the end of §4.1 above.

146 A separate IB-Matlab license is required for each computer running IB-Matlab, except if you have a site license.

147 https://www.interactivebrokers.com/en/software/tws/usersguidebook/configuretws/configurelockandexit.htm

148
 https://github.com/IbcAlpha/IBC also see https://groups.io/g/twsapi/topic/79291212, https://groups.io/g/twsapi/topic/79521446

149 https://groups.io/g/twsapi/topic/81037896#46681

https://www.interactivebrokers.com/en/software/tws/usersguidebook/configuretws/configurelockandexit.htm
https://github.com/IbcAlpha/IBC
https://groups.io/g/twsapi/topic/79291212
https://groups.io/g/twsapi/topic/79521446
https://groups.io/g/twsapi/topic/81037896#46681

119 IB-Matlab User Guide

14 Handling errors, problems, and IB messages

14.1 Messages sent from IB

IB constantly sends messages of various severity levels to IB-Matlab. These range

from the mundane (e.g., “Market data farm connection is OK: cashfarm {-1, 2104}”)

to the problematic (e.g., “No security definition has been found for the request

{153745243, 200}”). All these messages arrive as regular events of type error, just

like all the other information sent from IB (see §11 above for details).

IB-Matlab automatically infers whether an IB message is an error, warning or infor-

mational message. Errors are sent to the standard error stream (stderr) and displayed

in red in the Matlab console.150 Other messages are sent to the standard output

(stdout) and displayed in regular black text on the Matlab console.

Users can control the display of IB messages in the Matlab console using the

MsgDisplayLevel parameter, which accepts the following possible values:

 -2 – most verbose output, including all the information contained in all

incoming IB events (not just messages)

 -1 – display all messages as well as basic events information

 0 (default) – display all messages, but not other events

 1 – only display error messages, not informational messages

 2 – do not display any automated output onscreen (not even errors)

The information contained in the message events varies depending on message

type.151 The events have one of the following data sets:

Contents Description Displayed as Displayed onscreen if

Message general error messages [API.msg1] MsgDisplayLevel < 2

message, id (data1),

code (data2)

errors and infor-

mational messages
[API.msg2]

MsgDisplayLevel < 1 or:

data2<2000, data2>3000

message,

exception object

severe IB errors

(exceptions)
[API.msg3] MsgDisplayLevel < 2

Note: no IB message (regardless of data1, data2) is displayed if MsgDisplayLevel>=2

A typical example of such messages is the following:

>> data = IBMatlab('action','query', 'symbol','EUR');

[API.msg2] No security definition has been found for the request

{153745243,200}

150 The Matlab console is the Desktop Command Window in the case of an interactive Matlab session, or the command-prompt

window in the case of a compiled (deployed) program.
151 http://interactivebrokers.github.io/tws-api/interfaceIBApi_1_1EWrapper.html#a7dfc221702ca65195609213c984729b8

http://interactivebrokers.github.io/tws-api/interfaceIBApi_1_1EWrapper.html#a7dfc221702ca65195609213c984729b8

120 IB-Matlab User Guide

Most IB messages are of type msg2 (as in this example) and contain two numeric

fields: data1 contains message-specific ID, which typically corresponds to the order

ID or request ID that caused the problem; data2 contains the message code (type). In

the example above, type='msg2', id (data1) =153745243, and code (data2) =200. This

tells us that this error (code=200) occurred for request ID 153745227, so we can

correlate between the error and our request. Some messages do not have an associated

message-specific ID; in such cases id (data1) = -1. For example, “Market data farm

connection is OK:cashfarm” (code 2104) is a general message about IB connectivity

that is not related to any specific user request or order, so its id (data1) field is -1.

The full list of message codes (data2) for API.msg2 (which is the most common

message type) is listed online.152 It is sub-divided into three groups:

 Error messages (data2 codes between 100-999 or >10000)

 System messages (data2 codes between 1000-1999)

 Warning messages (data2 codes between 2000-2999)

The most recent message from IB can be queried programmatically, as follows:

IBMatlab('lastIBError') returns the latest error message, which is a subset of all

messages; IBMatlab('lastIBMessage') returns the latest message of any type (error,

system or warning). The lastIBMessage will typically have a more recent timestamp

than lastIBError, except if the latest IB message was an error (in this case both

queries will return the same result):

>> IBMatlab('lastIBError')

ans =

 dateNum: 738475.78192559

 dateTime: '2021-11-15 18:45:58.371'

 msg: 'Historical Market Data Service error message:Trading TWS

session is connected from a different IP address'

 type: 'msg2'

 id: 1222731061

 code: 162

>> IBMatlab('lastIBMessage')

ans =

 dateNum: 738476.496878067

 dateTime: '2021-11-16 11:55:30.265'

 msg: 'Market data farm connection is OK:usfarm'

 type: 'msg2'

 id: -1

 code: 2104

We can use this feature to handle IB errors within our program logic, for example:

data = IBMatlab('action','query', ...);

lastError = IBMatlab('lastIBError');

ONE_SECOND = 1 / 24/ 3600;

152 https://interactivebrokers.github.io/tws-api/message_codes.html

https://interactivebrokers.github.io/tws-api/message_codes.html

121 IB-Matlab User Guide

if now – lastError.dateNum < ONE_SECOND

 msgbox(lastError.msg, 'IB error', 'error');

end

In order to ensure that we refer to a recent IB error due to the last request, rather than

to a very old message, we can check the time that passed since the error timestamp

(as in the code snippet above, which checked for an error message in the past second).

Alternatively, add an optional 'clear' parameter to the IBMatlab('lastIBError') or

IBMatlab('lastIBMessage') call, to clear the last error/message before sending our

main query to IB. This ensures that any error/message that arrives after then can

indeed be attributed to our main query:

IBMatlab('lastIBError', 'clear'); %clear the lastError

data = IBMatlab('action','query', ...); %send the main data query

lastError = IBMatlab('lastIBError'); %lastError due to the data query

if ~isempty(lastError)

 msgbox(lastError.msg, 'IB error', 'error');

end

We can trap and process the message events just like any other IB events, using

Matlab callbacks. Note that the parameter for message callback is CallbackMessage,

although for some unknown reason the IB event is called error:

data = IBMatlab('action','query', ..., 'MsgDisplayLevel',-1, ...

 'CallbackMessage',@IBMatlab_CallbackMessage);

In this example, all IB messages will be passed through IBMatlab_CallbackMessage,

which is a Matlab function that we should create (it is not part of IBMatlab). Here is a

sample implementation of such a message processing function that you can adapt:153

% Processing function for IB messages

function IBMatlab_CallbackMessage(ibConnector, eventData)

 % Process messages based on their code:

 if strcmp(eventData.type, 'msg2') % most common message: API.msg2

 switch eventData.data2 % data2 contains the message code

 case 100 % Max rate of message has been exceeded

 msgbox(eventData.message, 'IB error');

 case 200 % Ambiguous/non-existing contract specification

 disp('Ambiguous (or invalid) contract specs')

 ...

 otherwise % Any other message type

 end

 else % msg1 or msg3

 ...

 end

end

IB’s error messages are often cryptic. It is sometimes difficult to understand the

problem’s root cause.154 Several mechanisms can help us with this detective work:

153 See §11 for additional explanations and usage examples of user callback functions for IB messages/events
154 See examples in §14.2 above

122 IB-Matlab User Guide

 We can set IBMatlab’s MsgDisplayLevel parameter to -1 or -2 (see above).

 We can set IBMatlab’s Debug parameter to 1 (default=0). This will display in

the Matlab Command Window a long list of parameters used by IBMatlab to

prepare the request for IB. Check this list for any default values that should

actually be set to some non-default values.

 We can set the API logging level to “Detailed” in the TWS/Gateway API

configuration window.155 By default it is set to “Error”, and can be changed at

any time. This affects the amount of information (verbosity) logged in IB’s

log files that are located in IB’s installation folder (e.g., C:\Jts).156 The log

files are separated by the day of week, and have names such as:

ibgateway.Thu.log, log.Wed.txt, api.8981.Tue.log. These refer, respectively, to

the main Gateway log, the main TWS log, and a log of requests/responses for

a specific ClientID. The api.*.log file reflects the contents of the

corresponding tab in the Gateway application (see screenshot below). Note

that setting the logging level to “Detail” has a performance overhead and

should be avoided except when debugging a specific issue. In other cases, you

can set the level to “Information”, “Warning” or back to the default “Error”.

155 The setting to create an API message file needs to be selected as well (naturally); see §2, installation step 5d. Also see

http://interactivebrokers.github.io/tws-api/support.html#tws_logs. In recent versions of TWS/Gateway, the log files are not

saved automatically but are available from the main menu: Account Diagnostics API logs.
156 http://interactivebrokers.github.io/tws-api/logs.html

http://interactivebrokers.github.io/tws-api/support.html#tws_logs
http://interactivebrokers.github.io/tws-api/logs.html

123 IB-Matlab User Guide

14.2 Ambiguous/invalid security errors

Much of IBMatlab’s functionality relates to a specific security that you choose to

query or trade. IB is not very forgiving if you do not provide the exact security

specifications (a.k.a. contract) that it expects: in such a situation, data is not returned,

and an often-cryptic error message is displayed in Matlab’s Command Window:157

>> data = IBMatlab('action','query', 'symbol','EUR')

[API.msg2] No security definition has been found for the request {153745243,200}

data =

 reqId: 153745243

 reqTime: '13-Feb-2012 21:25:42'

 dataTime: ''

 dataTimestamp: -1

 ticker: 'EUR'

 bidPrice: -1

 askPrice: -1

 open: -1

 close: -1

 low: -1

 high: -1

 lastPrice: -1

 volume: -1

 tick: 0.01

IB does not report the specific error cause; we need to discover this ourselves. It turns

out that in this specific case, some default parameter values (SecType='STK',

Exchange='SMART', LocalSymbol=Symbol) are incorrect and must be overridden:

>> data = IBMatlab('action','query', 'symbol','EUR', ...

 'localSymbol','EUR.USD', 'secType','cash', ...

 'exchange','idealpro')

data =

 reqId: 153745244

 reqTime: '13-Feb-2012 21:28:51'

 dataTime: '13-Feb-2012 21:28:52'

 dataTimestamp: 734912.895051898

 ticker: 'EUR'

 bidPrice: 1.32565

 askPrice: 1.32575

 open: -1

 close: 1.3197

 low: 1.32075

 high: 1.32835

 lastPrice: -1

 volume: -1

 tick: 5e-005

 bidSize: 26000000

 askSize: 20521000

Some assets are traded on multiple exchanges (for example, MSFT is traded on both

ISLAND and AEB); using the default Exchange='SMART' will thus cause an error.

157 The error messages can be suppressed using the MsgDisplayLevel parameter, and can also be trapped and processed using

the CallbackMessage parameter – see §14.1 below for details

124 IB-Matlab User Guide

In other cases, we may also need to specify the Currency (default='USD'). For

example, the Russell 2000 index (RUT) is listed on the Toronto Stock Exchange

(TSE) and trades in CAD currency. Likewise, the USD.JPY currency pair trades in

Yens (JPY currency), not USD.158 Similarly, when Exchange='SMART' and

Symbol='IBM', the Currency must be specified since IBM trades in either GBP or

USD. Due to such potential ambiguities it is a good idea to always specify Currency.

For options/future we also need to specify the Expiry, Strike and Right parameters.

In some cases, specifying the Expiry in YYYYMM format is ambiguous because the

underlying contract has several separate futures/options expiring in the same month:
>> data = IBMatlab('action','query','symbol','TNA','secType','opt',...

 'expiry','201202', 'strike',47, 'right','CALL')

[API.msg2] The contract description specified for TNA is ambiguous;

you must specify the multiplier. {149386474, 200}

The solution is to specify the Expiry date in YYYYMMDD format (i.e., specify the

exact full date rather than just the month), or to specify the Multiplier parameter.

If you are unsure of a security’s contract details, try using different parameter values.

Alternatively, right-click the ticker in TWS and select “Contract Info / Description”:

Contract descriptions for USD.JPY and an IBM option, as reported in TWS

This specific example shows that the LocalSymbol for the IBM OCT12 PUT option

is ‘IBM 121020P00100000’ (Symbol is ‘IBM’). This LocalSymbol has multiple

spaces159. For this reason, it is best to copy-paste the value directly from the window.

158 http://interactivebrokers.com/en/index.php?f=2222&ns=T&exch=ibfxpro
159 OSI specification: http://interactivebrokers.com/download/ociguide.pdf, http://en.wikipedia.org/wiki/Option_symbol

http://interactivebrokers.com/en/index.php?f=2222&ns=T&exch=ibfxpro
http://interactivebrokers.com/download/ociguide.pdf
http://en.wikipedia.org/wiki/Option_symbol

125 IB-Matlab User Guide

Alternatively, use your TWS paper-trade (simulated trading) account to buy a virtual

unit of the security, then use IB-Matlab to read the portfolio (see §4 below) and

check the reported contract data. For example:

>> data = IBMatlab('action','portfolio');

>> data(3)

ans =

 symbol: 'EUR'

 localSymbol: 'EUR.USD'

 exchange: 'IDEALPRO'

 secType: 'CASH'

 currency: 'USD'

 right: '0'

 ...

As a last resort, contact IB’s API customer support help-desk (see Appendix A.1

below) to request the necessary parameters for a particular security.

Here are some examples of IB symbols:160

LocalSymbol Exchange SecType
Curr

ency
Description

CO SMART STK USD Cisco Corp., SMART (NASDAQ)

GE SMART STK USD General Electric, SMART (NYSE)

VOD LSE STK GBP Vodafone Group, London Stock Exch.

SPX CBOE IND USD S&P 500 Index

INDU NYSE IND USD Dow Jones Industrials Average Index

ESM1 GLOBEX FUT USD Emini S&P 500 (ES) 6/2011 futures

ES GLOBEX CONTFUT USD Emini S&P continuous (rolling) future

YM JUN 11 ECBOT FUT USD

Emini Dow (YM) 6/2011 future

Note: 3 spaces between symbol and

month,1 space between month, year

QMN5 NYMEX FUT USD Crude Oil (QM) 6/2005 future

FGBL DEC 23 EUREX FUT EUR German Bund 12/2023 future

P OZN DEC

15 13100
ECBOT FOP USD

10-year T-note (ZN) 11/2015, 131.0

Put future-option. Note 2 spaces, twice

XAUUSD SMART CMDTY USD London Gold Spot

EUR.USD IDEALPRO CASH USD Euro/Dollar currency pair

To get the full option chain list, see §5.4 and §11.4.

160 http://www.amibroker.com/ib.html (scroll down to the SYMBOLOGY section); Note: DTB exchange is now called EUREX.

http://www.amibroker.com/ib.html

126 IB-Matlab User Guide

14.3 Programmatic errors

In addition to messages reported by IB, the user’s program must check for and handle

cases of exceptions caused by IB-Matlab. In the vast majority of cases, these are due

to invalid input parameters being passed to IBMatlab (for example, an invalid Action

parameter value). However, an exception could also happen due to network problems,

or even an occasional internal bug due to an unhandled edge-case situation.

To trap and handle such programmatic exceptions, wrap your calls to IBMatlab

within a try-catch block, as follows:

try

 data = IBMatlab('action','query', ...);

catch

 % process the exception here

end

Try-catch blocks have negligible performance and memory overheads and are a very

effective way to handle programmatic errors. We highly recommend that you use

them very liberally within your user program, not just to wrap IBMatlab calls but also

for any other processing tasks. I/O sections in particular (reading/writing to files) are

prone to errors and are prime candidates for such exception handling. The same

applies for processing blocks that handle user inputs (we can never really be too sure

what invalid junk a user might enter in there, can we?).

Sometimes it is preferable to silently trap errors, rather than receive a Matlab exception

error. This can be done by specifying a 5th output argument in the call to IBMatlab:

[orderId, ibConnector, contract, order, errMsg] = ...

 IBMatlab('action','BUY',...);

if ~isempty(errMsg)

 % process the error here (errMsg is a char array)

end

In most cases we do not need the ibConnector, contract, order output args of

IBMatlab (see §9.6 for their usage), so such cases can be simplified to this:

[orderId, ~, ~, ~, errMsg] = IBMatlab('action','BUY',...);

if ~isempty(errMsg)

 % process the error here (errMsg is a char array)

end

Programmatic errors may occur in programs that rely on valid account, portfolio or

market-data data returned from IB. Unfortunately, sometimes the IB server data feed

(or perhaps only the interface) is not as reliable as it could be. IB sometimes returns

empty or invalid data field values, typically -1. This issue, together with some

workarounds, is discussed in §14.2 and §4. User programs should implement sanity

checks on the returned data, and resend the request until valid data is received. Failing

to do so may result in applicative errors or bad trading decisions.

127 IB-Matlab User Guide

A common cause of program errors is due to specifying numeric values as strings or

vice versa. For example, specifying 12 rather than “12”, or “0” rather than 0 or false.

Numbers should not be enclosed with quote marks when specifying parameter values.

For example, specify IBMatlab(…, 'Strike',5.20), not IBMatlab(…, 'Strike','5.20'),

otherwise Matlab might get confused when trying to interpret the string '5.20' as a

number. Each parameter has a specific data type, which is listed in the parameter tables

in this guide. IB-Matlab is often smart enough to automatically convert to the correct data

type, but you should not rely on this: it is better to always use the correct data type.

Another common cause of errors when using IB-Matlab is relying on default

parameter values (for example, relying on the default SecType ('STK') for non-equity

contracts (Forex, future, option etc.); see §3.2 and §14.2 for additional details.

The final type of error is out-of-memory errors, either directly in Matlab or in Java:

Matlab “out of memory” errors might occur when receiving and storing a huge

amount of streaming/historic data. These can be fixed by running IB-Matlab on a

computer having more memory, or by reducing the amount of stored data.161

Java memory errors are recognized by the message “java.lang.OutOfMemoryError:

Java heap space”. They can be solved by increasing Matlab’s pre-allocated Java heap

memory using Matlab’s preferences, or via a java.opts file.162

A possible cause of confusion is Matlab’s default use of the “short” format, which

rounds numbers in the Matlab console (Command Window) to 4 digits after the decimal.

This is not an error or bug: The data actually has higher precision, so when we use

it in a calculation the full precision is used; this is simply not displayed in the console.

IB-Matlab does not truncate/round/modify the IB data in any manner!

To display the full numeric precision in the Matlab console, change your Matlab’s

Command Window’s Numeric Format from “short” to “long” (or “long g”) in

Matlab’s Preferences window, or use the “format long” Matlab command:

>> data = IBMatlab('action','query','localsymbol','EUR.USD',...);

>> data.askPrice % short format

ans =

 1.0727

>> format long g % long format

>> data.askPrice

ans =

 1.07265

161 Also see: http://www.mathworks.com/help/matlab/matlab_prog/resolving-out-of-memory-errors.html
162 https://www.mathworks.com/matlabcentral/answers/92813-how-do-i-increase-the-heap-space-for-the-java-vm-in-matlab

http://www.mathworks.com/help/matlab/matlab_prog/resolving-out-of-memory-errors.html
https://www.mathworks.com/matlabcentral/answers/92813-how-do-i-increase-the-heap-space-for-the-java-vm-in-matlab-6-0-r12-and-later-versions

128 IB-Matlab User Guide

129 IB-Matlab User Guide

14.4 Troubleshooting specific problems/errors

Error Description / solution Sections

Cannot connect to IB.

Confirm that "Enable
ActiveX and Socket Clients"

is enabled on the TWS

"Configure->API" menu.

Enable ActiveX etc. in TWS/Gateway

API settings. Note that IBGateway has

a separate set of settings than TWS.

2.0 steps

#5-6

failed to connect to IB

using Port=7496; retrying

to connect using Port=4001

TWS and IBGateway use different

default ports for API connections. You

can modify their API seettings, specify

the Port parameter in your IBMatlab

command, or simply ignore this message.

2.0 steps

#5-6

13

IBMatlab is not activated

on this computer

Your activated computer fingerprint has

changed. Revert this change or contact

us to modify the activated fingerprint.
2.1, 2.2

Your IBMatlab license has

expired on 1-Jun-2014

IB-Matlab’s license is limited in

duration. When the license term

expires, you can contact us to renew it.

2.1

Cannot connect to

undocumentedmatlab.com to

validate your IBMatlab

license

IB-Matlab validates its license on the

UndocumentedMatlab.com server. Your

internet connection may be down, or

this domain may be blocked by your

firewall (your IT admin can unblock it).

2.1

IBMatlab.jar was not found

in the static Java

classpath

IB-Matlab cannot work properly unless

its Java file (IBMatlab.jar) is added to

Matlab’s static Java classpath.

2.3

NullPointerException

com.mathworks.jmi.bean.-
MatlabBeanInterface.-

addCallback

IB-Matlab cannot work properly unless

its Java file (IBMatlab.jar) is added to

Matlab’s static Java classpath.

2.3

(Commands can be sent to IB, but

no data is received from IB)

IB-Matlab cannot receive IB data

unless its Java file (IBMatlab.jar) is

added to Matlab’s static Java classpath.

2.3

Unknown parameter 'xyz'

The specified parameter in the IBMatlab
command is not valid. Refer to the

relevant User Guide section for a list of
acceptable parameter names, or type

“help IBMatlab” in the Matlab console.

3.1

Max rate of messages per

second has been exceeded:

max=50 rec=55

IB server limits the rate of messages

sent to the IB server to 50 msgs/sec.

Reduce your requests rate using

Matlab’s pause(0.02) command.

3.1, 8

130 IB-Matlab User Guide

Error Description / solution Sections

The account code is required

for this operation

or:
You must specify an allocation

(either a single account,

group, or profile)

You manage multiple IB accounts, and

IB does not understand which of these

accounts relates to your requested

action. Specify the AccountName or

FAGroup or FAProfile parameter.

3.2, 8.5,

9.7

Historical Market Data Service

error message:

No market data permissions for

NYSE STK

You are not subscribed to the IB service

of fetching historical data for the

specified security type or exchange.

5.1

Requested market data is not

subscribed

You are not subscribed for IB real-time

data for the asset. Sometimes happens

when security parameters are incorrect.
5.1, 14.2

Deep market data is not

supported for this combination

of security type/exchange

The specified exchange does not

provide market depth (level 2) infor-

mation for the requested security type.
5.2

Historical data request pacing

violation

Historical and real-time streaming data

is subject to IB’s strict pacing limits.

Either limit your requests rate, or

ask IB to raise your account limits.

6, 7.1

Historical data bar size

setting is invalid

IB only accepts some combinations of

barSize/duration in historic data requests
6

Historical Market Data Service

error message: No historical

market data for

EUR/CASH@IDEALPRO Last 1d

The default WhatToShow parameter

value is ‘Trades’, which is not

supported for Forex. Specify a

‘Midpoint’ parameter value instead.

6

(IB-Matlab stops receiving

streaming data from IB)

Streaming data from TWS is sometimes

stopped, depending on data rate. Try to

set ReconnectEvery, or restart Matlab.

7.1

Symbol "IBM" is not currently

streaming

Start the streaming (QuotesNumber>0)

before requesting any streamed data.
7.1, 7.2,

7.3

Can't find EID with tickerId

You can safely ignore this message:

It represents a harmless request from

IBMatlab to IB, to cancel a streaming

data request that was already cancelled.

7.2

The order size cannot be zero
You have either specified Quantity=0,

or FAPercentage with invalid direction
8.1, 8.5

Order rejected - reason:

Invalid value in field #6159

One of the provided parameter values

(e.g., FAMethod) is invalid.
8.5

131 IB-Matlab User Guide

Error Description / solution Sections

Invalid ICS spread
You specified incorrect ComboRatios

values between the combo-order legs.
9.5

Unable to modify this order as

it is still being processed

You tried to modify an order before it

was fully registered by the IB server.
9.6

Exercise ignored because

option is not in-the-money

You tried to exercise an out-of-money

option without specifying Override.
9.7

No unlapsed position exists in

this option in account

You tried to exercise an option that

does not exist in your account.
9.7

Order rejected - reason: The

time-in-force is invalid for

IB algorithmic orders

You tried to send an IBAlgo order with

an invalid (or default='GTC') value.

Use TIF='Day' instead.

9.8

No security definition has

been found for the request

or:
Either Symbol or LocalSymbol

(or both) must be specified to

create a valid trade order

The requested security’s parameters are

not properly (or completely) specified,

so IB cannot identify it.

Specify additional contract parameters.

14.2

The contract description

specified for TNA is

ambiguous; you must specify

the multiplier

IB cannot decide which of several

possible securities you intended.

Specify additional contract parameters.
14.2

(Missing digits displayed in

Matlab Command Window)

Perhaps Matlab’s display format is set

to “short” instead of “long”
14.3

Out of memory

or:
Maximum variable size allowed

by the program is exceeded

or:
Requested array exceeds

maximum array size preference

This Matlab error might occur when

receiving huge amounts of streaming/

historic data. Different Matlab releases

display different messages with the

same basic idea. Run IB-Matlab on a

computer with more memory, or reduce

the amount of stored/processed data.

14.3

java.lang.OutOfMemoryError:

Java heap space

Run Matlab with more allocated Java

heap memory than the default value.

This can be set in Matlab’s preferences,

or via a java.opts file.

14.3

132 IB-Matlab User Guide

15 Using the Java connector object

15.1 Using the connector object

Each call to IBMatlab returns two output values:

 data – generally contains the request ID or the requested query data
 ibConnector – a Java object reference

In most cases, users do not need to use ibConnector and so we can generally ignore

the second output value and simply call IBMatlab with a single output:
data = IBMatlab('action','query', ...);

However, flexible and feature-rich as IBMatlab is, it does not contain the entire set of

functionalities exposed by IB’s Java API. We can use ibConnector to access some

additional functionalities:
[data, ibConnector] = IBMatlab('action','query', ...);

ibConnector is a Java object of type IBMatlab.IBConnection. You can call its

publicly-accessible methods (functions) just like any Matlab function. For example:
[data, ibConnector] = IBMatlab('action','query', ...);

flag = ibConnector.isConnected; % no input params, so no ()

ibConnector.disconnectFromTWS(); % no real need for () here

ibConnector.cancelOrder(153745227);

There is an almost exact correlation between the methods in ibConnector and the

methods documented in IB’s Java API (for both requests163 and responses164). This

was done on purpose, to enable easy integration with IB. ibConnector is in many

respects an interface object to IB’s Java API. Therefore, the official IB Java API

documentation can usually be used to understand ibConnector, and if you have any

question about this documentation you should ask IB about it.

When you call any of the request methods, you cannot directly call the corresponding

event methods to receive and process the data. For example, if you call

ibConnector.reqCurrentTime(), you cannot call the corresponding currentTime()

method. Instead, currentTime() is automatically being called by the underlying Java

engine as a new event. However, as noted in §11.1, all these events can be trapped

and processed within Matlab callbacks. In this particular case, a currentTime event is

raised and this can be trapped and processed in a user Matlab function specified by

the CallbackCurrentTime parameter.

Note: All trade (buy/sell/short) orders must be placed exclusively through either the

ibConnector interface (the placeOrder() method) or the IBMatlab name-value pair

interface. Placing trade orders via both interfaces in a single IB-Matlab session will

result in request ID mixup and failed trades: the IB server will reject trades that have

duplicate or non-sequential IDs. Using duplicate and non-sequential IDs is not critical

in many other IB requests, but is critical in the specific case of trade orders.

163 https://interactivebrokers.github.io/tws-api/classIBApi_1_1EClientSocket.html
164 https://interactivebrokers.github.io/tws-api/interfaceIBApi_1_1EWrapper.html

https://interactivebrokers.github.io/tws-api/classIBApi_1_1EClientSocket.html
https://interactivebrokers.github.io/tws-api/interfaceIBApi_1_1EWrapper.html

133 IB-Matlab User Guide

15.2 Programming interface

The following is the publicly-accessible interface of ibConnector:

// Contract, ContractDetails, EClientSocket, EWrapper, EWrapperMsgGenerator,

// Execution, ExecutionFilter, Order, OrderState, ScannerSubscription, UnderComp

import com.ib.client.*;

public class IBConnection
{

 public final static String DEFAULT_TWS_HOST = "localhost";
 public final static int DEFAULT_TWS_PORT = 7496;
 public final static int DEFAULT_TWS_CLIENT_ID = 1;

 // Getter functions for the connection parameters

 public String getHost()
 public int getPort()
 public int getClientId()

 /*********************************
 * Active requests to IB via TWS (may be called directly)
 *********************************/

 // Check if connected to TWS
 public boolean isConnected()

 // Disconnect from TWS
 public void disconnectFromTWS()

 // Request the version of TWS instance to which the API application is connected
 public int getServerVersion()

 // Request the time the API application made a connection to TWS
 public String getTwsConnectionTime()

 // Request the current server time
 public void reqCurrentTime ()
 public void Systime() // same as reqCurrentTime()

 // Request market data
 public void reqMktData(int tickerId, String symbol, String secType,

 String expiry, double strike, String right,

 String exchange, String currency,

 String localSymbol, String genericTickList,

 boolean snapshotFlag)

 public void reqMktData(int tickerId, String symbol, String secType,

 String expiry, double strike, String right,

 String exchange, String currency,

 String localSymbol, boolean snapshotFlag)

 public void reqMktData(int tickerId, Contract contract, String genericTickList,

 boolean snapshotFlag)

 public void reqMktData(int tickerId, Contract contract, boolean snapshotFlag)

 // Cancel request for market data
 public void cancelMktData(int tickerId)

134 IB-Matlab User Guide

 // Request market depth data
 public void reqMktDepth(int tickerId, String symbol, String secType,

 String expiry, double strike, String right,

 String exchange, String currency, String localSymbol,

 int numRows)

 public void reqMktDepth(int tickerId, Contract contract, int numRows)

 // Cancel request for market depth
 public void cancelMktDepth(int tickerId)

 // Request historic market data
 public void reqHistoricalData (int tickerId, String symbol, String secType,

 String expiry, double strike, String right,

 String exchange, String currency,

 String localSymbol, String endDateTime,

 String durationStr, String barSizeSetting,

 String whatToShow, int useRTH, int formatDate)

 public void reqHistoricalData (int tickerId, Contract contract,

 String endDateTime, String durationStr,

 String barSizeSetting, String whatToShow,

 int useRTH, int formatDate)

 // Cancel request for historic data
 public void cancelHistoricalData (int tickerId)

 // Request contract details
 public void reqContractDetails (int tickerId, Contract contract)

 // Create a contract
 public Contract createContract() // default Contract: USD on SMART, empty fields

 public Contract createContract(String symbol, String secType, String expiry,

 double strike, String right, String exchange,

 String currency, String localSymbol)

 // Create an order
 public Order createOrder() // create default Order: Buy 0 LMT 0, RTH only

 public Order createOrder(String action, int quantity, String type,

 double lmtPrice, double auxPrice, String tif,

 String ocaGroup, int parentId, String goodAfterTime,

 String goodTillDate, double trailStopPrice,

 int triggerMethod, boolean outsideRTH)

 // Cancel a placed order (if still open)
 public void cancelOrder(int tickerId)

 // Place an order
 public void placeOrder(int id, Contract contract, Order order)

 public void placeOrder(int id, String symbol, String secType, String expiry,

 double strike, String right, String exchange,

 String currency, String localSymbol,String action,

 int Quantity, String Type, double lmtPrice,

 double auxPrice, String tif, String ocaGroup,

 int parentId, String goodAfterTime,

 String goodTillDate,double trailStopPrice,

 int triggerMethod, boolean outsideRTH)

 // Request a list of current open orders for the requesting client and

 // associate TWS open orders with the client.
 // The association only occurs if the requesting client has a Client ID of 0.
 public void reqOpenOrders ()

 // Request a list of all open orders
 public void reqAllOpenOrders ()

 // Associate a new TWS with the client automatically.

 // The association only occurs if the requesting client has a Client ID of 0.
 public void reqAutoOpenOrders (boolean autoBindFlag)

135 IB-Matlab User Guide

 // Request account values, portfolio, and account update time information
 public void reqAccountUpdates (boolean subscribeFlag, String acctCode)

 // Request a list of the day's execution reports
 public void reqExecutions (int reqId, ExecutionFilter executionFilter)

 // Request IB news bulletins
 public void reqNewsBulletins (boolean allMsgsFlag)

 // Cancel request for IB news bulletins
 public void cancelNewsBulletins ()

 // Request a list of Financial Advisor (FA) managed account codes
 public void reqManagedAccts ()

 // Request FA configuration information from TWS
 public void requestFA (int faDataType)

 // Modify FA configuration information from the API
 public void replaceFA (int faDataType, String xmlStr)

 // Request an XML doc that describes valid parameters of a scanner subscription
 public void reqScannerParameters ()

 // Request market scanner results
 public void reqScannerSubscription (int tickerId,

 ScannerSubscription scannerSubscription)

 // Cancel request for a scanner subscription
 public void cancelScannerSubscription (int tickerId)

 // Requests real-time bars (only barSize=5 is currently supported by IB)
165

 public void reqRealTimeBars(int tickerId, Contract contract, int barSize,

 String whatToShow, boolean useRTH)

 // Cancel request for real-time bars
 public void cancelRealTimeBars(int tickerId)

 // Exercise options
 public void exerciseOptions(int tickerId, Contract contract, int exerciseAction,

 int exerciseQuantity, String account, int override)

 // Request Reuters global fundamental data. There must be a subscription to

 // Reuters Fundamental setup in Account Management before you can receive data
 public void reqFundamentalData(int id, Contract contract, String str)

 // Cancel request for Reuters global fundamental data
 public void cancelFundamentalData(int id)

 // Request the next available reqId

 public void reqNextValidId() // same as reqId() below

 public void reqId() // a single ID

 public void reqIds(int numIds) // multiple IDs

 // Calculate the implied volatility of a contract

 public void calculateImpliedVolatility(int tickerId, Contract contract,

 double optionPrice, double underPrice)

 // Cancel request to calculate the implied volatility of a contract

 public void cancelCalculateImpliedVolatility(int tickerId)

 // Calculate an option price

 public void calculateOptionPrice(int tickerId, Contract contract,

 double volatility, double underPrice)

 // Cancel request to calculate an option price

 public void cancelCalculateOptionPrice(int tickerId)

 // Cancel all open API and TWS orders – 9.65

 public void reqGlobalCancel()

165 http://interactivebrokers.github.io/tws-api/realtime_bars.html

http://interactivebrokers.github.io/tws-api/realtime_bars.html

136 IB-Matlab User Guide

 // Request market data type – 9.66

 // (1 for real-time streaming market data or 2 for frozen market data)

 public void reqMarketDataType(int marketDataType)

 // Request reception of the data from the TWS Account Window Summary tab – 9.69

 public void reqAccountSummary(int reqId, String group, String tags)

 // Cancel request for TWS Account Window Summary data – 9.69

 public void cancelAccountSummary(int reqId)

 // Request reception of real-time position data for an all accounts – 9.69

 public void reqPositions()

 // Cancel request for real-time position data – 9.69

 public void cancelPositions()

 // Set the level of API request and processing logging
 public void setServerLogLevel (int logLevel)

 // Set the message display level

 // (0=display all messages; 1=display errors only; 2=display no messages)
 public void setMsgDisplayLevel(int displayLevel)

 // Get the message display level
 public int getMsgDisplayLevel()

 // Set the Done flag
 public void setDone(boolean flag)

 // Get the Done flag
 public boolean isDone()

 /****************************
 * IB Callbacks (invoked automatically – should NOT be called directly!)
 ****************************/

 // Receives error and informational messages
 public void error(String str)
 public void error(int data1, int data2, String str)
 public void error(Exception e)

 // Receives indication that the TWS connection has closed
 public void connectionClosed()

 // Receives market data
 public void tickPrice(int tickerId, int field, double price, int canAutoExecute)

 public void tickSize(int tickerId, int field, int size)

 public void tickString(int tickerId, int field, String value)

 public void tickGeneric(int tickerId, int field, double generic)
 public void tickEFP(int tickerId, int field, double basisPoints,

 String formattedBasisPoints, double totalDividends,

 int holdDays, String futureExpiry, double dividendImpact,

 double dividendsToExpiry)
 public void tickOptionComputation(int tickerId, int field, double impliedVol,

 double delta, double modelPrice,

 double pvDividend)
 public void tickOptionComputation(int tickerId, int field, double impliedVol,

 double delta, double optPrice,

 double pvDividend, double gamma, double vega,

 double theta, double undPrice)
 public void tickSnapshotEnd(int reqId)

 // Receives execution report information
 public void execDetails(int orderId, Contract contract, Execution execution)

 // Indicates end of execution report messages

 public void execDetailsEnd(int reqId)

137 IB-Matlab User Guide

 // Receives historical data results
 public void historicalData(int reqId, String date, double open, double high,

 double low, double close, int volume, int count,

 double WAP, boolean hasGaps)

 // Receives the next valid order ID upon connection
 public void nextValidId(int orderId)

 // Receives data about open orders
 public void openOrder(int orderId, Contract contract, Order order)
 public void openOrder(int orderId, Contract contract, Order order,

 OrderState orderState)

 // Indicates end of open orders messages

 public void openOrderEnd()

 // Receives data about orders status
 public void orderStatus(int orderId, String status, int filled, int remaining,

 double avgFillPrice, int permId, int parentId,

 double lastFillPrice, int clientId)
 public void orderStatus(int orderId, String status, int filled, int remaining,

 double avgFillPrice, int permId, int parentId,

 double lastFillPrice, int clientId, String whyHeld)

 // Receives a list of Financial Advisor (FA) managed accounts
 public void managedAccounts(String accountsList)

 // Receives Financial Advisor (FA) configuration information
 public void receiveFA(int faDataType, String xml)

 // Receives an XML doc that describes valid parameters of a scanner subscription
 public void scannerParameters(String xml)

 // Receives market scanner results
 public void scannerData(int reqId, int rank, ContractDetails contractDetails,

 String distance, String benchmark, String projection,

 String legsStr)

 public void scannerDataEnd(int reqId)

 // Receives the last time account information was updated
 public void updateAccountTime(String timeStamp)

 // Receives current account values
 public void updateAccountValue(String key, String value, String currency)
 public void updateAccountValue(String key, String value, String currency,

 String accountName)

 // Receives IB news bulletins
 public void updateNewsBulletin(int msgId, int msgType, String message,

 String origExchange)

 // Receives market depth information
 public void updateMktDepth(int tickerId, int position, int operation, int side,

 double price, int size)

 // Receives Level 2 market depth information
 public void updateMktDepthL2(int tickerId, int position, String marketMaker,

 int operation, int side, double price, int size)

 // Receives current portfolio information
 public void updatePortfolio(Contract contract, int position, double marketPrice,

 double marketValue, double averageCost,

 double unrealizedPNL, double realizedPNL)
 public void updatePortfolio(Contract contract, int position, double marketPrice,

 double marketValue, double averageCost,

 double unrealizedPNL, double realizedPNL,

 String accountName)

138 IB-Matlab User Guide

 // Receives real-time bars data
 public void realtimeBar(int reqId, long time, double open, double high,

 double low, double close, long volume, double wap,

 int count)

 // Receives the current system time on the server
 public void currentTime(long time)

 // Receives contract information
 public void contractDetails(int reqId, ContractDetails contractDetails)

 // Receives bond contract information
 public void bondContractDetails(int reqId, ContractDetails contractDetails)

 // Identifies the end of a given contract details request
 public void contractDetailsEnd(int reqId)

 // Receives Reuters global fundamental market data
 public void fundamentalData(int reqId, String data)

 public void accountDownloadEnd(String accountName)

 public void deltaNeutralValidation(int reqId, UnderComp underComp)

 // Receives market data type information – 9.66

 public void marketDataType(int reqId, int marketDataType)

 // Receives commission report information – 9.67

 public void commissionReport(CommissionReport commissionReport)

 // Receives real-time position for an account – 9.69

 public void position(String account, Contract contract, int pos)

 // Indicates end of position messages – 9.69

 public void positionEnd()

 // Receives the data from the TWS Account Window Summary tab – 9.69

 public void accountSummary(int reqId, String account, String tag, String value,

 String currency)

 // Indicates end of account-summary messages – 9.69

 public void accountSummaryEnd(int reqId)

}

139 IB-Matlab User Guide

15.3 Usage example

Let us use the Java connector object to implement the Arrival Price algo example that

is provided in the official IB Java API (also see §9.8).166

This Arrival Price example shows how easy it is to convert Java code available in the

official API or support forums (or even code supplied by IB’s API customer support

team) to Matlab using IB-Matlab:

First, here is the original Java code:

import com.ib.client.TagValue;

Contract contract = new Contract();

Order order = new Order();

Vector<TagValue> algoParams = new Vector<TagValue>();

/** Stocks */
contract.m_symbol = "MSFT";
contract.m_secType = "STK";
contract.m_exchange = "SMART";
contract.m_currency = "USD";

/** Arrival Price */
algoParams.add(new TagValue("maxPctVol","0.01"));
algoParams.add(new TagValue("riskAversion","Passive"));
algoParams.add(new TagValue("startTime","9:00:00 EST"));
algoParams.add(new TagValue("endTime","15:00:00 EST"));
algoParams.add(new TagValue("forceCompletion","0"));
algoParams.add(new TagValue("allowPastEndTime","1"));

order.m_action = "BUY";
order.m_totalQuantity = 1;
order.m_orderType = "LMT";
order.m_lmtPrice = 0.14
order.m_algoStrategy = "ArrivalPx";
order.m_algoParams = algoParams;
order.m_transmit = false;

client.placeOrder(40, contract, order);

166 http://interactivebrokers.github.io/tws-api/ibalgos.html#arrivalprice,

http://interactivebrokers.com/en/software/tws/usersguidebook/algos/arrival_price.htm,
http://interactivebrokers.com/en/index.php?f=1122

http://interactivebrokers.github.io/tws-api/ibalgos.html#arrivalprice
http://interactivebrokers.com/en/software/tws/usersguidebook/algos/arrival_price.htm
http://interactivebrokers.com/en/index.php?f=1122

140 IB-Matlab User Guide

 And now for the corresponding Matlab code (notice how closely it resembles the

original Java code):167

import com.ib.client.TagValue;

% Get the ibConnector reference from IBMatlab

[dummy, ibConnector] = IBMatlab('action','account');

% If IB-Matlab is already connected we can get this reference faster:

[dummy, ibConnector] = IBMatlab(); % faster alternative

% Next, create the contract for the requested security
contract = ibConnector.createContract(...

 'MSFT','STK','',0,'','SMART','USD','MSFT');

% Alternatively, we could have done as follows:
contract = ibConnector.createContract();
contract.m_symbol = 'MSFT';
contract.m_secType = 'STK';
contract.m_exchange = 'SMART'; %=default value so not really needed
contract.m_currency = 'USD'; %=default value so not really needed

% end of alternative code

% Now set the Arrival Price algoParams
algoParams = java.util.Vector;
algoParams.add(TagValue('maxPctVol','0.01'));
algoParams.add(TagValue('riskAversion','Passive'));
algoParams.add(TagValue('startTime','9:00:00 EST'));
algoParams.add(TagValue('endTime','15:00:00 EST'));
algoParams.add(TagValue('forceCompletion','0'));
algoParams.add(TagValue('allowPastEndTime','1'));

% Now create the order, using algoParams
order = ibConnector.createOrder('BUY', 1, 'LMT', 0.14, 0, '', ...

 '', 0, '', '', realmax, 0, false);

order.m_algoStrategy = 'ArrivalPx';
order.m_algoParams = algoParams;
order.m_transmit = false;

% Finally, send the order to the IB server
ibConnector.placeOrder(40, contract, order);

Note: A related mechanism, using the Hold parameter, is explained in §9.6 above.

Note: field names of IB’s Java objects (e.g. contract, order) have a m_ prefix (e.g.

contract.m_symbol, order.m_transmit). IB-Matlab v2.19 onward reports such objects

as Matlab structs without the m_ prefix (e.g. contract.symbol, order.transmit), but

whenever we use the original Java objects we must add a m_ prefix to the field names.

In the example above, contract and order were created using ibConnector, as Java

objects, so we must use a m_ prefix of field names to modify the Java field values.

167 This code can be downloaded from: http://UndocumentedMatlab.com/files/IBMatlab_ArrivalPriceAlgo.m

http://undocumentedmatlab.com/files/IBMatlab_ArrivalPriceAlgo.m

141 IB-Matlab User Guide

16 Sample strategies/models using IB-Matlab

16.1 Pairs trading

16.1.1 Once a day – decide whether two securities are co-integrated 168

1. Download http://www.spatial-econometrics.com/ (jplv7.zip) and unzip into a

new folder (this is a free alternative to Matlab’s Econometrics Toolbox169).

2. Add the new toolbox function to your Matlab path. Naturally, use the actual

folder name where you’ve unzipped the toolbox rather than my C:\... example:

addpath(genpath('C:\SpatialEconometricsToolbox'));

3. Use IB-Matlab to get last year’s daily history data for both securities:170

IBM_history = IBMatlab('action','history', 'Symbol','IBM', ...

 'DurationValue',1,'DurationUnits','Y',...

 'BarSize','1 day');

GOOG_history = IBMatlab('action','history', 'Symbol','GOOG', ...

 'DurationValue',1,'DurationUnits','Y',...

 'BarSize','1 day');

% Transform row vectors => column vectors for the adf,cadf tests

IBM_close_prices = IBM_history.close'; % array of 252 values

GOOG_close_prices = GOOG_history.close'; % array of 252 values

4. Ensure that both time series are not already stationary (do not have a unit root

and tend to mean-revert). This is done with the adf (Augmented Dickey-Fuller

test) function in the Spatial Econometrics Toolbox, which outputs a results

struct that enables us to determine at varying confidence levels if this is in fact

the case. ADF has the null hypothesis that the time series has a unit root and is

non-stationary. To reject this, the absolute value of results.adf (the t-

statistic) needs to be greater than the desired absolute value of results.crit –

a vector that contains 6 confidence level values, corresponding to 99%, 95%,

90%, 10%, 5% and 1% confidence. Only if the null hypothesis of a unit root

and non-stationarity cannot be rejected for both time series in a possible

pair, will it be worth proceeding to the cointegration test in step 5.

adfResults = adf(IBM_close_prices,0,1);

if abs(adfResults.adf) < abs(adfResults.crit(3))

 % failed test – bail out

end

…and similarly test the second security (GOOG_close_prices here). Note that

adf is a necessary but weak test: most securities will pass this test.

168 In practice, many traders do this test much more rarely, for practical reasons. However, they risk a chance that the pair of

securities have stopped being cointegrated, so trading based on their cointegration assumption could prove to be very costly…

169 Also see MathWorks webinar “Cointegration & Pairs Trading with Econometrics Toolbox”: http://www.mathworks.com/wbnr55450;

More cointegration examples using MathWorks Econometrics Toolbox: http://www.mathworks.com/help/econ/identify-cointegration.html
170 See §6 for details

http://www.spatial-econometrics.com/
http://www.mathworks.com/wbnr55450
http://www.mathworks.com/help/econ/identify-cointegration.html
http://www.mathworks.com/help/econ/identify-cointegration.html

142 IB-Matlab User Guide

5. The cadf (Cointegrating Augmented Dickey-Fuller test) function in the

Spatial Econometrics Toolbox tests for cointegration between a dependent

time series (y) and an explanatory time series (x).171 The results struct output

by cadf also includes a results.adf (t-statistic) value and six results.crit

values. The null hypothesis here is that the time series are not cointegrated, so

to reject this in favor of the pair possibly being cointegrated, the absolute

value of results.adf needs to be greater than the desired results.crit value.

cadfResults = cadf(IBM_close_prices, GOOG_close_prices, 0,1);

if abs(cadfResults.adf) < abs(cadfResults.crit(3))

 % failed test – bail out

end

NOTES:
There are numerous ways of calculating the beta of the relationship (and how

frequently to adjust this) between the y and x time series (IBM and GOOG

respectively in the example above) in order to determine the correct relative

number of shares to buy/sell in each stock in a cointegrating pair.172

Also, the above tests do not indicate which stock informationally leads the

other and which is the dependent/independent variable. Tests such as Granger

Causality are intended for this purpose.173

6. If any of the securities failed any of the above tests, bail out

7. Compute the correlation factor β between the time series (e.g., using ols):

res = ols(IBM_close_prices, GOOG_close_prices); % β == res.beta

8. Store STD = std(Closesec1 – β*Closesec2) for later use in the runtime part below

modelData.std = std(IBM_close_prices – res.beta*GOOG_close_prices);

9. Use IB-Matlab to stream quote data for the two securities:174

modelData.ids(1) = IBMatlab('action','query', 'Symbol','IBM', ...

 'QuotesNumber',inf);

modelData.ids(2) = IBMatlab('action','query', 'Symbol','GOOG', ...

 'QuotesNumber',inf);

10. Use IB-Matlab to attach our user-defined callback processing function:175

IBMatlab('action','query', 'Symbol','GOOG', ...

 'CallbackTickPrice',{@IBMatlab_CallbackTickPrice,modelData});

171 In fact, cadf will test against a matrix of multiple explanatory variables but in the case of a pairs strategy only two vectors –

the two historic time series of prices x and y – are required as inputs
172 For more information on some of the possibilities see http://www.ljmu.ac.uk/Images_Everyone/Jozef_1st(1).pdf

173 See http://maki.bme.ntu.edu.tw/codes/granger_tool/etc_granger.m

174 See §7 for details
175 See §11 for details

http://www.ljmu.ac.uk/Images_Everyone/Jozef_1st(1).pdf
http://maki.bme.ntu.edu.tw/codes/granger_tool/etc_granger.m

143 IB-Matlab User Guide

16.1.2 Runtime – process TickPrice streaming-quote events

% Callback function to process IB TickPrice events

function IBMatlab_CallbackTickPrice(ibConnector, eventData, modelData)

 persistent lastPrice1 lastPrice2

 % If this is an event about the BID field of the new tick

 if (eventData.field == 1) % == com.ib.client.TickType.BID

 if (eventData.price > 0) % disregard invalid values

 % Update the security's stored last price with the new info

 if (eventData.tickerId == modelData.ids(1))

 lastPrice1 = eventData.price;

 ignoreFlag = false;

 elseif (eventData.tickerId == modelData.ids(2))

 lastPrice2 = eventData.price;

 ignoreFlag = false;

 else

 % ignore – not one of the requested pair of symbols

 ignoreFlag = true;

 end

 % Check whether the monitored securities have diverged

 % from their steady-state prices in either direction

 if ~ignoreFlag && ~isempty(lastPrice1) && ~isempty(lastPrice2)

 % Compute the divergence from the steady-state model

 deltaPrice = lastPrice1 – modelData.beta*lastPrice2;

 meanSpread = 0; % see footnote
176

 % If the securities diverged too much, start trading

 if deltePrice < meanSpread -2*modelData.std

 % GOOG overbought vs. IBM, so buy IBM, sell GOOG

 IBMatlab('action','BUY', 'Quantity',1, 'Type','MKT',...

 'Symbol','IBM');

 IBMatlab('action','SELL', 'Quantity',1, 'Type','MKT',...

 'Symbol','GOOG');

 elseif deltePrice > meanSpread + 2*modelData.std

 % GOOG oversold vs. IBM, so sell IBM, buy GOOG

 IBMatlab('action','SELL', 'Quantity',1, 'Type','MKT',...

 'Symbol','IBM');

 IBMatlab('action','BUY', 'Quantity',1, 'Type','MKT',...

 'Symbol','GOOG');

 end

 end % if any price has changed

 end % if this is a valid price event

 end % if this is the tick's BID-field event

end % IBMatlab_CallbackTickPrice

176 The simplistic code here assumes that the long-term mean spread between the securities is 0. In practice, the mean spread has

to be calculated in run-time. One way of doing this is to use Bollinger Bands: simply check whether we are outside the second

band for the overbought/oversold signal. Bollinger band functions are available in the Financial Toolbox (bollinger function),
or can be freely downloaded from: http://www.mathworks.co.uk/matlabcentral/fileexchange/10573-technical-analysis-tool

http://www.mathworks.co.uk/matlabcentral/fileexchange/10573-technical-analysis-tool

144 IB-Matlab User Guide

16.2 Using RSI technical indicator

In this section, we use the RSI technical indicator177 as a simple example of

automated trading based on indicator value. The examples can easily be adapted to

other indicators, or combinations of indicators.

In the following downloadable code,178 we use the MathWorks Financial Toolbox’s

rsindex function179 to generate the RSI indicator values. Users who do not have this

toolbox can recreate the rsindex function based on RSI’s mathematical definition.

Naturally, any real-life automated trading system would need to employ additional

fail-safe mechanisms in the code, to protect against incorrect data, market

outages/crashes etc. For example, you might stop the continuous timers if certain data

conditions occur, or you might add stop-loss trading orders. The code below only

shows a bare-bones implementation, in order to show how IB-Matlab could be used.

If you need assistance in adapting the code for your specific needs, contact us for a

consulting offer.

function [hAxes, hTimer] = IBMatlab_AlgoRSI(varargin)

% IBMatlab_AlgoRSI - simple Price-RSI plot and trading algo

%

% Inputs: list of IBMatlab parameters e.g. 'Symbol', 'Exchange',

% 'Currency', 'BarSize', 'Quantity', 'AccountName', etc.

% Processing: Display interconnected plots of price vs. RSI

% Output: hAxes - handles to plot axes

% hTimer - handle to the update timer object

% Example: IBMatlab_AlgoRSI('Symbol','EUR', 'SecType','cash',

% 'Exchange','idealpro', 'Quantity',100);

 % Ensure that we have all mandatory input params

 IBMatlab_params = varargin;

 symbolIdx = find(strcmpi(IBMatlab_params,'symbol')) + 1;

 if isempty(symbolIdx)

 error('IBMatlab:NoSymbol','Symbol must be specified!');

 end

 symbol = upper(IBMatlab_params{symbolIdx});

 tagStr = ['RSI_' symbol];

 % Prepare the GUI window

 hAxes = prepareGUI();

 lastAction = '';

 % Prepare a timer to periodically check market conditions

 period = 60; % [seconds]

 hTimer = timer('ExecutionMode','fixedRate', 'Period',period, ...

 'Name',tagStr, 'Tag',tagStr, ...

 'TimerFcn',@timerFcn);

 start(hTimer);

177 http://binarytribune.com/forex-trading-academy/relative-strength-index, http://en.wikipedia.org/wiki/Relative_strength_index

178 This file can be downloaded from: http://UndocumentedMatlab.com/files/IBMatlab_AlgoRSI.m
179 http://mathworks.com/help/finance/rsindex.html

http://binarytribune.com/forex-trading-academy/relative-strength-index
http://en.wikipedia.org/wiki/Relative_strength_index
http://undocumentedmatlab.com/files/IBMatlab_AlgoRSI.m
http://mathworks.com/help/finance/rsindex.html

145 IB-Matlab User Guide

 % Prepare GUI window

 function hAxes = prepareGUI()

 % Create a new figure window for this symbol

 titleStr = ['Price / RSI for ' symbol];

 figure('NumberTitle','off', 'Name',titleStr, ...

 'Tag',tagStr, 'CloseRequestFcn',@closeFig);

 zoom on;

 % Prepare the plot axes

 hAxes(1) = axes('Units','norm', 'Pos',[.1,.50,.87,.45]); %prices

 hAxes(2) = axes('Units','norm', 'Pos',[.1,.25,.87,.20]); %RSI

 hAxes(3) = axes('Units','norm', 'Pos',[.1,.05,.87,.15]); %open

 % Link the X axes of the plots

 linkaxes(hAxes,'x');

 end

 % Callback function upon closing the figure window

 function closeFig(hFig, eventData)

 try stop(hTimer); delete(hTimer); catch, end

 delete(hFig);

 end

 % Get the latest historical/intraday data from IB

 function data = getData()

 % Get the historical/intraday data bars from IB

 % Note: IBMatlab_params are persisted in the parent function

 bars = IBMatlab('Action','history', 'BarSize','5 mins', ...

 'DurationValue',1, 'DurationUnits','W', ...

 'WhatToShow','MIDPOINT', IBMatlab_params{:});

 % Ensure that enough data is available, otherwise bail out

 if length(bars.close) <= 15

 error('IBMatlab:NoData','Not enough data points!');

 end

 % Determine the RSI values for the retrieved data

 % rsindex() requires a column vector, so transpose the data

 RSI_vector = rsindex(bars.close');

 % Create timeseries objects for plotting

 data.times = datestr(datenum(bars.dateTime, ...

 'yyyymmdd HH:MM:SS'));

 data.ts_close = timeseries(bars.close, data.times);

 data.ts_rsi = timeseries(RSI_vector, data.times);

 end

 % Trade based on the retrieved IB data

 function data = tradeData(data)

 % Initialize the data points and trade action

 RSI_vector = data.ts_rsi.Data;

 openPos = zeros(1,length(RSI_vector));

 action = '';

146 IB-Matlab User Guide

 % Get the requested trading quantity

 quantityIdx = find(strcmpi(IBMatlab_params,'quantity'))+1;

 if isempty(quantityIdx)

 quantity = 1;

 else

 quantity = IBMatlab_params{quantityIdx};

 end

 % Calculate the trading indicator signals

 for idx = 2 : length(RSI_vector)

 currentRSI = RSI_vector(idx);

 lastRSI = RSI_vector(idx-1);

 % If position is open

 if openPos(idx-1) ~= 0

 % If RSI has crossed 50

 if (currentRSI-50)*openPos(idx-1) > 0

 % Close the open position

 if openPos(idx-1) > 0

 action = 'Sell';

 else

 action = 'Buy';

 end

 openPos(idx) = 0;

 else

 % Else, do nothing for now

 openPos(idx) = openPos(idx-1);

 end

 % Else, if RSI>70 going down (overbought reversal?)

 elseif currentRSI < lastRSI && currentRSI > 70

 % Place a SELL order

 action = 'Sell';

 openPos(idx) = -quantity;

 % Else, if RSI<30 going up (oversold reversal?)

 elseif currentRSI > lastRSI && currentRSI < 30

 % Place a BUY order

 action = 'Buy';

 openPos(idx) = quantity;

 end

 end

 % Trade if an action was triggered for latest data bar

 if ~isempty(action) && ~strcmp(action, lastAction)
 fprintf('%s %sing %d %s\n', ...

 datestr(now), action, quantity, symbol);

 IBMatlab('Action',action, 'Type','MKT', ...

 'Quantity',quantity, IBMatlab_params{:});

 end

 lastAction = action;

 % Add the trading decisions to returned data (for plotting)

 data.ts_pos = timeseries(openPos, data.times);

 end

147 IB-Matlab User Guide

 % Plot the updated data

 function plotData(data)

 % hAxes is persisted in the parent function

 plotTS(hAxes(1), data.ts_close, 'Closing price', true);

 plotTS(hAxes(2), data.ts_rsi, 'RSI', true);

 plotTS(hAxes(3), data.ts_pos, 'Open pos', false);

 end

 % Timer callback function

 function timerFcn(hTimer,eventData)

 try

 data = getData();

 data = tradeData(data);

 plotData(data);

 catch err

 disp(err.message);

 return;

 end

 end

end % IBMatlab_AlgoRSI

% Utility function to plot a time-series on an axes

function plotTS(hAxes, data, label, emptyXTicksFlag)

 axes(hAxes);

 plot(data);

 box off;

 grid on;

 title('');

 ylabel(label);

 if emptyXTicksFlag

 set(hAxes, 'XTick',[]);

 end

end

For performance considerations, we can query only the latest market snapshot, or use

streaming realtime bars,180 rather than retrieving and processing the entire

historical/intraday data series as above. Naturally, this would involve additional code

to store the previous data bars and trading decisions. If we use the asynchronous

streaming realtime bars mechanism, we could consider replacing the timer callback

with a callback on the RealtimeBar event (i.e., set the CallbackRealtimeBar

parameter in IBMatlab), to process the bars as soon as they arrive from IB. This is

more complex than using a simple timer to query the latest streamed data, of course.

Also note that in the simplistic implementation above, the graphs are cleared and

recreated in each timer invocation (every 30 seconds). This implementation can

naturally be improved by updating the existing graph’s data instead.181

180 See §7.2 for details
181 Many additional Matlab performance tips can be found in my book “Accelerating MATLAB Performance” (CRC Press, 2014)

http://undocumentedmatlab.com/books/matlab-performance

148 IB-Matlab User Guide

Finally, here is a sample output from running the program for EUR.USD:

>> IBMatlab_AlgoRSI('AccountName','DU12345', 'Symbol','EUR', ...

 'SecType','cash', 'Exchange','idealpro', ...

 'Quantity',20000, 'BarSize','5 mins');

18-Mar-2015 21:45:01 Selling 20000 EUR

18-Mar-2015 21:53:01 Buying 20000 EUR

...

Sample plotting output of the IBMatlab_AlgoRSI program

(note the trading break over the weekend of 15 March, 2015)

Contact us to receive consulting assistance in building your trading program, based on

IB, Matlab and the IB-Matlab connector. We never disclose trading algo secrets used

by our clients, so we would not be able to provide you with any actual trading algo

that was developed for somebody else. But you will benefit from our prior experience

in developing dozens of such trading programs, as well as from our top-class

expertise in both Matlab and IB’s API. A small sample of our work can be seen here:

http://undocumentedmatlab.com/consulting

http://undocumentedmatlab.com/consulting

149 IB-Matlab User Guide

17 Frequently-asked questions (FAQ)

1. Can IB-Matlab be used with other brokers?

IB-Matlab only connects to Interactive Brokers. It can be adapted for other brokers,

but some development is obviously required since other brokers have different APIs.

Contact me by email and I’ll see if I can help.

2. Does IB-Matlab impose limitations on historical data or streaming quotes?

IB-Matlab does not impose any limitations, but the IB server does impose limitations

on the frequency of the requests and the amount of returned data.182 The limitations

depend on your specific IB subscription. The basic IB subscription allows 2000

historical data bars, once every 10 seconds, going back up to one year. If you request

more bars then IB returns nothing, and if you request more frequently then IB returns

a pacing violation error. Additional data, going back up to 4 years, can be requested

from IB based on your trading volume and subscription level. Again, the limitations

are imposed by the IB server based on your account; IB-Matlab supports whatever

subscription your account has, and does not limit the information in any manner.

3. Can I see a demo of IB-Matlab?

You can see a webinar showing a demo of IB-Matlab (along with presentation slides

and the demo’s source code).183 In addition, you are most welcome to request a fully-

functional trial version of IB-Matlab, which you can use to run the demo yourself, or

to test your own trading strategies.

4. How does IB-Matlab compare to alternative products?

IB-Matlab is currently the market leader in the niche of Matlab-to-IB integration.

There are other alternatives available, but IB-Matlab provides by far the best

functionality, value and cost-effectiveness. A detailed comparison can be found

online.184 You are most welcome to validate all the comparison items when you test

IB-Matlab’s free trial.

5. How do you know that IB-Matlab trades $100M daily?

A few of the IB-Matlab users have chosen to tell me how they use the product, since

they were very proud of how it enabled them to scale-up their trading. I have no way

of verifying this information, because IB-Matlab does not send any information

except to IB. IB-Matlab is used by hundreds of traders, ranging from individuals,

through hedge-funds and even some banks. So the total daily trading volume by all

IB-Matlab users may possibly be much higher than $100M.

182 https://interactivebrokers.github.io/tws-api/historical_limitations.html

183 http://undocumentedmatlab.com/ib-matlab/real-time-trading-system-demo
184 http://undocumentedmatlab.com/ib-matlab/product-comparison

https://interactivebrokers.github.io/tws-api/historical_limitations.html
http://undocumentedmatlab.com/ib-matlab/real-time-trading-system-demo
http://undocumentedmatlab.com/ib-matlab/product-comparison

150 IB-Matlab User Guide

6. Does IB-Matlab send you any information?

No – IB-Matlab only communicates with IB. The only communication that is done

with IB-Matlab’s server is a verification of the license activation (a single hash-code).

7. How can I be sure IB-Matlab does not contain bugs that will affect my trades?

Well, there is never a 100% guarantee. The product is rigorously tested. IB-Matlab

has been live since 2010 and is actively used by hundreds of users on a daily basis. So

far nothing major has been reported. IB-Matlab is a very stable and robust product,

despite the fact that new functionality is being added on a constant basis. In fact, the

professional review by the Automated Trader magazine has purposely tried to find

limitations and bugs in IB-Matlab by specifying invalid parameter combinations etc.,

and reported that it could not break IB-Matlab’s robustness.185

8. Is IB-Matlab being maintained? supported?

Yes, actively. Features and improvements are added on a regular basis, and I support

the users personally. You can see the list of ongoing improvements in IB-Matlab’s

change-log, listed in Appendix B of the IB-Matlab User Guide (this document). You

can see the very latest updates in the online version of this guide.186

9. I saw a nice new feature in the online User Guide – can I get it?

You get the very latest version of IB-Matlab, including all the latest additions and

improvements, when you purchase a new license or renew an existing one. If you do

not wish to wait for the end of your license year, you can always renew your license

immediately. However, the new license term will start from that moment onward (in

other words, you will lose the unused portion of your current license). For example, if

you purchased a 1-year license on 1/1/2014, it is good until 1/1/2015. If you then

choose to renew and get the latest IB-Matlab version on 9/9/2014, then your new

license will expire on 9/9/2015, so you gain the latest IB-Matlab version but you lose

about 4 months of your current annual license. The choice is yours.

10. What happens when the license term is over?

When you purchase a IB-Matlab license (or renewal), it will work for the full license

duration. A short time before the license expires, you will start seeing a notification

message in your Matlab console (Command Window) alerting you about this. This

message will only appear during the initial connection to IB, so it will not affect your

regular trading session. When the license expires, IB-Matlab will stop working. You

can then renew the license for an additional duration, not necessarily the same as the

previous duration. If you wish to be independent of annual renewals, you can

purchase a discounted multi-year license.

185 http://www.automatedtrader.net/articles/software-review/84091/the-virtue-of-simplicity (downloadable PDF version of this

report: http://undocumentedmatlab.com/files/IB-Matlab_Review.pdf)
186 http://undocumentedmatlab.com/files/IB-Matlab_User_Guide.pdf

http://www.automatedtrader.net/articles/software-review/84091/the-virtue-of-simplicity
http://undocumentedmatlab.com/files/IB-Matlab_Review.pdf
http://undocumentedmatlab.com/files/IB-Matlab_User_Guide.pdf

151 IB-Matlab User Guide

11. Can I transfer my IB-Matlab license to another computer?

Yes: you will need to first deactivate IB-Matlab on your existing computer (I will

walk you through this procedure) and then activate it on the new computer. At any

one time, each IB-Matlab license will only be activated on a single computer (unless

you purchase a site license). Annual and multi-year licenses entitle up to 3 activations

per year at no extra cost; additional switches will incur a small handling fee.

12. I have a laptop and desktop – can I use IB-Matlab on both?

Yes, but you will need to purchase two separate IB-Matlab licenses. IB-Matlab’s

license is tied to a specific computer, unless you purchase a site license.

13. Can IB-Matlab be compiled and deployed?

Yes, IB-Matlab can indeed be compiled. You do not need a separate license for the

compiled application on your development computer, since this computer is already

licensed. However, any other deployed computer will require a separate IB-Matlab

license, otherwise IB-Matlab will not run. If you wish to deploy IB-Matlab on a large

scale, to multiple computers, then contact me to discuss alternatives.

14. Is IB-Matlab provided in source-code format?

IB-Matlab is provided in encrypted binary form, like any other commercial software.

If you wish to get the source-code, then this is possible, subject to signing a separate

agreement and a higher cost. The benefit is that the source-code version has no

license fees and is not tied to any specific computer – you can install it on as many

computers as you wish within your organization. Contact me for details.

15. Do you provide an escrow service for IB-Matlab’s source-code?

Yes. There are two alternative levels of escrow that you can select:

1. At safe-keeping with a Wall-Street lawyer

2. Using NCC Group’s187 independent escrow service

Escrow services incur a non-negligible usage fee, but you may decide that it may be

worth it for ensuring business continuity. The choice is entirely yours.

If you wish to ensure business continuity, consider purchasing multi-year renewals in

advance, for a reduced cost. This will ensure that your license will be independent of

annual renewals for as many years as you select.

16. Is feature ABC available in IB-Matlab?

If feature ABC is supported by IB’s API, then it is very likely it is also available in

IB-Matlab. In most cases, this functionality is available using an easy-to-use Matlab

wrapper function. This includes all the important trading and query functionalities.

187 http://nccgroup.com/en/our-services/software-escrow-and-verification/software-escrow

http://nccgroup.com/en/our-services/software-escrow-and-verification/software-escrow

152 IB-Matlab User Guide

Some additional functionalities, which are less commonly used, are supported by the

underlying Java connector object that IB-Matlab provides. To check whether a specific

feature is available in the IB API (and by extension, in IB-Matlab), read IB-Matlab’s

User Guide (this document), IB’s online reference,188 or contact IB customer service.

17. Can you add feature ABC in IB-Matlab for me?

I will be happy to do so, for a reasonable development fee that will be agreed with

you in advance. After the development, this feature will be available to all others who

purchase (or renew) the latest version of IB-Matlab, at no extra cost. If you have such

a request, email me to get a proposed quote.

18. Can you develop a trading strategy for me?

I will be happy to do so, for a reasonable development fee that will be agreed with

you in advance. Unlike development of IB-Matlab features, strategy development will

never be disclosed to others, and will not be integrated in IB-Matlab. It will be

developed privately for you, and will be kept secret. See §18 below for additional

details. If you have such a request, email me to get a proposed quote.

19. Does IB-Matlab include back-testing/charting/GUI/data analysis/algo-trading?

No. IB-Matlab is only used for communication with the IB server (data from IB

server; trade orders to IB server), it does not include any data analysis, charting, GUI

or back-testing functionalities. This is what makes the integration with Matlab so

powerful, since Matlab is great at data analysis and visualization. So you can easily

develop your own analysis programs in Matlab, which will get the data from IB-

Matlab, analyze it, and send corresponding orders back to the IB server (again

through IB-Matlab). I have extensive experience in developing complete backtesting

and real-time trading applications - see §18 below for additional details. I will be

happy to either develop a new application based on your specifications, or to integrate

IB-Matlab into your existing application, under a consulting contract.

20. Does IB-Matlab work with the IB demo account?

Yes. However, note that IB’s demo account is limited in data, functionality and

performance compared to a live or paper-trading account.189 Therefore, it is best to

trial IB-Matlab and to test your strategies using your personal paper-trading account

(which you automatically get with your live trading account).

21. Is IB-Matlab supported on my platform?

IB-Matlab works on any computer that runs TWS and Matlab (R2007a or newer).

This includes Windows, MacOS and Linux computers, 32 or 64 bits. No special

Matlab toolboxes are required – only the base Matlab and the IB-Matlab software.

188 https://www.interactivebrokers.com/en/index.php?f=5041, https://interactivebrokers.github.io

189 https://quant.stackexchange.com/questions/8744/what-is-the-difference-between-the-interactive-brokers-demo-account-and-a-
personal-paper-trader-account; http://interactivebrokers.com/en/software/am/am/manageaccount/paper_trading_limitations.htm

https://www.interactivebrokers.com/en/index.php?f=5041
https://interactivebrokers.github.io/
https://quant.stackexchange.com/questions/8744/what-is-the-difference-between-the-interactive-brokers-demo-account-and-a-personal-paper-trader-account
https://quant.stackexchange.com/questions/8744/what-is-the-difference-between-the-interactive-brokers-demo-account-and-a-personal-paper-trader-account
http://interactivebrokers.com/en/software/am/am/manageaccount/paper_trading_limitations.htm

153 IB-Matlab User Guide

18 Professional services

In addition to IB-Matlab being offered as an off-the-shelf software program,

advanced Matlab consulting, training, and development are being offered. With close

to 30 years of professional Matlab programming experience, including extensive

finance/trading-related development in the past decade, we offer top-of-class Matlab

consulting, with a particular emphasis on the financial sector.

In particular, we have experience integrating quality production-grade Matlab

programs with online brokers (e.g. IB (Interactive Brokers), CQG, and CFH FIX);

data-feed providers (e.g. Bloomberg, Reuters, Trading Physics, and DTN IQFeed (for

which a separate commercial Matlab connector is available: IQML190); websites (e.g.

Finviz and Nasdaq); databases (e.g. SQL Server, Oracle, MySQL, and SQLite), as

well as Excel and raw-format data files. Programs were developed on multiple Matlab

releases and all Matlab-supported platforms: Windows, Mac and Linux.

We have completed countless life-cycles of software requirements definition, design,

development, documentation, integration, testing, deployment, handover, maintenance

and support.

Much of my work derives from the financial sector: we developed custom software

for a commodities fund in a Geneva bank; a backtesting and analysis program for a

large bank in Chicago; a currencies trading program for a hedge-fund in Malta; data-

analysis products for financial services firms in New-York; a portfolio risk/exposure

analysis program for an Israeli investment advisor; a charting GUI for a San-

Francisco hedge fund; and semi- and fully-automated algo-trading programs for

multiple clients around the globe.

Development is typically done remotely; onsite consulting/development is also

possible upon request, or a combination of remote work and onsite visits.

You can see a small sample of programs that we have developed below. Additional

samples can be seen on my consulting webpage.191

Anything developed under private consulting will be kept confidential and will not be

disclosed to others. You will retain full IP ownership of anything developed for you.

Most of my revenue comes from repeat clients. we will be happy to provide

references of satisfied clients in US or Europe. With such an impressive track record,

you probably know some of them.

Contact us by email (info@UndocumentedMatlab.com) if you wish to discuss your

needs or to receive a proposal.

190 https://undocumentedmatlab.com/IQML or http://IQML.net
191 https://undocumentedmatlab.com/consulting

mailto:info@UndocumentedMatlab.com
https://undocumentedmatlab.com/IQML
http://iqml.net/
https://undocumentedmatlab.com/consulting

154 IB-Matlab User Guide

18.1 Sample program screenshots

155 IB-Matlab User Guide

156 IB-Matlab User Guide

157 IB-Matlab User Guide

18.2 About the author (Yair Altman)

With 30 years of professional software programming

experience, Yair Altman offers top-notch Matlab

consulting and training services.

Yair has worked extensively with Matlab and many other

programming languages (Java, C#, C, C++ and others).

He has developed many programs with SQL and a variety

of databases, operating systems and hardware platforms.

Matlab community developers, and even MathWorks themselves, consider Yair a top

Matlab expert, as any simple online search will show. His UndocumentedMatlab.com

website is by far the largest and most active independent Matlab site. Yair is also

well-known from numerous submissions on the Matlab forums and File Exchange; a

MathWorks study determined192 that Yair is the third most influential submitter in the

entire Matlab community. He regularly advises MathWorks, and is a member of both

its Community Advisory Board (CAB) and MATLAB Advisory Board (MAB).

Yair published two extensive and highly-acclaimed Matlab

textbooks: MATLAB-Java programming193 (2011) and

Accelerating MATLAB Performance194 (2014). Both books

are considered the top references in their field.

Yair provides professional, cost

effective consulting and contract

development.195 He can do stuff

that few other Matlab program-

mers know is even possible,

delivering great value: top

quality code at reasonable cost.

Yair also offers custom Matlab

training courses,196 in a variety of topics and levels.

By combining a proven track-record of quality software

programming, decades of professional experience, and

Matlab knowledge that few others possess, Yair provides

clients with superior value and cost-effectiveness.

192 http://blogs.mathworks.com/community/2013/01/15/giving-by-taking-file-exchange-acknowledgment-trees
193 http://undocumentedmatlab.com/books/matlab-java

194 http://undocumentedmatlab.com/books/matlab-performance, now in 2nd edition

195 http://undocumentedmatlab.com/consulting
196 http://undocumentedmatlab.com/training

http://undocumentedmatlab.com/
http://blogs.mathworks.com/community/2013/01/15/giving-by-taking-file-exchange-acknowledgment-trees
http://undocumentedmatlab.com/books/matlab-java
http://undocumentedmatlab.com/books/matlab-performance
http://undocumentedmatlab.com/consulting
http://undocumentedmatlab.com/training

158 IB-Matlab User Guide

Appendix A – resources

A.1 IB-related resources

 API download page – https://www.interactivebrokers.com/en/index.php?f=5041,

https://interactivebrokers.github.io

 API Online Reference Guide – https://interactivebrokers.github.io/tws-api/index.html

 Java API Quick Reference (PDF) –

http://interactivebrokers.com/download/inst/JavaAPIQuickReference.pdf

 Full API Reference Guide (PDF) –

http://interactivebrokers.com/download/newMark/PDFs/APIprintable.pdf

 Getting Started with the TWS Java API for Advisors (PDF) –

http://interactivebrokers.com/download/GettingStartedJavaAPIAdvisors.pdf

 IB Gateway User’s Guide (PDF) –

http://individuals.interactivebrokers.com/download/newMark/PDFs/gateway.pdf

 Java API Samples for the Getting Started Guide (ZIP) –

http://interactivebrokers.com/download/JavaAPIExamples.zip

 API Webinars -

http://interactivebrokers.com/en/general/education/webinars.php?p=a&ib_entity=llc

 API customer service and technical support – api@interactivebrokers.com

(tell them that you are using IB-Matlab, which in turn uses IB’s Java API)

 Cummunity Q&A forum – https://groups.io/g/twsapi

 Unofficial [huge] list of IB API Q&As – https://dimon.ca/dmitrys-tws-api-faq

https://www.interactivebrokers.com/en/index.php?f=5041
https://interactivebrokers.github.io/
https://interactivebrokers.github.io/tws-api/index.html
http://interactivebrokers.com/download/inst/JavaAPIQuickReference.pdf
http://interactivebrokers.com/download/newMark/PDFs/APIprintable.pdf
http://interactivebrokers.com/download/GettingStartedJavaAPIAdvisors.pdf
http://individuals.interactivebrokers.com/download/newMark/PDFs/gateway.pdf
http://interactivebrokers.com/download/JavaAPIExamples.zip
http://interactivebrokers.com/en/general/education/webinars.php?p=a&ib_entity=llc
mailto:api@interactivebrokers.com
https://groups.io/g/twsapi
https://dimon.ca/dmitrys-tws-api-faq

159 IB-Matlab User Guide

A.2 MathWorks webinars

 Real-time trading in MATLAB –

https://undocumentedmatlab.com/IB-Matlab/real-

time-trading-system-demo

Recording of a presentation I gave at the MATLAB

Computational Finance Virtual Conference in

September 2013, explaining how IB-Matlab can be

used for real-time trading, including downloadable

source-code for demo trading application.

 MathWorks algorithmic-trading portals –

https://mathworks.com/discovery/algorithmic-trading.html

https://mathworks.com/discovery/automated-trading.html (similar to above)

 Algorithmic trading with MATLAB for financial applications –

https://mathworks.com/videos/algorithmic-trading-with-matlab-for-financial-

applications-81775.html

 Cointegration and Pairs Trading with the Econometrics Toolbox –

https://www.youtube.com/watch?v=ew4bHzIS4Sw (also source files)

 Machine Learning for Algorithmic Trading –

https://mathworks.com/videos/machine-learning-for-algorithmic-trading-

1503691224414.html

 Energy trading & risk management with MATLAB –

https://mathworks.com/videos/energy-trading-risk-management-with-matlab-

81745.html

 Automated Trading with MATLAB –

https://www.mathworks.com/videos/automated-trading-with-matlab-81911.html

 Automated Trading System Development with MATLAB –

https://www.youtube.com/watch?v=YP7t_3jusD4 (also source files)

 Commodities Trading with MATLAB –

http://www.mathworks.com/wbnr78374

A.3 Additional open-source Matlab resources

 Spatial Econometrics Toolbox for Matlab –

http://spatial-econometrics.com

 Algorithmic trading code in the Matlab File Exchange –

http://www.mathworks.com/matlabcentral/fileexchange/?term=trading

https://undocumentedmatlab.com/IB-Matlab/real-time-trading-system-demo
https://undocumentedmatlab.com/IB-Matlab/real-time-trading-system-demo
https://mathworks.com/discovery/algorithmic-trading.html
https://mathworks.com/discovery/automated-trading.html
https://mathworks.com/videos/algorithmic-trading-with-matlab-for-financial-applications-81775.html
https://mathworks.com/videos/algorithmic-trading-with-matlab-for-financial-applications-81775.html
https://www.youtube.com/watch?v=ew4bHzIS4Sw
https://www.mathworks.com/matlabcentral/fileexchange/31060-cointegration-and-pairs-trading-with-econometrics-toolbox
https://mathworks.com/videos/machine-learning-for-algorithmic-trading-1503691224414.html
https://mathworks.com/videos/machine-learning-for-algorithmic-trading-1503691224414.html
https://mathworks.com/videos/energy-trading-risk-management-with-matlab-81745.html
https://mathworks.com/videos/energy-trading-risk-management-with-matlab-81745.html
https://www.mathworks.com/videos/automated-trading-with-matlab-81911.html
https://www.youtube.com/watch?v=YP7t_3jusD4
https://www.mathworks.com/matlabcentral/fileexchange/52588-automated-trading-system-development-with-matlab
http://www.mathworks.com/wbnr78374
http://spatial-econometrics.com/
http://www.mathworks.com/matlabcentral/fileexchange/?term=trading

160 IB-Matlab User Guide

Appendix B – change log
Changelog

The following table lists changes done to this document and IB-Matlab. Depending

on the date that you have installed IB-Matlab, your version may be missing some

features discussed in this document. Whenever you renew your annual license, you

will receive the latest IB-Matlab version, including all the functionality detailed here.

Note: The last column indicates the change type: F=functional; D=documentation.

Version Date Section(s) Description

1.00 2010-12-06 - First commercial release of IB-Matlab F

1.09 2012-04-16 - Baseline version for this change-log D

1.10 2012-05-05
4

Some account-data fields have several variants
starting with this IB-Matlab version

F

15.1 Clarified on mixing Matlab and Java trade orders D

1.11 2012-05-27

16 Major overhaul of the Pairs Trading sample model D

A.2
Added this new section with references to online

MathWorks webinars
D

1.12 2012-05-30

Cover
Added note about compatibility with the IB API
version 9.67

D

15.2
Added Java method interfaces commissionReport(),
marketDataType(), reqMarketDataType()

F

1.13 2012-06-15

3
Added currency usage example (RUT’CAD’);
added explanation how to retrieve contract info in
TWS via Contract Info / Description menu

D

5
Clarified what happens if any of the pre-conditions
for querying market data are not met

D

11.1 Clarified to follow the hyperlinks in the table D

12.1 Fixed usage example code: ‘open’ ‘executions’ D

14 Typo fix: “code=2000” “code=200)” D

1.14 2012-06-19

4
Clarified about requesting portfolio information

(multi-accounts, safe programming, shorts, sums)
D

8

Added references to AuxPrice parameter where

relevant; added TWAP order type; rearranged the
parameters in the order-params table; clarified TIF

=‘GTD’ usage; clarified ParentID usage

F

1.15 2012-06-28

9.4
Clarified that LimitBasis cannot be used with

LimitPrice; fixed the code snippet accordingly
F

14 Added discussion of data error leading to -1 value D

16.1 Added link to MathWorks Econometrics Toolbox D

1.16 2012-07-18
11.1

Added usage example of the Java connector object

for implementing combo-trades
D

14 Added discussion of out-of-memory errors D

1.17 2012-08-07 9.3 Fixed LMTSTP STPLMT D

161 IB-Matlab User Guide

Version Date Section(s) Description

1.18 2012-09-13

Disclaimer Changed paragraph ordering (no change in text) D

3
Expanded the explanation how to retrieve contract
info in TWS via Contract Info / Description menu

D

4
Added the contract field in the portfolio-query
results struct; fixed code snippet (sleeppause)

F

5

Clarified that if any of the pre-conditions for
querying market data are not met, the returned info

can be empty or error
D

9.5 Clarified on using the ibConnector D

A.1
Clarified about telling IB support that IB-Matlab

uses the Java API when contacting them
D

1.19 2012-09-25 5
Clarified that all time-stamp fields except

lastTimestamp reflect the local (not server) time.
D

1.20 2012-09-27
11.1, 14,

16.1
Updated some reference links following changes on
the mathworks.com website

D

1.21 2012-10-03 2 Clarified on setting the path in classpath.txt D

1.22 2012-10-06

3 Clarified on reusing the struct input format D

4
Split §4 into §4.1 (account information) and §4.2
(portfolio information)

D

A.2
Added resource: added reference to Automated
Trading online webinar

D

1.23 2012-10-25

Cover Updated IB API compatibility: 9.67 9.68 D

4.1

Clarified that on a multi-account, not specifying the
AccountName parameter can lead to stale or empty
account data

D

4.2

The returned contract field in the portfolio query

results struct is now a Matlab struct, not a Java
object; clarification that AccountName ='All' can
be used on a multi-account

F

5
Added the contractDetails field in the market-
query results struct

F

9.6

(now: 9.5)

New section and functionality (ComboActions,
ComboRatios params) for combo-orders

F

1.24 2012-11-19

2
Clarified (item 9e) about upgrades in Windows 32-
bit to 64-bit

D

9.6

(now: 9.5)
Switched usage example from ECBOT to GLOBEX
exchange

D

1.25 2012-11-27

9.5, 9.6 Switched the relative order of these sections D

11.1

Clarified that the Java connector object can be used

to implement combo trades as an alternative to the
built-in mechanism (§9.5)

D

162 IB-Matlab User Guide

Version Date Section(s) Description

1.26 2012-12-22 9.5

Added ComboBagSymbol parameter; added usage

example of ComboBagSymbol; clarified regarding

combo legs limitations (need to use same

exchange/currency, default ratio)

F

1.27 2013-01-10 15.2

Replaced Booleanboolean in Java method

interfaces; added methods reqNextValidId(), reqId(),

reqIds(), calculateImpliedVolatility(),

cancelCalculateImpliedVolatility(),

calculateOptionPrice(),

cancelCalculateOptionPrice()

F

1.28 2013-02-08 - (formatting changes only; no change in text) D

1.29 2013-02-10 A.2, A.3 Added a few online resources D

1.30 2013-03-08 2 Clarified editing the classpath.txt file D

1.31 2013-04-11

8 Fixed description of Hold (refer to §9.6, not §9.5) D

9.6
Added usage example for preparing an order for

manual approval/transmission
D

B Added this change log in a new Appendix B D

1.32 2013-04-19

Cover Updated IB API compatibility: 9.68 9.69 D

1, A.1 Updated IB links, following IB website changes D

15.2

Added new methods supported by 9.69:

reqAccountSummary(), cancelAccountSummary(),

reqPositions(), cancelPositions(),

accountSummary(), accountSummaryEnd(),

position(), positionEnd()

F

1.33 2013-04-30

3 Clarified usage of Symbol and SecType options D

8 Added additional supported TIF options F

11 Added new section §11.4; updated section titles D

1.34 2013-05-10

7 Clarified streaming quotes limitations D

14 Clarified updated MsgDisplayLevel=1 behavior F

A.1
Added references for IB API chat-room and Yahoo!

Forum; updated IB’s forum web-address
D

1.35 2013-06-21

2, 3
Clarified that IB’s paper-trade account is the

simulated trading account
D

6

Added the datenum field in the historical-data query

results struct; clarified that the time part is omitted

in the dateTime field when BarSize>=1d
F

12.2
Clarified setting LogFileName='', to prevent real-

time execution logging, for improved performance
D

1.36 2013-07-15
5, 9.5, 11.4 Added contract field to market query results F

6 Updated historical data limitations imposed by IB D

163 IB-Matlab User Guide

Version Date Section(s) Description

1.37 2013-09-11

11.1

Added callbacks for IB’s AccountSummary,

AccountSummaryEnd, CommissionReport,

MarketDataType, Position and PositionEnd events
F

15.2 Clarified function interface of reqRealTimeBars() D

A.2 Added MathWorks Commodities Trading webinar D

(all) Updated IB links, following IB website changes D

1.38 2013-09-27

9.4
Added the LimitUpdateMode parameter;

Added clarification about the Tick value
F

A.2
Added Real-time trading in MATLAB webinar /

presentation (+demo application source code)
D

1.39 2013-10-10

6 Added the Timeout parameter F

9.4 Clarified about LimitRepeatEvery value D

9.5
Clarified about ComboRatios volatility and

LocalSymbol sensitivity
D

1.40 2013-10-23

Disclaimer

Clarified the Disclaimer text e.g., clarified that any

mention of a trading symbol or trading order does

not constitute a trading recommendation etc.
D

1 Replaced outline image with a clearer version D

3

Clarified that an IB client (TWS or Gateway) needs

to be active in order for IB-Matlab to work;

Added: IB-Matlab will automatically start TWS if

an IB client (TWS or IB Gateway) is not active

F

8 Fixed reference URL to IB’s order-types webpage D

A.2

Added screenshot of Real-time Trading webinar;

Added link to MathWorks Algorithmic Trading

portal that features a webinar on using IB-Matlab

D

1.41 2013-11-19

7.1
Clarified about using GenericTickTypes parameter

to get extra info in streaming quotes
D

7.2 Added section on the new realtime bars feature F

11.1
Indicated that realtimeBar events are triggered by

IB-Matlab accessible via CallbackRealtimeBar
F

11.4
Clarified that the returned data structure only

contains contract info for a single option contract D

13
Clarified the options of multi-client connection(s);

Minor clarification on use of ClientID parameter D

A.3 Added reference to Spatial Econometrics Toolbox D

B
Clarified that users get the latest IB-Matlab version

whenever they renew their annual license D

164 IB-Matlab User Guide

Version Date Section(s) Description

1.42 2013-11-27

5.2 Added this section on the new scanner data feature F

7.1

Added minor clarification about not enclosing

numeric parameters in Matlab string quotes ('');

Clarified that streaming quote fields are independent

of each other

D

11.1
Indicated that the scanner* events are triggered by

IB-Matlab, in response to user scanner requests
F

1.43 2014-01-02

8

Clarified that SSHORT order action is typically

used only by some institutional traders; most users

should only use BUY and SELL order actions.
D

9.4
Added the LimitPause parameter for automated

orders
F

9.5
Clarified that IB sends an error message when the

combo ratio is incorrect
D

1.44 2014-01-25

6

Clarified the effect of UseRTH on the reported

historical data dates; clarified that the historical data

mechanism is also used for retrieving intra-day data.
D

7.1
Modified streaming quotes ReconnectEvery default

value (20005000)
F

10.1
Added usage example of filtering open orders by

their limit price
D

1.45 2014-02-03

5.1 Added automatic re-fetch attempt if missing data F

7.2 Added the serverTime field to realtime-bars data F

9.6 Added usage example of setting the orderRef field D

1.46 2014-03-03 7.2 Added ReconnectEvery feature to realtime bars F

1.47 2014-03-14

- Added ability for IB-Matlab to work with VPN F

9.4
Added the LimitBounds parameter for automated

orders
F

9.5 Clarified explanation of ComboRatios parameter D

1.48 2014-05-26

2.1 Added section: licensing alternatives F

2.2 Added section: switching activated computers F

5.2 Clarified importance of some scanner parameters D

10.2
Clarified how to get unique orderIds for manual

orders placed within TWS
D

1.49 2014-08-05

9.6
Explained how to prepare Iceberg, hidden, all-or-

none, sweep-to-fill and other special order types
D

14
Clarified that no IB message is displayed if

MsgDisplayLevel >= 2
D

1.50 2014-09-05 17 Added new section: FAQ D

165 IB-Matlab User Guide

Version Date Section(s) Description

1.51 2014-10-01

5.1
Clarified possible reasons for receiving partial query
data when querying current market data.

D

9.5 Clarified usage of CME inter-commodity spreads D

3, 9.6
Clarified that primary exchange can be specified in
Exchange parameter (e.g., 'SMART:NYSE')

D

1.52 2014-10-06 8

Added the TrailingPercent parameter for use by
various TRAIL order types. Clarified the use of

AuxPrice parameter for trailing amounts.
F

1.53 2014-10-20
4.1

Modified the returned account info data structure to
reflect various currencies, where available.

F

9.6 Added example of setting a contract’s multiplier. D

1.54 2014-11-11 7.1
Clarified that IB server (not IB-Matlab) limits the

messages rate (this was corrected on 2014-11-22)
D

1.55 2014-11-19
2

Clarified usage of javaclasspath.txt file for setting

Java’s static classpath; also clarified that without
static classpath IB-Matlab cannot receive IB data.

D

8 Added the HedgeType, HedgeParam parameters F

1.56 2014-11-22

3, 8 Clarified IB’s limit of 50 msgs/sec to IB server D

7.1
Clarified that the streamed quotes rate is limited by
client computer not by IB server or IB-Matlab.
This fixes the clarification made on 2014-11-11.

D

1.57 2014-11-27

3
Clarified the alternatives for specifying the primary
exchange of a contract.

D

12.2 Clarified usage of the automated trades log files. D

17
Clarified some FAQ items, e.g. item #13 on the
ability to compile and deploy IB-Matlab.

D

1.58 2014-12-16

5.3 Renumbered §5.2 (Scanner data) as §5.3. D

5.2, 7.3,

11.5

Added new sections on the new Market Depth

functionality and NumberOfRows parameter.
F

11.1
Indicated that IB-Matlab may trigger the
UpdateMktDepth and UpdateMktDepthL2 events

D

1.59 2015-02-14 15.3 Clarified the usage of ibConnector D

1.60 2015-03-13

3.2 Clarified parameter data-types D

6,7.2,11.1 Fixed typos regarding the dateNum struct field D

14
IB error messages are now sent to standard error

(stderr) and displayed in red in Matlab console;
IB msgs with code>3000 now display as errors.

F

15.2
Fixed typos; added new methods to create default

contract/order: createContract(), createOrder()
F

1.61 2015-03-19 16.2
Added new section: example of simple automated

trading program using an RSI-based strategy
D

166 IB-Matlab User Guide

Version Date Section(s) Description

1.62 2015-03-25

2.0
Modified explanation to refer to Matlab’s Desktop

toolstrip, rather than the outdated menubar.
D

5.4
Added new section: retrieving contract details of

single securities and options chains
F

3.3, 9.5 Added Multiplier parameter (useful for options) F

1.63 2015-04-08

3.2 Added example of resolving Currency ambiguity D

3.3

Added new supported contract SecType values:

 BOND (bonds)

 CMDTY (commodity)

 FUND (mutual funds)

 IOPT (structured product)

 SSF (single-stock future)

 WAR (warrants)

Clarified that ETF contracts use SecType=STK

F

5.1
Clarified it is wise to set the Timeout parameter

when querying contracts that have missing fields.
D

5.1, 13

Clarified that IB only sends live/historic data to a

single computer, so retrieving such data requires IB-

Matlab to be connected to TWS with the live data,

not to another TWS on a different computer. Also, if

you manage several accounts, associate all of them

with the main account to receive live data.

D

6, 7.1

Clarified that historical and streaming data retrieval

are subject to the same pre-conditions as for

retrieving the current live market data.

D

9.7 Added new section: excercising / lapsing options F

1.64 2015-04-15

2.1
Added clarifications on the Multi-year, Site and

Deployment (compiled) license options.
D

6
Modified the chapter title to clarify that it relates to

retrieving both historical and intra-day data.
D

13
Clarified the alternatives of connecting IB-Matlab

to TWS/Gateway on a different computer.
D

1.65 2015-05-04
2.1

Removed local activation alternative; explained

solutions for cloud services, activation problems
D

2.2 Clarified, simplified the activation switch process F

1.66 2015-05-13

2 Minor clarifications regarding IB’s demo account D

2.1 Added new version parameter F

18 Added new section: Troubleshooting D

1.67 2015-05-21
6 Fixed bar-size “1 sec” “1 secs” D

8 Minor clarification on HedgeType, HedgeParam D

1.68 2015-06-02 18 Clarified several troubleshooting entries D

167 IB-Matlab User Guide

Version Date Section(s) Description

1.69 2015-06-10
Disclaimer

Added clarification paragraph that the IB-Matlab

software depends on external software, hardware,

systems and services that are beyond our control.

D

6 Small corrections to the Duration/BarSize table D

1.70 2015-06-25

3.3, 6 Added the IncludeExpired contract property D

9.8

Added new section: IBAlgo orders, describing the

new support for IBAlgo trade-order strategies

Arrival Price, Dark Ice, Percentage of Volume,

Balance Impact/Risk, and Minimize Risk.

F

1.71 2015-06-29 9.6 Clarified using some special order attributes D

1.72 2015-07-14 6
Clarified on potential error messages and added

allowed Duration/BarSize combinations.
D

1.73 2015-08-04
4.2 Clarified meaning of portfolio’s marketPrice field D

9.6 Clarified possible values of order clearingIntent D

1.74 2015-08-24 8 Added the OCAType order parameter F

1.75 2015-09-27

1, 4.1 Removed very old (2012) product change notes D

5.1 Clarified the lastEventTime, lastTimestamp fields D

9.6
Clarified that order modification may sometimes be

rejected by IB server if done right after creation
D

B Added new column describing the change type D

1.76 2015-10-29

3.2 Clarified the retrieval of contract info from TWS D

6

Updated the allowed values of Duration/BarSize;

explained usage of Bid_Ask historical data results;

added SecType/WhatToShow values matrix.

D

16.2 Corrected minor printout bug in IBMatlab_AlgoRSI D

1.77 2015-11-22

3.2 Described an issue with numeric display precision D

4.1, 4.2

Fixed behavior of AccountName='All' (due to an

IB server behavior change). Improved error msgs.

Added summary account data where available.
F

4.1, 4.2
Clarified retrieval of account and portfolio data

when multiple accounts are managed.
D

4.2 Clarified contents and usage of contract subfield. D

12.1
Clarified how to get previous days’ executions (IB

only returns today’s executions by default).
D

1.78 2015-12-24

4.2 Added Type='positions' portfolio retrieval option. F

8 Added explanation on sending TRAIL orders. D

9.5
Added several clarifications regarding combos.

Added informative run-time warning messages.
F

11.1 Indicated that IB-Matlab triggers Position events. D

17.19 TA Developer backtesting product is now defunct. D

168 IB-Matlab User Guide

Version Date Section(s) Description

1.79 2016-01-25

4.2 Added Matlab code example + API settings details D

8
Added Action='close' trade orders functionality.

Divided chapter 8 into sections for readability.
F

1.80 2016-01-28 3.3
IB’s API uses ISLAND for NASDAQ requests –

added code to accept both Exchange alternatives.
F

1.81 2016-03-11

3.1, 13
Clarified that the TWS account is transparent to

IBMatlab; use the appropriate TWS login to control

whether a live/simulated account is used.
D

5.2
Changed market-depth NumberOfRows limit from

5 to 10 (subject to exchange limits)
F

5.4

Clarified that reported m_expiry is the contract’s last

trading date, not its actual expiration date.

Clarified that extracting the full options chain

contract details (although not prices) in a single

IBMatlab command is possible.

D

6
Added reported workaround for a problem of IB

returning missing historical index data.
D

9.5
Clarified that creating a combo in TWS might help

to determine the necessary parameters.
D

9.7
Clarified that IB only supports exercising/lapsing

options, not FOP (future-on-option) or warrants.
D

9.8
Clarified that IBAlgo orders cannot use the default

TIF value of 'GTC': set TIF='Day' for such orders
D

18
Added workaround for error messages about using

an invalid TIF with an IBAlgo order.
D

A.3 Removed reference to defunct quantcentral.com D

1.82 2016-03-16

3.2
Clarified that LocalSymbol format follows the OSI

specification naming convention.
D

5.3
Clarified that scanner parameters only filter data,

and cannot be used to provide unsubscribed data.
D

6
Clarified that IB returns expired contract history

data just for futures, and only for their last year.
D

1.83 2016-04-07 Disclaimer
Clarified that IB-Matlab is not officially approved

by any commercial, governing or regulatory body.
D

1.84 2016-05-25

3.2
Clarified that the Expiry parameter indicates the

last trading date, not the actual expiration date.
D

5.3 Added alternative online screener resources. D

9.4 Fixed typo in the LimitRepeatEvery example. D

169 IB-Matlab User Guide

Version Date Section(s) Description

1.85 2016-07-11

3.2 Clarified aspects relating to FOREX currencies. D

5.3 Compacted scanner parameters XML output. F

5.5
Added new section and functionality for fetching

Fundamental data and ratios.
F

11.3 Clarified about tickGeneric’s eventData fields. D

1.86 2016-08-01

7.1
Clarified the data type that is returned by the initial

vs. subsequent streaming quotes requests.
D

8.1 Clarified some aspects of trade order parameters. D

8.5
Added new section and functionality for orders in

Financial Advisor (FA, multi-client) accounts.
F

18 Added some error messages to troubleshooting list D

1.87 2016-09-23

4.2
Report a security held at different exchanges

separately (previously, only one was reported).
F

4.2
Report the Exchange field better (either exchange or

primaryExchange value, whichever IB reports).
F

7, 18
Display error message when trying to retrieve

streaming data for a symbol that is not streaming.
F

9.5 Clarified potential problems with combo trades. D

1.88 2016-12-13 8.1 Clarified potential problems with trade orders. D

1.89 2017-01-09 8.4
Clarified IB API’s functionality change regarding

TRAIL LIMIT orders and the new usage.
F

1.90 2017-03-18

2
Clarified that IB provides only limited support for

some features on paper-trading/demo accounts.
D

8.3
Clarified that IB does not support some order types

on the paper-trading accounts.
D

9.5
Clarified that IB provides only limited support for

combos on the paper-trading accounts.
D

1.91 2017-05-11 5.1 Added usage example of querying a Future asset. D

1.92 2017-07-14

9.1
Clarified VWAP now uses LMT as the base order;

added the SpeedUp, MonetaryValue parameters.
F

9.8

Clarified VWAP now uses LMT as the base order;

added the SpeedUp, MonetaryValue parameters;

added the Close Price algo; fixed IB website links
F

1.93 2017-10-30

5.1, 7.1
Added return of delayed quotes when real-time data

is not subscribed, subject to IB limitations.
F

8.1, 8.6,

10.1
Added new section and functionality for order

margin impact (“what-if”) study.
F

170 IB-Matlab User Guide

Version Date Section(s) Description

1.94 2017-11-14 3.1
Added new functionality to enable specifying the

input parameters using a CSV/XLS input file.
F

1.95 2017-11-23 6
Automatically resend historical data request to IB if

no data was returned, presumably due to an un-

supported combination of SecType, WhatToShow
F

1.96 2017-12-01

3.1 Accept Matlab string args e.g. either "Day" or 'Day' F

5.1
Clarified that in a market query, multiple generic

tick types can be specified, separated by a comma.
D

5.5 Added new ReportOwnership fundamental data. F

6 Added several additional WhatToShow options. F

8.4
Clarified that some trailing-order parameters are

exclusive (cannot be specified together).
D

9.5 Added example of a FOP bear spread combo order D

17.19

Clarified that IB-Matlab does not include a back-

testing or algo-trading engine, but I will be happy to

develop or integrate one for you as a consultant;

A few minor edits to other FAQ items.

D

Multiple Updated links to IB’s online API documentation. D

1.97 2017-12-21 9.5
Enabled combo-leg snapshot queries even on paper-

trade accounts; returned leg contract details.
F

1.98 2018-01-07

2, 2.3, 18
IB-Matlab installation no longer requires changing

the Java classpath file, from this version onward.
F

3.1
IB-Matlab now accepts a struct array and table

object as a means of specifying multiple IB

commands in a single call to IBMatlab().
F

19 Added a new section on professional services. D

1.99 2018-03-06

3.2, 3.3
Indicated that SecType='CONTFUT' can be used to

query/trade continuous (rolling) future contracts.
F

4.2
Added realizedPnL and unrealizedPnL fields to the

reported portfolio positions.
F

2.00 2018-06-27

8.6 Clarified a few minor points of the “what-if” feature D

9.5
Added delayed data fields for combo-legs, when

real-time market data is not available.
F

2.01 2018-07-27 11

Java objects contained in the callback’s eventData

(e.g. eventData.contract) are now regular Matlab

structs. Accessing their fields in IBMatlab callbacks

remains the same (e.g. eventData.contract.m_symbol);

the objects simply became easier to inspect in Matlab.

F

171 IB-Matlab User Guide

Version Date Section(s) Description

2.02 2018-10-28
5.3 Indicated where to find IB’s market scanner codes D

Multiple Small performance improvement of IB data queries F

17 Several FAQ text clarifications D

2.03 2018-11-22
5.1 Fixed a problem fetching index quotes from NASDAQ F

5.2, 7.3, 11.5 Clarified that market depth (order book) data is Level II D

2.04 2018-12-21
Cover Updated IB/MATLAB versions compatibility D

3.3 Added ConId, SecId, SecIdType contract properties F

13 Added Disconnect action: IBMatlab('disconnect') F

2.05 2019-02-22
2.1 Updated licensing alternatives (short-term, bundle) D

2.2 Updated and clarified the license reactivation process D

2.06 2019-09-28
5.2

Clarified that SMART exchange is not supported in

Level 2 data queries (only specific exchange names)
D

- Enabled query of IB server time using 'time' action F

2.07 2019-11-10

2.1 Improved handling/reporting of reinstalled IBMatlab F

2.1 Improved detection/reporting of installation problems F

5.4 Added support for bond contract details F

2.08 2019-12-07
3.3

Added an informative warning message when IB
returns empty data that may be due to specifying the
SMART exchange, which IB does not always support

F

2, 9.5, 17
Added reference that details the limitations of IB’s

Demo account compared to a paper-trading account
D

2.09 2019-12-21
9.8

Added support for numerous algo-trading strategies

via AlgoStrategy, AlgoParameter order properties.
F

A.1 Added new online references and removed stale ones D

2.10 2019-12-31 5.5

Changed the Fundamental Data report Type of
'ReportOwnership''ReportsOwnership' following
a change on IB’s side; simplified and improved the
format of the returned report struct.

F

2.11 2020-01-07

3.3
Added reference to a discussion of the difference

between IB’s Symbol and LocalSymbol parameters
D

4.2 Improved handling of empty portfolio data F

.
Removed warning about SMART exchange (added
in version 2.08) in case of empty results from query
types where the exchange is irrelevant (e.g. 'account')

F

2.12 2020-03-05

2.0 Clarified some of the installation steps D

2.1 Improved support for dynamic MAC addresses F

8.1 Added order Action of 'SLong' (institutional traders) F

13
Explained how to check the live connectivity status;

clarified the documentation text.
D

14
Expanded description on IB messages; merged the

symbol ambiguity & Troubleshooting sections in here
D

172 IB-Matlab User Guide

Version Date Section(s) Description

2.13 2020-04-30

7.1 Clarified streaming quotes mechanism description D

8.1
Added OrderRef parameter to attach a comment to

the order, displayable in TWS as an Order Attribute
F

8.1, 9.6

Added Transmit parameter to enable sending orders

to TWS but not [yet] to the exchange (the order will

be sent when you click <Transmit> button in TWS)
F

14.3 Added the errMsg output argument and mechanism F

2.14 2020-11-18

2.1
Modified license checks to become more resilient to

small harmless variations in the activated computer
F

8.1
Clarified that the OutsideRTH parameter requires

setting the corresponding preset in TWS Config.
D

8.4
Clarified potential conflicts between LimitPrice and

fixed offset amount in TRAIL LIMIT/LIT orders
D

13

Clarified the description of IB-Matlab’s process of

automated connection attempts using different Port

and ClientID values; added ability to force IB-Matlab

to try to connect to only a single specified Port.

F

2.15 2020-11-23

3.2
Clarified that SecIdType supports 'ISIN', 'CUSIP'

and 'RIC' (but not 'SEDOL'); added usage references
D

5.5
Clarified that fundamental data reports sometimes

do not report some fields for some contracts
D

12.1
Added report of order executions commission, P&L

and yield information, where available
F

14.4 Clarified the explanations of several error messages D

2.16 2021-01-19 3.2
Enabled specifying SecID, SecIdType in compact

form, e.g. 'ISIN:US0378331005' or 'RIC:AAPL.O'
F

2.17 2021-03-25

6 Clarified and rearranged text; added usage example D

7.1
Added clarification about IB’s nightly server

maintenance that breaks streaming data subscription
D

9.1 Added clarification about usage of timezones in IB D

9.3
Added usage example for attaching custom child

orders (SL/TP brackets with an EOD exit order)
D

13
Added clarification about TWS auto-logout and

related aspects of keeping a continuous connection
D

A.2 Updated links to external MATLAB resources D

173 IB-Matlab User Guide

Version Date Section(s) Description

2.18 2021-11-17

5.1
Improved robustness of single-quote query to issues

of missing or non-immediate data from IB
F

5.1, 7.1
Moved the description of GenericTickList to §7.1,

since it is only relevant with streaming quotes
D

5.3 Added online reference to a list of scanner scan codes D

5.4
Fixed support for Timeout parameter in long-running

queries (esp. options-chain requests)
F

7.1 Added usage example for fetching open interest info D

11 Fixed the reference webpage hyperlink for IB events D

11.3
Clarified the tickGeneric value field may be called

either “generic”, “value” depending on TWS version
D

14.1 Added 'lastIBError', 'lastIBMessage' commands F

2.19 2022-11-25

(many)

Data fields of data structs returned by IBMatlab no

longer have a m_ prefix. For example:

contract.m_symbol contract.symbol
F

(many)

Data fields of data structs returned by IBMatlab are

now automatically converted from Java objects to

Matlab sub-structs whenever possible/relevant. E.g.

contract.comboLegs, contractDetails.secIdList

F

(many)

Data fields of data structs returned by IBMatlab now

report undefined values as Inf instead of 2147483647

(intmax) or 1.79769313486232e+308 (realmax)
F

5.1
Added the WaitForGreeks parameter and report of

option greeks, implied volatility, and related data
F

5.1

Clarified that IB sends delayed quotes data when

IB-Matlab is connected to a paper-trading account

while at the same time a live-trading account is

logged-in on a different TWS/Gateway

D

5.4
Clarified that the options chain query only returns

the contract details, without any market data
D

10
Open orders can now be queried using Action='open'

or 'orders', in addition to the legacy combination (of

Action='query' with Type='orders') that still works
F

12
Executions can be queried with Action= 'executions',

in addition to the legacy combination (Action='query'

with Type='executions') that still works
F

14.2 Noted that DTB exchange is now called EUREX D

16.2
Fixed minor bugs in the IBMatlab_AlgoRSI sample

program D

174 IB-Matlab User Guide

Version Date Section(s) Description

2.20 2022-12-02

2.2 Added IB-Matlab’s installation path to reported struct F

2.3
Emphasized that manually setting the static Java

classpath is very rarely required D

3.1
The 'Action' keyword is now optional if it is the first

input parameter in the call to IBMatlab F

2.21 2023-03-28 8.5 The FAMethod parameter now accepts 'Equal' value F

2.22 2023-06-14

5.1 Minor clarifications on WaitForGreeks mechanism D

5.4
SecID data (e.g. ISIN) is now reported as top-level

fields in contract query result struct, where available F

7.1-7.3
Clarified that all streaming data is stopped when IB-

Matlab disconnects from IB. D

	DISCLAIMER
	1 Introduction
	2 Installation and licensing
	2.1 Licensing and activation
	2.2 Switching activated computers
	2.3 Updating the static Java classpath

	3 Using IBMatlab
	3.1 General usage
	3.2 Contract properties

	4 Querying account and portfolio data
	4.1 Account information
	4.2 Portfolio data

	5 Querying current market data
	5.1 Single-quote data
	5.2 Market depth (Level II) data
	5.3 Scanner data
	5.4 Contract details and options chain
	5.5 Fundamental data

	6 Querying historical and intra-day data
	7 Streaming data
	7.1 Streaming quotes
	7.2 Realtime bars
	7.3 Streaming market depth (Level II) data

	8 Sending trade orders
	8.1 General usage
	8.2 Close orders
	8.3 Order types
	8.4 Trail orders
	8.5 Financial Advisor (multi-client) orders
	8.6 Potential impact of an order (“what-if”)

	9 Specialized trade orders
	9.1 VWAP (best-effort) orders
	9.2 TWAP (best-effort) orders
	9.3 Bracket (child) orders
	9.4 Automated orders
	9.5 Combo orders
	9.6 Setting special order attributes
	9.7 Exercising and lapsing options
	9.8 Algorithmic trading orders

	10 Accessing and cancelling open trade orders
	10.1 Retrieving the list of open orders
	10.2 Modifying open orders
	10.3 Cancelling open orders

	11 Processing IB events
	11.1 Processing events in IB-Matlab
	11.2 Example – using CallbackExecDetails to track executions
	11.3 Example – using CallbackTickGeneric to check if a security is shortable
	11.4 Example – using CallbackContractDetails to get a contract’s full options chain
	11.5 Example – using CallbackUpdateMktDepth for realtime order-book GUI update

	12 Tracking trade executions
	12.1 User requests
	12.2 Automated log files
	12.3 Using CallbackExecDetails

	13 TWS connection parameters
	14 Handling errors, problems, and IB messages
	14.1 Messages sent from IB
	14.2 Ambiguous/invalid security errors
	14.3 Programmatic errors
	14.4 Troubleshooting specific problems/errors

	15 Using the Java connector object
	15.1 Using the connector object
	15.2 Programming interface
	15.3 Usage example

	16 Sample strategies/models using IB-Matlab
	16.1 Pairs trading
	16.1.1 Once a day – decide whether two securities are co-integrated
	16.1.2 Runtime – process TickPrice streaming-quote events

	16.2 Using RSI technical indicator

	17 Frequently-asked questions (FAQ)
	1. Can IB-Matlab be used with other brokers?
	2. Does IB-Matlab impose limitations on historical data or streaming quotes?
	3. Can I see a demo of IB-Matlab?
	4. How does IB-Matlab compare to alternative products?
	5. How do you know that IB-Matlab trades $100M daily?
	6. Does IB-Matlab send you any information?
	7. How can I be sure IB-Matlab does not contain bugs that will affect my trades?
	8. Is IB-Matlab being maintained? supported?
	9. I saw a nice new feature in the online User Guide – can I get it?
	10. What happens when the license term is over?
	11. Can I transfer my IB-Matlab license to another computer?
	12. I have a laptop and desktop – can I use IB-Matlab on both?
	13. Can IB-Matlab be compiled and deployed?
	14. Is IB-Matlab provided in source-code format?
	15. Do you provide an escrow service for IB-Matlab’s source-code?
	16. Is feature ABC available in IB-Matlab?
	17. Can you add feature ABC in IB-Matlab for me?
	18. Can you develop a trading strategy for me?
	19. Does IB-Matlab include back-testing/charting/GUI/data analysis/algo-trading?
	20. Does IB-Matlab work with the IB demo account?
	21. Is IB-Matlab supported on my platform?

	18 Professional services
	18.1 Sample program screenshots
	18.2 About the author (Yair Altman)

	Appendix A – resources
	A.1 IB-related resources
	A.2 MathWorks webinars
	A.3 Additional open-source Matlab resources

	Appendix B – change log
	Changelog

