

IQML User Guide

MATLAB connector to DTN IQFeed

Version 2.68

November 6, 2023

Fully compatible with:

Windows, Linux, Mac OS

DTN IQFeed 5.0 - 6.2

MATLAB R2008b - R2023b

© Yair Altman, Octahedron Ltd.

https://UndocumentedMatlab.com/IQML

Undocumented Matlab
The engineering choice for professional Matlab solutions

https://undocumentedmatlab.com/IQML

2 IQML User Guide

Table of Contents

DISCLAIMER .. 4

1 Introduction ... 5

2 Installation and licensing ... 6
2.1 Installing IQML .. 6
2.2 Licensing and activation... 7
2.3 Switching activated computers ... 9
2.4 Updating the installed version .. 9

3 Using IQML .. 10
3.1 General usage... 10
3.2 Common request properties ... 13
3.3 Blocking & non-blocking modes... 13
3.4 Common causes of confusion ... 14
3.5 Returned data format .. 17
3.6 Run-time performance .. 20

4 Querying the latest market data ... 24
4.1 Snapshot (top of book) quotes .. 24
4.2 Fundamental information ... 35
4.3 Interval bars ... 40
4.4 Market depth (Level 2) ... 44
4.5 Greeks, fair value, and implied volatility ... 51
4.6 Market summary data and scanner .. 56

5 Historical and intra-day data .. 64
5.1 Daily data ... 64
5.2 Weekly data .. 70
5.3 Monthly data .. 73
5.4 Interval data ... 76
5.5 Tick data ... 83
5.6 Market summary data and scanner .. 89

6 Streaming data ... 91
6.1 Streaming quotes .. 91
6.2 Regional updates .. 98
6.3 Interval bars ... 102
6.4 Market depth (Level 2) ... 109

7 News .. 113
7.1 Configuration ... 113
7.2 Story headlines ... 114
7.3 Story text ... 119
7.4 Story count .. 121
7.5 Streaming news headlines .. 123

8 Lookup of symbols and codes ... 127
8.1 Symbols lookup ... 127
8.2 Options/futures chain ... 133
8.3 Markets lookup ... 139
8.4 Security types lookup .. 141
8.5 SIC codes lookup .. 143
8.6 NAICS codes lookup ... 145
8.7 Trade condition codes lookup .. 147

3 IQML User Guide

9 Connection, administration and other special commands ... 149
9.1 Connecting & disconnecting from IQFeed ... 149
9.2 Server time .. 153
9.3 Client stats .. 154
9.4 Sending a custom command to IQFeed .. 158
9.5 Modifying IQFeed’s registry settings ... 159

10 Attaching user callbacks to IQFeed messages ... 160
10.1 Processing IQFeed messages in IQML .. 160
10.2 Run-time performance implications ... 164
10.3 Usage example – using callbacks to parse options/futures chains 165
10.4 Usage example – using callbacks for realtime quotes GUI updates 166
10.5 Usage example – using callbacks for realtime order-book GUI updates 167

11 Alerts ... 170
11.1 General Usage .. 170
11.2 Alert Configuration .. 172
11.3 Alerts Query ... 176
11.4 Alert Editing or Deletion .. 176

12 Messages and logging .. 177
12.1 IQML messages .. 177
12.2 IQFeed logging... 179

13 Frequently-asked questions (FAQ) .. 182

14 Troubleshooting ... 185

15 Professional services .. 187
15.1 Sample program screenshots .. 188
15.2 About the author ... 191

16 Spread the word! .. 192

Appendix A – online resources ... 194

Appendix B – change log ... 195
B.1 Complete change log (functional + documentation) .. 195
B.2 Functional change log (excluding documentation changes) 214

4 IQML User Guide

DISCLAIMER

THIS SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,

EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND/OR

NONINFRINGEMENT.

THIS SOFTWARE IS NOT OFFICIALLY APPROVED OR ENDORSED BY ANY

REGULATORY, GOVERNING OR COMMERCIAL BODY, INCLUDING SEC, FINRA,

MATHWORKS AND/OR DTN.

MUCH EFFORT WAS INVESTED TO ENSURE THE CORRECTNESS, ACCURACY

AND USEFULNESS OF THE INFORMATION PRESENTED IN THIS DOCUMENT

AND THE SOFTWARE. HOWEVER, THERE IS NEITHER A GUARANTEE THAT THE

INFORMATION IS COMPLETE OR ERROR-FREE, NOR THAT IT MEETS THE

USER’S NEEDS. THE AUTHOR AND COPYRIGHT HOLDERS TAKE ABSOLUTELY

NO RESPONSIBILITY FOR POSSIBLE CONSEQUENCES DUE TO THIS DOCUMENT

OR USE OF THE SOFTWARE.

THE FUNCTIONALITY OF THE SOFTWARE DEPENDS, IN PART, ON THE

FUNCTIONALITY OF OTHER SOFTWARE, HARDWARE, SYSTEMS AND SERVICES

BEYOND OUR CONTROL. SUCH EXTERNAL COMPONENTS MAY CHANGE OR

STOP TO FUNCTION AT ANY TIME, WITHOUT PRIOR NOTICE AND WITHOUT

OUR CONTROL. THEREFORE, THERE CAN BE NO ASSURANCE THAT THE

SOFTWARE WOULD WORK, AS EXPECTED OR AT ALL, AT ANY GIVEN TIME.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR

ANY CLAIM, DAMAGES, LOSS, OR OTHER LIABILITY, WHETHER IN ACTION OF

CONTRACT OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH

THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE,

REGARDLESS OF FORM OF CLAIM OR WHETHER THE AUTHORS WERE

ADVISED OF SUCH LIABILITIES.

WHEN USING THIS DOCUMENT AND SOFTWARE, USERS MUST VERIFY THE

BEHAVIOR CAREFULLY ON THEIR SYSTEM BEFORE USING THE SAME

FUNCTIONALITY FOR LIVE TRADES. USERS SHOULD EITHER USE THIS

DOCUMENT AND SOFTWARE AT THEIR OWN RISK, OR NOT AT ALL.

ALL TRADING SYMBOLS AND TRADING ORDERS DISPLAYED IN THE

DOCUMENTATION ARE FOR ILLUSTRATIVE PURPOSES ONLY AND ARE NOT

INTENDED TO PORTRAY A TRADING RECOMMENDATION.

5 IQML User Guide

1 Introduction

DTN provides financial data-feed services via its IQFeed service (www.iqfeed.net).

IQFeed customers use its services using a specialized application (“client”) that can

be installed on the user’s computer.1 User programs can interface to IQFeed’s client

application in order to retrieve market data from the IQFeed servers.

Matlab is a programming platform that is widely-used in the financial sector. Matlab

enables users to quickly analyze data, display results in graphs or interactive user

interfaces, and to develop decision-support and automated trading programs.

IQFeed does not come with a Matlab API connector. This is the role of IQML: IQML

is a program that runs in Matlab and connects it to IQFeed. IQML provides a seamless

Matlab interface to IQFeed data and functionality, via easy-to-use Matlab commands,

that encapsulate and simplify the complexities of IQFeed’s API for Matlab users.

IQML consists of three software components (in addition to this User Guide):

1. A Java package (IQML.jar) that connects Matlab to IQFeed’s client application.

2. A Matlab function (IQML.p) that provides IQFeed’s data in an easy-to-use

manner, without needing to know anything about the underlying connector.

3. A Matlab file (IQML.m) that serves as a help file. This file contains no code,

just the help comment; the code itself is contained in the two other software

components. The help text is displayed when you run Matlab’s help function.

IQFeed queries (for trades and tick quotes, historical data, market info etc.) can be

initiated with simple one-line Matlab code, using the Matlab function (IQML.p).

Users can easily attach Matlab code (callbacks) to incoming IQFeed messages. This

enables users to trigger special operations (for example, adding an entry in an Excel

file, sending an email or text message, sending a trade order to an OMS application)

whenever a certain condition is detected, for example if a specified price is reached.

This document explains how to install and use IQML. Depending on the date that you

installed IQML, your version may be missing some features discussed in this document.

At any time, you can always download the latest IQML version from

https://UndocumentedMatlab.com/files/IQML/IQML.zip.

1 IQConnect.exe on Windows, IQFeed application on MacOS. or ran as a Windows app on Mac/Linux using Parallels/Wine.

Note: some MacOS users have reported problems with the “native” app (which is basically just a bottled Wine installation)

compared to a standard Wine install. This is a pure IQFeed/Mac issue, and not an IQML one; using Wine seems to solve it. In
any case, only the IQFeed client needs to run under Wine - Matlab itself can run natively, but note that certain Windows-only

functionality (such as discussed in §9.5 and §12.2) will not work in native mode, only under Parallels/Wine.

http://www.iqfeed.net/
https://undocumentedmatlab.com/files/IQML/IQML.zip

6 IQML User Guide

2 Installation and licensing

2.1 Installing IQML

IQML requires the following in order to work:

1. An active account at DTN IQFeed

2. An installation of the IQFeed client (IQConnect)

3. An installation of Matlab R2008a or a newer release

On older Matlab releases, some IQML functionality may still be available.

Contact info@UndocumentedMatlab.com for details.

Installing IQML is simple:

1. Read IQML’s license agreement.2 This is required even for the trial version of

IQML. If you do not accept the agreement you cannot use IQML.

2. Download IQML.zip3 to a local folder (e.g.: C:\IQML\).

3. Unzip the downloaded IQML.zip file in this local folder.

4. Add the folder to Matlab’s path by running Matlab’s pathtool command, or

via HOMEENVIRONMENTSet path… in Matlab Desktop’s toolstrip.

The folder needs to be in Matlab’s path whenever you run IQML.

5. If you are running the Production (non-trial) version of IQML, you will need

to activate your license at this point. When you purchase your license you will

be given specific instructions for this. See §2.2 for licensing details.

6. Ensure that the IQFeed client is working and can be used to log-in to IQFeed.4

7. You can now run IQML within Matlab. To verify that IQML is properly

installed, retrieve the latest IQFeed server time, as follows (see §9.2):5
>> t = IQML('time')

8. You can query the installed version using IQML’s 'version' action, as follows:
>> disp(IQML('version'))

 Version: 2.55

 Release: '10-May-2021'

 License: 'Professional'

 Expiry: '31-Dec-2022'

 Filepath: 'C:\IQML\IQML.p'

9. Once the IQML product is installed, you will be notified in the Matlab console

(Command Window) whenever there is a new version available. You can

always update your installation to the latest version, as follows:
>> IQML('update')

Downloading the latest IQML version from http://undocumentedmatlab.com

 into C:\IQML\...

Download complete - installing...

Installation of the latest IQML version is now complete.

2 https://UndocumentedMatlab.com/files/IQML/IQML_License_Agreement.pdf

3 https://UndocumentedMatlab.com/files/IQML/IQML.zip

4 IQConnect.exe on Windows, IQFeed application on MacOS. or ran as a Windows app on Mac/Linux using Parallels/Wine.
Note: some MacOS users have reported problems with the “native” app (which is basically just a bottled Wine installation)

compared to a standard Wine install. This is a pure IQFeed/Mac issue, and not an IQML one; using Wine seems to solve it. In

any case, only the IQFeed client needs to run under Wine - Matlab itself can run natively, but note that certain Windows-only
functionality (such as discussed in §9.5 and §12.2) will not work in native mode, only under Parallels/Wine.

5 In some cases, you may need (or want) to specify the IQFeed Username,Password for the initial connection – see §9.1

mailto:info@UndocumentedMatlab.com
https://undocumentedmatlab.com/files/IQML/IQML_License_Agreement.pdf
https://undocumentedmatlab.com/files/IQML/IQML.zip

7 IQML User Guide

2.2 Licensing and activation

IQML’s license uses an activation that is specific to the installed computer. This uses

a unique fingerprint reported by the Operating System, that includes the Windows ID

(on Windows systems), computer name, disk ID, and list of hardware MAC addresses.

Once the computer’s license is activated, the activation key is stored on the IQML’s

webserver and validated online when IQML connects to IQFeed (i.e., at the beginning

of an IQFeed session), and once every few hours while it is connected. Validating the

license only takes 1-2 secs, so it does not affect IQML’s run-time performance. If you

have any concern regarding the online activation, please contact us for clarifications.

Since activation depends on the computer fingerprint, IQML will stop working if you

modify any component that affects the fingerprint. This could happen if you reinstall

the operating system (OS); change hard disk, computer name, or network adapters

(e.g., switch between wifi/cellular/wired connection, or use a new USB networking

device); modify MAC addresses; or use software that creates dynamic MACs. In such

cases, you might see an error message such as the following when you use IQML:

Error using IQML

IQML is not activated on this computer.

Some additional information may be displayed to help you diagnose the problem.

To fix such cases, simply revert back to the original hardware/networking

configuration, and then IQML will resume working. If you wish to make the

configuration change permanent, you can contact us in order to switch the activation

to the new configuration – see the following section (§2.3) for details.

Computer fingerprints are typically stable, and are not supposed to change

dynamically. However, some software programs (especially on MacOS, but also

sometimes on Windows) create dynamic MAC addresses and/or dynamically modify

the computer name (hostname). This may then be reflected in the OS-reported

fingerprint, possibly causing IQML to stop working. The solution is to find a way to

keep the fingerprint components static, with the same values as the activated

fingerprint.6 You can determine the nature of the OS-reported fingerprint as follows:

>> IQML('license', 'debug',1)

Using this command, you can determine which fingerprint component has changed

and take the appropriate action to fix it so that the reported fingerprint will match the

activated fingerprint. If you decide that the fingerprint changes are permanent, contact

us to change the activated fingerprint (see §2.3).

To check whether your license is activated, run the following command in Matlab:

>> isActivated = IQML('validate');

This will return true if the license is activated, and an error if not. Instead of an error

event, you can request the error message as a string, using the following command:

>> [isActivated, errMsg] = IQML('validate');

6 For example, the computer’s name can be set using the OS hostname command, or the following method on Mac OS:

https://knowledge.autodesk.com/support/smoke/learn-explore/caas/sfdcarticles/sfdcarticles/Setting-the-Mac-hostname-or-

computer-name-from-the-terminal.html

https://knowledge.autodesk.com/support/smoke/learn-explore/caas/sfdcarticles/sfdcarticles/Setting-the-Mac-hostname-or-computer-name-from-the-terminal.html
https://knowledge.autodesk.com/support/smoke/learn-explore/caas/sfdcarticles/sfdcarticles/Setting-the-Mac-hostname-or-computer-name-from-the-terminal.html

8 IQML User Guide

A short time before you license term is over, you will start to see a notification

message in your Matlab console (Command Window) alerting you about this:
*** Your IQML license will expire in 3 days (10-Mar-2018).

*** To extend your license please email info@undocumentedmatlab.com

This informational message will only appear during the initial connection to IQFeed,

so it will not affect your regular trading session.

When the license term is over, IQML will stop working and display an error message:
*** Your IQML license has expired on 10-Mar-2018.

*** To extend your license please email info@undocumentedmatlab.com

You can always renew/extend a license on https://UndocumentedMatlab.com/IQML.

To query the installed version, use IQML’s 'version' action, as follows:
>> data = IQML('version')

data =

 Version: 2.55

 Release: '10-May-2021'

 License: 'Professional'

 Expiry: '31-Dec-2022'

 Filepath: 'C:\IQML\IQML.p'

Multiple IQML license options are available for purchase. Longer license terms are

naturally more cost-effective than shorter ones. At the end of any license term you

can decide to renew the same term, or purchase any other term:

 2-months or 6-months license: these short-term licenses can be repeatedly

renewed beyond the free trial, for product evaluation or program development.

 1-year license: this is the standard, most popular license term.

 Multi-year license: these discounted long-term licenses will work for a longer

duration than the standard license year without requiring a renewal, as long as

IQFeed continues to provide its API service and your environment remains stable.

 Volume (multi-computer) license: the same license as for a single computer,

but when you purchase multiple licenses at once, you get a volume discount.

 Site license: enables to run IQML on an unlimited number of computers

within the same Windows Domain. This license does not require end-user

activation, only a single centralized activation. It supports cloud deployment,

where computer hardware fingerprints (but not the domain) often change.

 Deployment (compiled or OEM) license: enables to use IQML within a

compiled program that runs on an unlimited number of computers, in any site

or domain. This license does not require any end-user activation, only a single

centralized activation of the parent executable to which the license is tied.

 Source-code license: unlimited in duration, can be installed on an unlimited

number of computers within the organization, and requires no activation. This

license requires signing a dedicated NDA (non-disclosure agreement).

 Bundle license: a discounted bundle of licenses for IQML and IB-Matlab (the

InteractiveBrokers-Matlab connector). The combination of Matlab+IQFeed+IB

is quite common in trading systems.

Each of these licenses can be selected in one of two variants: Standard and Pro. The

Standard license contains most IQFeed functionality; the Pro license provides access

to the full set of IQFeed data. A detailed comparison is provided in §3.1 and §3.4.

https://undocumentedmatlab.com/IQML

9 IQML User Guide

2.3 Switching activated computers

You can switch the IQML license activation between computers or computer

hardware configurations (i.e., fingerprint hash-code) whenever you purchase a license

renewal. For license terms of 1 year or longer, up to 2 activation switches per year are

also included, at no extra cost. A handling fee will be incurred for other re-activations.

In order to change the activation fingerprint, simply email us the new configuration’s

fingerprint and we will make the switch on IQML’s activation server.

Activation switches can take up to two business days to process, but typically

complete within a few hours during European business hours. You will receive a

confirmation email when the activation switch is complete.

2.4 Updating the installed version

Once IQML is installed, you will be notified in the Matlab console (Command Window)

whenever a new version is available. An example of such a notification is:

>> IQML(...) % some IQML command

A newer version of IQML (2.32) is available. Updates include:

 2.32 (2019-12-16)

 - [2.4] Modified the hyperlinks in the new-version message

 - [5.*] Improved processing speed of historic data queries

where [#.#] indicates the corresponding sections in the User Guide.

To install the new version, run IQML('update'), or download IQML.zip from

http://undocumentedmatlab.com/files/IQML/IQML.zip and unzip it in C:\IQML

You can decide to ignore this notification and keep using your existing IQML version,

or to follow the notification’s advice and update your version – the choice is yours.

You can update IQML to the latest version any time during the license term, as follows:

>> IQML('update')

Downloading the latest IQML version from http://undocumentedmatlab.com

 into C:\IQML\...

Download complete - installing...

Installation of the latest IQML version is now complete.

This update process preserves the current version as backup, so you could revert to it

later (see below). Following the update, you can verify the new release’s version:
>> data = IQML('version')

data =

 Version: 2.55

 Release: '10-May-2021'

 License: 'Professional'

 Expiry: '31-Dec-2022'

 Filepath: 'C:\IQML\IQML.p'

After installing the latest version, if you discover that this version does not work well,

you can always revert back to a previous version:

1. run IQML('revert'), which replaces the current version with a previous

version that was preserved in the last IQML('update'), or:

2. download http://UndocumentedMatlab.com/files/IQML/IQML_previous.zip,

unzip this file in your IQML folder, then restart Matlab. The current version is not

preserved, so you will not be able to revert to it later by running IQML('revert').

After a version update by any method, restart Matlab, and run data=IQML('version')

to verify the new version. Then email us to let us know why you reverted, so that we

could correct the problem in upcoming versions.

http://undocumentedmatlab.com/files/IQML/IQML_User_Guide.pdf
http://undocumentedmatlab.com/files/IQML/IQML.zip
http://undocumentedmatlab.com/files/IQML/IQML_previous.zip

10 IQML User Guide

3 Using IQML

3.1 General usage

IQML uses the IQFeed client7 to connect to the IQFeed server. If an active IQFeed

client is not detected, IQML will automatically attempt to start the IQFeed client and

to connect to it. Note that this may not work for some IQFeed client installations. You

can always start the IQFeed client manually, before running IQML. In any case, if an

IQFeed connection is unsuccessful, IQML will error.

IQML’s Matlab wrapper function is called IQML, contained within the IQML.p file.

Its accompanying IQML.m file provides basic usage documentation using standard

Matlab syntax, e.g.:
>> help('IQML')

>> help IQML % equivalent alternative

>> doc IQML

The IQML function accepts a variable number of input parameters, and returns data in

a single output argument, with an optional errorMsg output. The general syntax is:

>> [data, errorMsg] = IQML(action, parameters);

where:

 data is the output value. If this output value is requested, then Matlab

processing will block data until the result is available; if the output data is not

requested then the Matlab processing will proceed immediately (non-

blocking) – the IQFeed data will stream asynchronously (see below).

 errorMsg is the latest error message that was reported (if any); see §3.5.

 action is a string that denotes the requested query type (mandatory input).

 parameters can be specified, depending on the requested action. There are

several ways to specify parameters, which are described below.

For example:
>> data = IQML('time'); %'time' action (blocking), 0 parameters

>> IQML('quotes', 'Symbol','IBM'); %streaming 'quotes' action, 1 parameter

>> IQML('command', 'String',command, 'PortName','Admin'); %2 parameters

Note that when an output data is requested, IQML treats the request as blocking

(synchronous), meaning that Matlab processing will wait for IQFeed’s data (or a

timeout) before proceeding with the next Matlab command. For example:

>> t = IQML('time'); % blocking until data is available

When an output data is not requested, IQML treats the request as streaming (non-

blocking, a-synchronous) and Matlab processing will proceed immediately. This non-

blocking mode is typically useful for sending IQFeed requests (for example, to start

streaming trades/ticks), without waiting for a response from IQFeed. The streamed

data is accumulated by IQML in the background, and can later be retrieved using the

mechanism that is discussed in §6. Examples of such non-blocking commands:
>> IQML('quotes', 'Symbol','IBM'); %start non-blocking IBM quotes stream

>> IQML('command', 'String',command); %asynchronous/non-blocking command

7 IQConnect.exe on Windows, IQFeed application on MacOS. or ran as a Windows app on Mac/Linux using Parallels/Wine

11 IQML User Guide

Here are the action values recognized by IQML, in the Standard and Professional
licenses; trial licenses have the full functionality of the Professional license:

Action Description
User Guide

Section(s)

Stan-

dard

Pro &

trial

'version' Display product version information §2.1 Yes Yes

'license' Display the license fingerprint & activation key §2.2 Yes Yes

'validate' Check whether IQML is activated on this computer §2.2 Yes Yes

'update' Update the IQML installation to the latest version §2.4 Yes Yes

'revert' Update the IQML installation to a previous version §2.4 Yes Yes

'doc' Display this User Guide in a separate window - Yes Yes

'quotes' Fetch quotes/trades information on a ticker §4.1, §6.1 Yes Yes

'fundamental' Fetch fundamental information on a ticker §4.2 Yes Yes

'intervalbars' Fetch custom streaming interval bars on a ticker §4.3, §6.3 Yes Yes

'marketdepth' Fetch level 2 market depth information on a ticker §4.4, §6.4 - Yes

'greeks' Report option Greeks, fair value, implied volatility §4.5 - Yes

'history' Fetch historical or intra-day data bars from IQFeed §5 Yes Yes

'summary' Fetch historical market summary data from IQFeed §5.6 - Yes

'regional' Fetch regional update information on a ticker §6.2 - Yes

'news' Fetch news headlines or stories from IQFeed §7 - Yes

'lookup' Fetch list of symbols/codes matching a set of criteria §8 Yes Yes

'chain' Fetch futures/options chain matching a set of criteria §8.2 - Yes

'disconnect' Disconnect IQML from IQFeed §9.1 Yes Yes

'reconnect' Disconnect and then re-connect IQML to IQFeed §9.1 Yes Yes

'time' Retrieve the latest IQFeed server & message times §9.2 Yes Yes

'stats' Retrieve connection and network traffic statistics §9.3 Yes Yes

'command' Send a custom command to IQFeed §9.4 Yes Yes

'registry' Open Windows Registry Editor at IQFeed’s settings §9.5 Yes Yes

'alert' Alert the users upon IQFeed streaming events §11 - Yes

'log' Control IQFeed logging of messages and events §12.2 Yes Yes

IQML accepts input parameters in several alternative formats, which are equivalent –

you can use whichever format that you prefer:

 As name-value pairs – for example:
>> IQML('command', 'String',command, 'PortName','Admin'); %2 parameters

 As a Matlab struct, with parameters contained in corresponding struct fields e.g.:
>> params = []; % initialize

>> params.String = command;

>> params.PortName = 'Admin';

>> IQML('command', params);

 As a Matlab class, with parameters contained in corresponding class properties.

 As a Matlab table, with parameters contained in corresponding table variables.

 As field-separated rows in an Excel input file – for example:
>> IQML('command', 'C:\MyData\inputFile.xlsx');

where:

o Each column contains a separate parameter

o Row #1 contains the parameter names, and

rows 2+ contain their corresponding values,

one row per command

o All commands use the same action ('command' in this example)

12 IQML User Guide

Each parameter must have an associated value. The value’s data type depends on the

specific parameter: it could be numeric, a string, a function handle etc. The definition

of all the parameters and their expected data types is listed in the appropriate section

in this User Guide that explains the usage for the associated action.

Note: if you specify parameters using a struct/class/table format, and then reuse this

object for different IQML commands (by altering a few parameters), the entire set of

parameters will be used, possibly including some leftover parameters from previous

IQML commands. This may lead to unexpected results. For example:
% 1st IQML command – stop streaming timestamp messages every 1 second

>> params = []; % initialize

>> params.String = 'S,TIMESTAMPSOFF';

>> params.PortName = 'Level1';

>> IQML('command', params);

% 2nd IQML command – stop streaming client stats messages every 1 sec

>> params.String = 'S,CLIENTSTATS OFF'; %reuse existing params struct

>> IQML('command', params);

% 3rd IQML command – start streaming quotes messages for IBM

>> params.Symbol = 'IBM'; %reuse existing params struct

>> IQML('quotes', params);

In this example, the 2nd IQML command above will have no effect, because the

PortName parameter in the params struct from the 1st IQML command will be reused

in the 2nd command, sending it to the Level1 port, instead of to the Admin port.

Similarly, the 3rd IQML command will result in a warning, because the 'quotes' action

does not expect the String and PortName parameters that were carried over (reused)

from the 2nd command. To avoid such unexpected results, it is therefore best to reset

the object (params=[] for a struct) before preparing each IQML command.

IQML is quite tolerant of user input: parameter names (but generally not their values)

are case-insensitive, parameter order does not matter, non-numeric parameter values

can be specified as either char arrays ('abc') or strings ("abc"), and some of these can

be shortened. For example, the following commands are all equivalent:
>> IQML('quotes', 'Symbol','IBM');

>> IQML('quotes', 'symbol','IBM');

>> IQML('Quotes', "Symbol","IBM");

>> IQML('Quotes', 'Symbol','IBM');

>> IQML('QUOTES', 'symbol',"IBM");

The full list of acceptable input parameters, and their expected values, is listed in the

following sections, grouped by usage. If you specify an unexpected parameter, it will be

ignored and a warning message will be displayed in the Matlab Command Window:

>> IQML('quotes', 'badName',1)

Warning: 'badName' is not a valid parameter for the 'quotes' action in IQML

When using IQML, there is no need to worry about connecting or disconnecting from

the IQFeed client – IQML handles these activities automatically, without requiring

user intervention. Users only need to ensure that the IQFeed client is active and

logged-in when the IQML command is invoked in Matlab.

IQML reads data using the IQFeed account to which the IQFeed client is connected.

In other words, the IQFeed account type is transparent to IQML: the only way to

control which IQFeed data is available to IQML is to login to the IQFeed client using

the appropriate username/password. Refer to §9.1 for additional details.

13 IQML User Guide

3.2 Common request properties

The following properties can be specified in IQML, with most actions:

Parameter
Data

type
Default Description

Symbol / Symbols
8 string (none) The asset symbol, as known by IQFeed.9

Timeout number 5.0
Max number of seconds (0-9000) to wait for
data in a blocking request (0 means infinite).

Debug logical false or 0 If true or 1, additional information is displayed.

MsgParsingLevel number 2

One of:

 2 – parse all the data in incoming IQFeed
messages (default; most verbose, slowest)

 1 – do not parse lookup codes (e.g. trade
condition, price formats, market id).
The corresponding Description fields will
either be missing, or contain empty strings.
The codes can be parsed separately (see §8).

 0 – do not parse lookup code; also do not
convert string data into numeric values (i.e.
all data fields will remain strings: ‘3.14’).
This is the fastest but least verbose option.

RaiseErrorMsgs logical
true or 1

10
If true or 1, IQFeed error messages raise a Matlab
error in blocking (non-streaming) mode (see §12)

ProcessFunc
function
handle

[]
Custom user callback function to process
incoming IQFeed data messages (see §10).

NumOfEvents integer inf The maximal number of messages to process.

OutputFormat string 'struct' 'cells', 'struct', 'table' or 'timetable' (see §3.5).

Additional properties are request-specific and are listed below in the relevant

sections. For example, the 'history' action has additional properties that control the

parameters of the historic data request (start/end date, data type, etc.).

3.3 Blocking & non-blocking modes

Whenever you specify an output parameter in a call to IQML, the program will block

until a response is available (i.e., a synchronous request). If no output parameter is

specified, IQML immediately returns (non-blocking, a-synchronous) and additional

Matlab commands can immediately be issued. This non-blocking mode is typically

useful for sending IQFeed requests to start streaming data (for example, streaming

trades/ticks or news headlines), without waiting for any response from IQFeed. The

streamed data is accumulated by IQML in the background, and can later be retrieved

using the mechanism that is discussed in §6. For example:

>> t = IQML('time'); % blocking until data is available

>> IQML('quotes', 'Symbol','IBM'); %start non-blocking IBM quotes stream

>> IQML('command', 'String',command); %asynchronous/non-blocking command

8 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization.
9 https://iqfeed.net/symbolguide

10 Using the 2nd (optional) output parameter of IQML implies a default value of false (0) for RaiseErrorMsgs (see §3.5)

https://iqfeed.net/symbolguide

14 IQML User Guide

3.4 Common causes of confusion

1. A common cause of error is specifying symbols incorrectly. IQFeed is very

sensitive about this: if the specified symbol is invalid,11 or if your account does

not have the corresponding market subscription, IQFeed will report an error:

>> IQML('quotes', 'Symbol','xyz123')

Symbol 'XYZ123' was not found!

If the request is blocking, an error (exception) will be thrown (raised), which

can be trapped and handled by the user, using a Matlab try-catch construct:
try

 data = IQML('fundamental', 'Symbol','xyz123');

catch err

 fprintf(2, 'Error: %s\n', err.message);

 % do some intelligent processing here...

end

IQFeed’s website includes a detailed symbol-lookup search engine.12
 If you are

still unsure about a symbol name, please contact IQFeed’s customer support.

2. If any request parameter is invalid or if the request is not accepted by IQFeed, a

run-time error will result, which can be trapped as shown above. For example:
IQML historic data query (EURGBP.FXCM) error: Unauthorized user

ID (your IQFeed account is not authorized for this data)

3. A common confusion source is specifying numeric values as strings or vice versa.

For example, IQML(...,'Timeout','10') rather than IQML(...,'Timeout',10). Each

IQML parameter expects a value of a specific data type, as listed in the parameter

tables in this user guide. IQML is sometimes smart enough to automatically

convert to the correct data type, but you should not rely on this: it is better to

always use the correct data type. Otherwise, Matlab might get confused when

trying to interpret the string '10' as a number, and odd results might happen.

4. While most of IQML’s functionality is available in all license types, some

actions/functionality are only available in the Professional IQML license:13

 Parallelized queries (§3.6)

 Customizable data fields in quotes data (§4.1, §6.1)

 Level 2 market depth quotes (§4.4, §6.4, §10.5)

 Option Greeks, Fair Value and Implied Volatility (§4.5)

 Regional updates (§6.2)

 News (§7)

 Options/futures chain lookup (§8.2)

 Alerts (§11)

If you have a Standard license and try to access Professional-only functionality,

a run-time error will result:

>> data = IQML('news');

The 'news' action is not available in your Standard license of IQML, only

in the Professional license. Contact info@undocumentedmatlab.net to

upgrade your license.

11 For example, EURUSD.FXCM is a valid symbol, but EURUSD and USDEUR.FXCM are invalid
12 https://iqfeed.net/symbolguide

13 Standard license can be converted into a Professional license at any time; contact info@undocumentedmatlab.com for details.

mailto:info@iqml.net
https://iqfeed.net/symbolguide
mailto:info@undocumentedmatlab.com

15 IQML User Guide

5. IQFeed reports dates in different formats, depending on the specific query:

either in the standard American mm/dd/yyyy format (for example:

'01/29/2018'), or in yyyymmdd format (for example: '2018-01-29' or

'20180129 12:29:48'). Dates are usually reported as strings. In some cases, a

corresponding Matlab datenum value is also reported, for example (§5.5, §6.1):
 Symbol: 'IBM'

 Timestamp: '2018-03-07 13:23:02.036440'

 Datenum: 737126.557662458

 ...

 Symbol: '@VX#'

 LatestEventDatenum: 737128.637260451

 LatestEventTimestamp: '20180309 15:17:39'

 ...

Depending on the data field, the timestamp is either your local computer’s time,

or IQFeed servers (New York) time – not the exchange time. To get the

exchange time, you would need to do the appropriate time-zone arithmetic.

6. By default, Matlab displays data in the console (“Command Window”) using

“short” format, which displays numbers rounded to 4 digits after the decimal.

The data actually has higher precision, so when you use it in a calculation the

full precision is used, but this is simply not displayed in the console.

IQML does not truncate/round/modify the IQFeed data in any manner!

To display the full numeric precision in the Matlab console, change your

Command Window’s Numeric Format from “short” to “long” (or “long g”) in

Matlab’s Preferences window, or use the “format long” Matlab command:
>> data = IQML('quotes', 'symbol','ONLIB.X'); %overnight LIBOR rate

>> data.Close % short format (only 4 digits after decimal)

ans =

 1.4463

>> format long g % long format (full precision displayed)

>> data.Close

ans =

 1.44625

16 IQML User Guide

7. In the few seconds following an initial connection to IQFeed, some queries

may return empty data. In such cases, you should try to refetch the data after a

short pause.

For example, the following code snippet tries to refetch the S&P index history

up to 10 times, with a 0.5-second pause between retries, and raises an error

only if no data is available even after all these retries:

data = IQML('history','symbol','SPX.XO');

numTries = 10;

while isempty(data) && numTries > 0

 % Wait a bit and then retry

 pause(0.5)

 data = IQML('history','symbol','SPX.XO');

 numTries = numTries - 1;

end

if isempty(data), error('data is not available'); end

17 IQML User Guide

3.5 Returned data format

Many queries in IQML return their data in the form of a struct-array (a Matlab array

of structs), for example (see §8.6):
>> data = IQML('lookup', 'DataType','NAICS')

data =

 1175×1 struct array with fields:

 id

 description

>> data(1)

ans =

 id: 111110

 description: 'Soybean Farming'

>> data(2)

ans =

 id: 111120

 description: 'Oilseed (except Soybean) Farming'

For various purposes (readability, maintainability, performance, usability), users may
wish to modify this data structure. You can easily convert the data using Matlab’s
builtin functions struct2cell() (which converts the struct-array into a cell-array), or
struct2table() (which converts the struct-array into a Matlab table object):

>> disp(struct2cell(data)')

 [111110] 'Soybean Farming'

 [111120] 'Oilseed (except Soybean) Farming'

 [111130] 'Dry Pea and Bean Farming'

 ...

>> disp(struct2table(data))

 id description

 ______ ___

 111110 'Soybean Farming'

 111120 'Oilseed (except Soybean) Farming'

 111130 'Dry Pea and Bean Farming'

 ...

Note that empty data cannot be converted using struct2table() or struct2cell():
>> data = IQML('lookup', 'DataType','NAICS', 'Description','xyz')

data =

 []

>> struct2cell(data)

Undefined function 'struct2cell' for input arguments of type 'double'.

>> struct2table(data)

Error using struct2table (line 26)

S must be a scalar structure, or a structure array with one column or one row.

When querying multiple symbols, IQML automatically tries to merge the data into a 2D

array of structs (NxM: N data points for each of M symbols). If this is impossible (e.g.

different number of data points per symbol), the results are reported as a cell array:
>> data = IQML('history', 'Symbol','IBM,AAPL,T')

data =

 100×3 struct array with fields:

 Symbol

 Datestamp

 Datenum

 ...

>> data = IQML('history', 'Symbol','IBM,AAPL,T,@ESH20C120000')

data =

 1×4 cell array

 {100×1 struct} {100×1 struct} {100×1 struct} {65×1 struct}

18 IQML User Guide

Cell-array results may also occur when some query elements report no results at all:

>> data = IQML('quotes','symbol','IBM,AAPL,FB,XXXXXX')

IQFeed error: Symbol 'XXXXXX' is invalid/unavailable!

data =

 1×4 cell array

 {1×1 struct} {1×1 struct} {1×1 struct} {0×0 double}

When the results are reported in simple struct format (i.e., scalar or 1D struct array,

but not a cell array or 2D struct array), users can request results in equivalent Matlab

table or timetable formats,14 using the optional OutputFormat parameter:

>> data = IQML('history', 'symbol','IBM', 'outputformat','table')

data =

 100×9 table

 Symbol Datestamp Datenum High Low Open ...

 _______ ______________ _______ ________ ________ ______ ...

 {'IBM'} {'2020-08-11'} 738014 130.47 126.61 128.76 ...

 {'IBM'} {'2020-08-12'} 738015 127.79 125.876 127.61 ...

 {'IBM'} {'2020-08-13'} 738016 126.39 124.77 125.96 ...

 ...

>> data = IQML('history', 'symbol','IBM', 'outputformat','timetable')

data =

 100×9 timetable

 Time Symbol Datestamp Datenum High Low ...

 ___________ _______ ______________ _______ ________ ________ ...

 11-Aug-2020 {'IBM'} {'2020-08-11'} 738014 130.47 126.61 ...

 12-Aug-2020 {'IBM'} {'2020-08-12'} 738015 127.79 125.876 ...

 13-Aug-2020 {'IBM'} {'2020-08-13'} 738016 126.39 124.77 ...

 ...

Note: when no timestamp field is reported, the results cannot be converted into a Matlab

timetable. In such cases, a regular table will be reported, with a warning message:

>> data = IQML('quotes', 'symbol','IBM', 'outputformat','timetable')

Warning: Cannot convert IQFeed query results into a Matlab timetable:

no timestamp field in results, reverting to regular table

(Type "warning off IQML:CannotConvertToTimetable" to suppress this warning.)

data =

 1×19 table

 ...

When the results cannot be converted into a table, requesting an OutputFormat of

table or timetable will result in a warning message and the results will be reported

unchanged (as an empty array, a cell-array, or 2D struct array):

>> data = IQML('history', 'symbol','IBM,AAPL,FB', 'outputformat','table')

Warning: Cannot convert IQFeed query results into a Matlab table: Input struct-

ture must be a scalar structure or a structure array with one column or one row.

(Type "warning off IQML:CannotConvertToTable" to suppress this warning.)

data =

 100×3 struct array with fields:

 Symbol

 Datestamp

 Datenum

 ...

14 Note: table format is only available on Matlab releases R2013b or newer; timetables only on R2016b or newer.

19 IQML User Guide

When OutputFormat is set to 'cells', the results are reported as a cell-array, whose

elements match the results columns. This typically equates to a single cell element for

each queried symbol. If you query N symbols, a 1xN cell-array will be reported,

where each cell element will contain the separate results for each of the N symbols in

a struct (or struct-array) format. For example:
>> data = IQML('history', 'symbol','IBM', 'outputformat','cells')

data =

 1×1 cell array

 {100×1 struct}

>> data = IQML('history', 'symbol','IBM,FB', 'outputformat','cells')

data =

 1×2 cell array

 {100×1 struct} {100×1 struct}

>> data = IQML('history', 'symbol','IBM,FB,xxxxx', 'outputformat','cells')

data =

 1×3 cell array

 {100×1 struct} {100×1 struct} {1×0 double}

As can be seen from these examples, the data format for each of the symbols (i.e. the

contents of each cell element) remains unchanged: struct array or empty array. To

break down the internal struct arrays into their constituents, you can use Matlab’s

struct2cell() or struct2table() functions, as explained at the top of this section:
>> data = IQML('history', 'symbol','IBM,FB,xxxxx', 'outputformat','cells');

>> cellfun(@struct2table, data, 'uniform',false, 'ErrorHandler',@(s,v)table)

ans =

 1×3 cell array

 {100×9 table} {100×9 table} {0×0 table}

The following table compares the possible output types of various IQML queries:

Base IQML query
OutputFormat

'cells' 'struct' (default) 'table' 'timetable'

IQML('history','symbol','IBM')
1×1 cell array

 {100×1 struct}

100×1

struct array

100×9

table

100×9

timetable

IQML('history','symbol','xxxx')
1×0 empty cell

array
1×0 empty double row vector

IQML('history','symbol','IBM,xxxx')
1×2 cell array

 {100×1 struct} {1×0 double}

IQML('history','symbol','IBM,FB')

1×2 cell array

 {100×1 struct}

 {100×1 struct}

100×2

struct array

IQML('quotes','symbol','IBM')
1×1 cell array

 {1×1 struct}
1x1 struct 1×19 table

IQML('quotes','symbol','IBM,FB')

1×2 cell array

 {1×1 struct}

 {1×1 struct}

1x2 struct 2×19 table

IQML('news')
1×1 cell array

 {1000×1 struct}

1000×1

struct array

1000×6

table

1000×6

timetable

A second, optional, output parameter of IQML returns the latest error message (if any):15
>> [data, errorMsg] = IQML('quotes', 'Symbol','IBM', 'Timeout',0.1)

data =

 []

errorMsg =

 'IQML timeout: either IQFeed has no data for this query, or the Timeout

parameter should be set to a value larger than 0.1'

15 Using the 2nd (optional) output parameter of IQML implies a default value of false (0) for the RaiseErrorMsgs parameter.

20 IQML User Guide

3.6 Run-time performance

3.6.1 General considerations

IQML’s standard processing has an overhead of 1-2 milliseconds per IQFeed

message, depending on several factors:

 Message type/complexity – simple messages such as the periodic timestamp

updates are simpler to process than complex messages (e.g. fundamental data).

 The Debug parameter (see §3.2) – A value of 1/true is ~1 msec slower per

message, compared to the default value of 0/false (depending on message type).

 The MsgParsingLevel parameter (§3.2) – A value of 0 is ~1 msec faster per

message, compared to the default value of 2 (depending on message type).

 The UseParallel parameter (see below) enables query parallelization (faster).

 The Fields parameter (§4.1, §5.1-§5.5, §6.1) – fewer fields are faster.

 User-defined callbacks (§10) add their own processing time per message. See

§10.2 for suggested ways to speed-up this callback processing overhead.

 Each active alert (§11) uses 1-2 msecs per message (depending on alert type, and

only for the alert’s corresponding message type). If the alert action is

triggered, then its processing time is added. For example, displaying a popup

message might take 1 sec, and sending an email might take a few seconds.

 Computer capabilities – faster CPU and memory (RAM) enable faster

processing, if your computer has enough physical memory to avoid swapping.

Adding memory is typically much more cost-effective than upgrading the CPU.

This means that without any defined alert or user-specified callback, nor any other

code running in the background (for example, a Matlab data analysis program), we

can expect IQML to process up to 500-1000 IQFeed messages per second by default.

This is a relatively fast throughput, but if you stream real-time quotes for hundreds of

liquid securities concurrently then you might reach this limit. When this happens,

Matlab may be so bogged-down from the flood of incoming messages that it will

become unresponsive, and you may need to restart IQConnect and/or Matlab.

Similarly, if you request a blocking (non-streaming) request with multiple data items

(for example, thousands of historical data or news items), the query may take a while

to process, requiring us to set a higher-than-default Timeout parameter value. For

example, if you issue a blocking request for 20K data bars, IQFeed will send 20K

data messages (one message per bar). If each of these messages takes 1-2 msecs to

process, the total processing time for the IQML query will be 20-40 secs.

When IQFeed is connected, it continuously sends messages to IQML: periodic

“heartbeat” and status messages, and messages for any active streaming quotes or news

events that you requested. These messages are automatically processed by IQML in the

background, reducing the CPU time that is left available to process other IQML queries

(e.g., a blocking historical data query) or Matlab analysis functions. It is therefore

advisable to stop streaming IQFeed data when not needed, even if only temporarily.

21 IQML User Guide

When requesting historic or streaming data items, IQML’s internal data buffer grows

with each new item, causing increasing memory reallocation overhead as the buffer gets

larger. Depending on your computer speed, the slowdown effect may start to become

noticeable when the number of items > 1000. In such cases, setting parameters such

as MaxItems may assist to alleviate the problem by limiting memory reallocations.

In cases of high load, numerous streaming message events (quote ticks, news items etc.)

may inundate the system, causing Matlab to appear frozen for long minutes, until the

events backlog is fully processed. IQML’s built-in overflow handling mechanism (the

OverflowMode and MaxEventsBacklog parameters, §6.1) could assist in such cases.

IQFeed includes a built-in logging mechanism. Setting the logger to record fewer data

items will improve run-time performance (see §12.2). IQFeed’s log file can become

very large very fast and reduce system performance if left unattended. It is intended

to be used for troubleshooting purposes only and not on a constant basis. This is

especially true if you log streaming data, large historic data, and/or Debug data.

Also, by default IQFeed stores the log file in the user’s Documents folder, which

might be automatically synced to OneDrive or Dropbox clouds. The log file can grow

to several GBs per day, so such a sync could result in marked slowdown.16 To

improve performance, disable this sync, or place the log file in a non-synced folder.

3.6.2 Paralellization

With the Professional and trial IQML licenses, you can use Matlab’s Parallel Computing

Toolbox to parallelize IQFeed queries. This can be done both externally (placing IQML

commands in parfor/spmd blocks, so that they will run independently), and internally (for

some IQML query types, using the UseParallel parameter). If you have the Standard

IQML license, or if you do not have Matlab’s Parallel Computing Toolbox, you can still

run concurrent IQML commands in separate Matlab sessions, just not in the same session.

IQML automatically tries to parallelize queries when the UseParallel parameter value

(default: false) is set to 1 or true. The list of parallelizable queries includes:

 Requests resulting in multiple blocking queries in a single IQML command

(for example, historical data for multiple symbols or a date range – see §5)

 Requests for full news-story of all returned news headlines in a blocking query,

using the GetStory parameter (see §7.2)

 Requests for fundamental/quotes data on all symbols in an options-chain or

futures-chain, using the WhatToShow parameter (see §8.2)

When setting UseParallel to 1 or true, IQML will use parallel Matlab tasks (so-called

‘headless workers’ or ‘labs’) from the currently-active parallel pool created by the Parallel

Computing Toolbox. If no pool is active, the default local pool is automatically started.

Here is a run-time example showing the effect of using a 4-worker pool to parallelize

a news-story query, resulting in a 3.5x speedup (not 4x, due to parallelization overheads):

16 http://forums.dtn.com/index.cfm?page=topic&topicID=5771

http://forums.dtn.com/index.cfm?page=topic&topicID=5771

22 IQML User Guide

>> tic, data = IQML('news', 'DataType','headlines', 'MaxItems',100, ...

 'GetStory',1); toc

Elapsed time is 56.311768 seconds.

>> parpool('local',4) % start 4 workers in parallel pool (optional)

>> tic, data = IQML('news', 'DataType','headlines', 'MaxItems',100, ...

 'GetStory',1, 'UseParallel',1); toc

Elapsed time is 15.799185 seconds.

Depending on the number of CPU cores and available memory (RAM) on your

computer, and the amount of work that the OS and other tasks as doing in the

background, a pool of 14 workers (the maximum for IQFeed and IQML) can result in

a speedup of up to 10-12x for parallelizable queries (such as historical data fetches),

compared to the corresponding non-parallel (serial) query.

IQML parallelization has several performance implications:

 Starting the parallel pool can take some time (a few seconds, up to a minute or

two, depending on configuration). It is best to start the pool before any time-

critical operations to avoid this startup time upon the first parallel query. Starting

the pool (with an optional size) can be done using Matlab’s parpool function.

 The default pool uses the same number of workers as the number of physical

cores on your computer. This makes sense for CPU-intensive programs, but

IQML queries are limited by I/O, not CPU. Therefore, unless you also use the

parallel pool for CPU-intensive computations in your program, it makes sense

to start a pool that has more workers than the number of CPU cores. You can

configure your local cluster for this.17
 Note that IQFeed limits (throttles) the

rate of some query types, limiting the effective parallel pool size.18 Larger

worker pools use extra CPU and memory and degrade IQML’s overall perfor-

mance. Different pool sizes are optimal for different queries; you can try using

various pools, to find an optimal size for your specific queries and system.

 For any parallelizable IQML command, you can set a MaxWorkers parameter

value that limits number of workers for that command (up to the pool size).

When MaxWorkers < pool size, only MaxWorkers will be used to process

the IQML command; the other workers will remain idle and consume no CPU.

 Changing the parallel pool size entails a restart of the entire pool, which could

take quite some time. It is advised to pre-allocate the maximal pool size that

you will need (using the optional pool size argument of the parpool command,

or by configuring the local cluster’s default pool size). When you need fewer

workers (for example, to limit the number of parallel historical data queries),

use the MaxWorkers parameter to limit the number of active workers,

without modifying the pool size.

 Note that the more parallel workers that you use, the more memory will be

used by the program, and the higher the risk that some internal program

elements might conflict with each other. You can test various pool sizes to

check which size fits best for your particular computer and query types.

17 https://www.mathworks.com/help/distcomp/discover-clusters-and-use-cluster-profiles.html#f5-16540
18 Until Dec. 2020, IQFeed allowed up to 15 concurrent (parallel) historical data queries; since then 50 queries/sec are allowed,

regardless of the number of concurrent queries. See http://forums.iqfeed.net/index.cfm?page=topic&topicID=5832 for details.

https://www.mathworks.com/help/distcomp/discover-clusters-and-use-cluster-profiles.html#f5-16540
http://forums.iqfeed.net/index.cfm?page=topic&topicID=5832

23 IQML User Guide

 In addition to the workers startup time, each worker independently connects to

IQFeed upon the first IQML command it encounters, taking a few extra seconds.

 Due to parallelization overheads, inter-task memory transfers, and CPU task-

switches (especially in a case of more workers than cores), speedup will always

be smaller than the number of workers. The actual speedup will depend on query

type and computer/OS configuration. Parallelization may even cause slowdown

in some cases (e.g. quote queries, due to waiting for market events, not CPU).

 It is only possible to parallelize workers on the local computer, not on other

computers in a distributed grid/cluster/cloud. This is due to IQFeed/exchange

limitations, which prohibit distribution of data to other computers.

Historical data queries have two parallelization variants:

 When requesting data for multiple symbols, the symbols are split across the

available parallel workers (up to the specified MaxWorkers value or the active

pool size, whichever is lower), one or more complete symbol query per worker.

Therefore, if you query fewer symbols than workers, some workers will remain

idle (unused). In such a case, consider using a smaller parallel pool, with fewer

workers, taking up less CPU and memory resources. Alternatively, run a serial

for-loop over the symbols, parallelizing the date/time dimension (next bullet).

 When requesting data for just a single symbol, the requested date/time segment

(BeginDate to EndDate etc.) is evenly split across the workers. You should

always set BeginDate to the earliest time of actual available data: without a

date/time segment (for example no BeginDate), parallelization is impossible, so

IQML reverts to slow serial mode. Likewise, when data is limited (for example,

1-sec intervals are only available for the past 180 days) and BeginDate is older

than the earliest data, some workers will remain idle (processing a date/time

range with little or no data); the actual work will be done by fewer workers than

optimal, resulting in slower-than-optimal performance.

3.6.3 Reported data-fields

Also in the Professional IQML license, you can customize the fields that IQML reports

for market data quotes and historic data bars. The Fields parameter can be set to a

cell-array of strings ({'Bid','Ask','Last'}), or a comma-separated string

('Bid,Ask,Last'). All subsequent queries of the same type will only report the

requested fields. For example:

>> data = IQML('quotes', 'Symbol','AAPL', 'Fields',{'Bid','Ask','Last'})

>> data = IQML('quotes', 'Symbol','AAPL', 'Fields','Bid,Ask,Last') %equivalent

data =

 Symbol: 'AAPL'

 Bid: 222.71

 Ask: 222.91

 Last: 222.11

Note: the fewer fields that you request, the faster the required processing time, by both

IQFeed and IQML (see §4.1, §5.1-§5.5, §6.1 for details). Requesting fewer fields (as

in the example above, which only requested 3 quote fields) results in faster processing

and reduced memory consumption. To improve the run-time and reduce memory usage

it is advisable to request only those data fields that your program actually needs.

24 IQML User Guide

4 Querying the latest market data

4.1 Snapshot (top of book) quotes

We start with a simple example to retrieve the latest market information for Alphabet

Inc. Class C, which trades using the GOOG symbol, using IQML’s 'quotes' action:
>> data = IQML('quotes', 'Symbol','GOOG')

data =

 Symbol: 'GOOG'

 Most_Recent_Trade: 1092.14

 Most_Recent_Trade_Size: 1

 Most_Recent_Trade_Time: '09:46:31.960276'

 Most_Recent_Trade_Market_Center: 25

 Total_Volume: 113677

 Bid: 1092.13

 Bid_Size: 100

 Ask: 1092.99

 Ask_Size: 100

 Open: 1099.22

 High: 1099.22

 Low: 1092.38

 Close: 1090.93

 Message_Contents: 'Cbaohlc'

 Message_Description: 'Last qualified trade; A bid update

 occurred, An ask update occurred; An open

 declaration occurred; A high declaration

 occurred; A low declaration occurred; A

 close declaration occurred'

 Most_Recent_Trade_Conditions: '3D87'

 Trade_Conditions_Description: 'Intramaket Sweep; Odd lot trade'

 Most_Recent_Market_Name: 'Direct Edge A (EDGA)'

As can be seen, the returned data object is a Matlab struct with self-explanatory fields.19

To access any specific field, use the standard Matlab dot-notation:
>> bidPrice = data.Bid; %=1092.13 in this specific case

If the symbol is not currently trading, some fields return empty values:
>> data = IQML('quotes', 'Symbol','GOOG')

data =

 Symbol: 'GOOG'

 Most_Recent_Trade: 1078.99

 Most_Recent_Trade_Size: 1

 Most_Recent_Trade_Time: '19:58:47.052099'

 Most_Recent_Trade_Market_Center: 26

 Total_Volume: 0

 Bid: 1077.6

 Bid_Size: 100

 Ask: 1079.89

 Ask_Size: 200

 Open: []

 High: []

 Low: []

 Close: 1078.92

 Message_Contents: 'Cbav'

 Message_Description: 'Last qualified trade; A bid update

 occurred; An ask update occurred;

 A volume update occurred'

 Most_Recent_Trade_Conditions: '0517'

 Trade_Conditions_Description: 'Average Price Trade; Form-T Trade'

 Most_Recent_Market_Name: 'Direct Edge X (EDGX)'

19 The textual Description fields depend on the MsgParsingLevel parameter having a value of 2 or higher (see §3.2 and §8).

The Bid and Ask fields are typically NBBO (National Best Bid and Offer) quotes.

25 IQML User Guide

In this example, the query was sent outside regular trading hours (on Sunday) so Open,

High and Low are empty. As expected, the data indicates this was a “Form-T” trade.

Other fields may sometimes be empty. For example, overnight LIBOR rate (Symbol=

'ONLIB.X') reports empty Bid, Ask, Most_Recent_Trade_Size (and Total_Volume=0).

In rare cases, you might see invalid field values (e.g. 0), which may indicate a data

error. IQML does not modify the data reported by IQFeed, so if you see this problem

consistently for a certain security or exchange, please contact IQFeed’s support.

If you specify an incorrect security name or classification properties, or if you do not

have the necessary market subscription, then no data is returned, and an error

message is displayed (see discussion in §3.4).

>> IQML('quotes', 'Symbol','xyz123')

Symbol 'XYZ123' was not found!

You may request more than a single snapshot quote: To get the next N real-time

quotes, specify the NumOfEvents parameter. The result is an array of structs in the

same format as above (or an empty array if no data is available):

>> data = IQML('quotes', 'Symbol','IBM', 'NumOfEvents',4)

data =

 4×1 struct array with fields:

 Symbol

 Most_Recent_Trade

 Most_Recent_Trade_Size

 ...

>> data(1)

ans =

 Symbol: 'IBM'

 Most_Recent_Trade: 159.16

 Most_Recent_Trade_Size: 75

 Most_Recent_Trade_Time: '09:36:15.534201'

 Most_Recent_Trade_Market_Center: 24

 Total_Volume: 135267

 ...

Note that it is possible that not all the requested quotes will be received before

IQML’s timeout (default value: 5 secs) returns the results:

>> data = IQML('quotes', 'Symbol','IBM', 'NumOfEvents',4)

Warning: IQML timeout: only partial data is returned. Perhaps the Timeout

parameter should be set to a value larger than 5 or the NumOfEvents parameter

to a value smaller than 4

data =

 2×1 struct array with fields:

 Symbol

 Most_Recent_Trade

 Most_Recent_Trade_Size

 ...

To control the maximal duration that IQML will wait for the data, set the Timeout

parameter. For example, to wait up to 60 secs to collect the next 4 upcoming quotes:

>> data = IQML('quotes', 'Symbol','IBM', 'NumOfEvents',4, 'timeout',60);

26 IQML User Guide

You can request quotes for multiple symbols at the same time, in a single IQML

command, by specifying a colon-delimited or cell-array list of symbols. For example:

>> data = IQML('quotes', 'symbols',{'IBM','GOOG','AAPL'});

>> data = IQML('quotes', 'symbols','IBM:GOOG:AAPL'); % equivalent

The result will be an array of Matlab structs that correspond to the requested symbols:

data =

 1×3 struct array with fields:

 Symbol

 Most_Recent_Trade

 Most_Recent_Trade_Size

 Most_Recent_Trade_Time

 Most_Recent_Trade_Market_Center

 Total_Volume

 Bid

 ...

>> data(2)

ans =

 struct with fields:

 Symbol: 'GOOG'

 Most_Recent_Trade: 1078.99

 Most_Recent_Trade_Size: 1

 Most_Recent_Trade_Time: '19:58:47.052099'

 Most_Recent_Trade_Market_Center: 26

 Total_Volume: 0

 Bid: 1077.6

 Bid_Size: 100

 Ask: 1079.89

 Ask_Size: 200

 Open: []

 High: []

 Low: []

 Close: 1078.92

 Message_Contents: 'Cbav'

 Message_Description: 'Last qualified trade; A bid update

 occurred; An ask update occurred;

 A volume update occurred'

 Most_Recent_Trade_Conditions: '0517'

 Trade_Conditions_Description: 'Average Price Trade; Form-T Trade'

 Most_Recent_Market_Name: 'Direct Edge X (EDGX)'

If you have the Professional license of IQML and also Matlab’s Parallel Computing

Toolbox, then setting the UseParallel parameter to true (or 1) will process the quotes

query for all the specified symbols in parallel (see discussion in §3.6). Note that in the

case of quote queries, there is often little or no speedup in parallelization, because the

delay is caused by waiting for market quote events, not due to CPU processing:

>> data = IQML('quotes', 'symbols',{'IBM','GOOG','AAPL'}, 'UseParallel',true);

Note that if you request quotes for a very large number of symbols in a single IQML

command, and especially if you set UseParallel to true, you might run into your IQFeed

account’s symbols-limit (MaxSymbols; see §9.3). In such a case, IQFeed-generated

error messages such as the following will be displayed on the Matlab console:

Warning: Requesting 3258 symbol quotes, which is more than your IQFeed account's

concurrent symbols limit (500) - quotes for some symbols may not be available.

(Type "warning off IQML:MaxSymbols" to suppress this warning.)

Level1 symbol limit reached - symbol 'IBM' not serviced!

27 IQML User Guide

By default, IQFeed reports 16 data fields for each quote: Symbol, Most Recent Trade,

Most Recent Trade Size, Most Recent Trade Time, Most Recent Trade Market

Center, Total Volume, Bid, Bid Size, Ask, Ask Size, Open, High, Low, Close,

Message Contents, and Most Recent Trade Conditions.20

If the Fields parameter is set to an empty value ({} or ''), the current set of fields and the

full list of available fields, are reported (in this case, a Symbol parameter is unnecessary):

>> data = IQML('quotes', 'fields',{})

data =

 CurrentFields: {1×16 cell}

 AvailableFields: {1×68 cell}

>> data.AvailableFields

ans =

 1×68 cell array

 Columns 1 through 5

 {'Symbol'} {'Exchange ID'} {'Last'} {'Change'} {'Percent Change'}

 Columns 6 through 11

 {'Total Volume'} {'High'} {'Low'} {'Bid'} {'Ask'} {'Bid Size'}

 Columns 12 through 17

 {'Ask Size'} {'Tick'} {'Range'} {'Open Interest'} {'Open'} {'Close'}

 Columns 18 through 22

 {'Spread'} {'Settle'} {'Delay'} {'Restricted Code'} {'Net Asset Value'}

 ...

If you have the Professional (or trial) IQML license, you can request IQFeed to report

up to ~70 data fields, and/or change the reported fields and their order, using the

optional Fields parameter, as follows:

We can set Fields to 'All' (or 'all') to request all available data fields in reported quotes:21

>> data = IQML('quotes', 'Symbol','AAPL', 'Fields','all')

data =

 Symbol: 'AAPL'

 x7_Day_Yield: []

 Ask: 222.91

 Ask_Change: []

 Ask_Market_Center: 28

 Ask_Size: 100

 Ask_Time: '19:59:42.031900'

 Available_Regions: []

 Average_Maturity: []

 Bid: 222.71

 ...

The field names in the reported Matlab struct are the same as the IQField field names,

except for the following minor changes to create valid Matlab field identifiers:

 spaces are replaced by '_' (“Ask Change” Ask_Change)

 'x' is prefixed to fields that start with numbers (“7 Day Yield” x7_Day_Yield)

A complete table of available fields is provided for convenience at the bottom of this

section. If you are uncertain about the meaning of a certain field, or wish to know

20 The additional textual fields Message_Description, Trade_Conditions_Description and Most_Recent_Market_Name are

IQML-generated textual interpretations of the codes in the IQFeed-generated Message_Contents, Trade_Conditions and

Most_Recent_Trade_Market_Center fields, respectively, as governed by the MsgParsingLevel parameter (see §3.2).
21 Additional description fields will be generated by IQML for those fields that report value codes (for example, the Fraction

Display Code and Financial Status Indicator fields), as governed by the MsgParsingLevel parameter (see §3.2).

28 IQML User Guide

which field reports certain data, please ask your DTN IQFeed representative (after all,

IQML just reports the data as provided by IQFeed).

Some of the reported field values may be empty. For example, AAPL’s

Average_Maturity value is empty since this field is only relevant for bonds, not stocks.

Similarly, EURUSD.FXCM’s Market_Capitalization value is empty because Forex

securities have no market cap. Likewise, Net_Asset_Value is only relevant for funds.

Delay=[] indicates a real-time quote, whereas Delay=15 indicates that the quote was

delayed 15 minutes by the exchange (presumably because you do not possess a real-

time data subscription for this exchange/security-type).22

The Fields parameter can be set to any subset of AvailableFields,23 as either a cell-

array of strings, or as a comma-separated string. In this case, any subsequent quotes

query will report the requested fields, in the specified order. For example:
>> data = IQML('quotes', 'Symbol','AAPL', 'Fields',{'Bid','Ask','Last'})

>> data = IQML('quotes', 'Symbol','AAPL', 'Fields','Bid,Ask,Last') %equivalent

data =

 Symbol: 'AAPL'

 Bid: 222.71

 Ask: 222.91

 Last: 222.11

The order of the specified Fields indicates the order in which the data fields will be

reported. For example, to change the order of the reported data fields above:
>> data = IQML('quotes', 'Symbol','AAPL', 'Fields','Last,Ask,Bid')

data =

 Symbol: 'AAPL'

 Last: 222.11

 Ask: 222.91

 Bid: 222.71

Note that the Symbol field is always reported in the first position, regardless of whether

or not it was specified in the Fields list, or its specified position order in the Fields

list (also note the optional spaces between the comma-separated field names):
>> data = IQML('quotes', 'Symbol','AAPL', 'Fields','Ask, Bid, Last, Symbol')

data =

 Symbol: 'AAPL'

 Ask: 222.91

 Bid: 222.71

 Last: 222.11

As noted, Fields can be set to any subset of the AvailableFields. If a bad field is

specified (one which is not available in IQFeed), an error message will be displayed:
>> data = IQML('quotes', 'Symbol','AAPL', 'Fields','Bid, Ask, xyz')

Error using IQML

Bad field 'xyz' was requested in IQML quotes command (check the

capitalization/spelling).

Available fields are: 7 Day Yield, Ask, Ask Change, Ask Market Center, ...

Note: the more fields that you request, the longer the required processing time, by both

IQFeed and IQML. To improve run-time performance and reduce latency, request

only those data fields that are actually needed by your program.

22 See §9.3 for a programmatic method to determine whether your exchange subscription is delayed or real-time.

23 AvailableFields is reported by an IQML('quotes','fields',{}) command – see the previous page in this User Guide.

29 IQML User Guide

The following parameters affect quotes data queries:

Parameter Data type Default Description

Symbol or

Symbols 24

colon or

comma-
delimited
string, or

cell-array

of strings

(none)

Limits the query to the specified symbol(s).

Examples:

 '@VX#'

 'IBM:AAPL:GOOG'

 'IBM,AAPL,GOOG'

 {'IBM', 'AAPL', 'GOOG'}

This parameter must be set to valid symbol

name(s). Multiple symbols can be parallelized

using the UseParallel parameter (see below).

NumOfEve

nts
integer 1 Returns up to the specified number of quotes

Timeout number 5.0
Max number of seconds to wait for incoming

data (0-9000, where 0 means infinite)

UseParallel
logical

(true/false)
false

If set to true or 1, and the Parallel Toolbox is

installed, querying multiple symbols is done

in parallel (see §3.6; Pro IQML license only)

MaxWorke

rs
integer

(current parallel

pool size)

Max number of parallel workers to use (up to

the current pool size) when UseParallel=1

Fields

colon or

comma-

separated

string, or

cell-array

of strings

'Symbol, Most

Recent Trade,

Most Recent Trade

Size, Most Recent

Trade Time, Most

Recent Trade

Market Center,

Total Volume, Bid,

Bid Size, Ask, Ask

Size, Open, High,

Low, Close,

Message Contents,

Most Recent Trade

Conditions'

Sets the list of data fields reported by IQFeed

for each quote. IQFeed’s default set has 16

fields; up to ~70 fields can be specified (a

detailed list of fields is provided below).

If Fields is set to an empty value ({} or ''),

the list of current, available fields is returned.

If Fields is not empty, subsequent quotes

and chain queries will return the specified

fields, in the specified order (Professional

IQML license only). The Symbol field is

always returned first, even if not specified.

Examples:

 'Bid:Ask:Last:Ask Size'

 'Bid, Ask, Last, Ask Size'

 {'Bid', 'Ask', 'Last', 'Ask Size'}

 'All' (indicates all available fields)

The full list of available fields in IQFeed as of December 2021 is listed below. Note

that some of these fields may not be available, and IQFeed may also add/modify this

list at any time. The list of fields that are actually available cen be retrieved in IQML

using the IQML('quotes','fields',{}) command, as explained above. For details about

any of these fields, please contact your DTN/IQFeed representative (IQML just reports

the data, it has no control over the reported values or definition of the data fields).

24 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

30 IQML User Guide

In the table below, the 16 default data fields are marked with a bold green font-face:

Requested

Field Name

Reported

Field Name

Field

Type
Description Data origin 25

7 Day Yield x7_Day_Yield float Value of a Money Market fund over past 7 days. Exchange/other

Ask Ask float Min price a market maker/broker agrees to accept. Exchange/other

Ask Change Ask_Change float Change in Ask since last offer. IQConnect

Ask Market

Center

Ask_Market_

Center
integer

Market Center that sent the ask information (see

§8.3).
Exchange/other

(none)
Ask_Market_

Name
string

Human-readable name of the Ask Market Center.

Automatically reported with Ask_Market_Center
IQConnect

Ask Size Ask_Size integer The share size available for the ask price Exchange/other

Ask Time Ask_Time
hh:mm:ss

.ffffff

Time of last ask. Reported as 99:99:99 outside

trading hours to indicate an invalidated quote.26
Exchange/other

Available

Regions

Available_

Regions
string

Dash-delimited list of available regional

exchanges.
IQConnect

Average

Maturity

Average_

Maturity
float

Average number of days until maturity of a

Money Market Fund’s assets.
Exchange/other

Bid Bid float Max price a market maker/broker agrees to pay. Exchange/other

Bid Change Bid_Change float Change in Bid since last offer. IQConnect

Bid Market

Center

Bid_Market_

Center
integer

Market Center that sent the bid information (see

§8.3).
Exchange/other

(none)
Bid_Market_

Name
string

Human-readable name of the Bid Market Center.

Automatically reported with Bid_Market_Center
IQConnect

Bid Size Bid_Size integer The share size available for the bid price. Exchange/other

Bid Time Bid_Time
hh:mm:ss

.ffffff

Time of last bid. Reported as 99:99:99 outside

trading hours to indicate an invalidated quote.27
Exchange/other

Change Change float Today's change (Last - Close) IQConnect

Change From

Open

Change_From_

Open
float Change in last price since last open. IQConnect

Close Close float
The closing price of the day. For commodities

this will be the last trade price of the session.
Exchange/other

Close Range

1
Close_Range_1 float

For commodities only. Range value for closing

trades that aren’t reported individually.
Exchange/other

Close Range

2
Close_Range_2 float

For commodities only. Range value for closing

trades that aren’t reported individually.
Exchange/other

Days to

Expiration

Days_to_

Expiration
string Number of days to contract expiration. IQConnect

Decimal

Precision

Decimal_

Precision
string Last Precision used. DTN

Delay Delay integer
The number of minutes a quote is delayed when
not authorized for real-time data.28

Exchange/other

Exchange ID Exchange_ID
hexadeci
mal

The Exchange Group ID. DTN

(none)
Exchange_

Description
string

Human-readable name of the Exchange ID.

Automatically reported with Exchange_ID.
IQConnect

25 In this table, “exchange/other” means either the exchange, or some other 3rd-party that provides data to DTN/IQFeed.

26 http://forums.iqfeed.net/index.cfm?page=topic&topicID=3891
27 http://forums.iqfeed.net/index.cfm?page=topic&topicID=3891

28 See §9.3 for a programmatic method to determine whether your exchange subscription is delayed or real-time.

http://forums.iqfeed.net/index.cfm?page=topic&topicID=3891
http://forums.iqfeed.net/index.cfm?page=topic&topicID=3891

31 IQML User Guide

Requested

Field Name

Reported

Field Name

Field

Type
Description Data origin 25

Extended
Trade

Extended_Trade float
Price of the most recent extended trade (last
qualified trades + Form T trades).

Exchange/other

Extended

Trade Date

Extended_Trade

_ Date

MM/DD/

CCYY
Date of the extended trade. Exchange/other

Extended

Trade Market

Center

Extended_Trade

_ Market_Center
Integer

Market Center of the most recent extended trade

(last qualified trades + Form T trades); see §8.3.
Exchange/other

(none)
Extended_Trade

_Market_Name
string

Human-readable name of the Extended Trade

Market Center. Automatically reported with

Extended_Trade_Market_Center.

IQConnect

Extended

Trade Size

Extended_Trade

_Size
Integer

Size of the most recent extended trade (last

qualified trades + Form T trades).
Exchange/other

Extended

Trade Time

Extended_Trade

_Time

hh:mm:ss

.ffffff

Time of the most recent extended trade (last

qualified trades + Form T trades).
Exchange/other

Extended

Trading

Change

Extended_

Trading_

Change

float Extended Trade minus Yesterday's close. IQConnect

Extended

Trading

Difference

Extended_

Trading_

Difference

float Extended Trade minus Last. IQConnect

Financial

Status

Indicator

Financial_Status

_Indicator
char

Denotes if an issuer has failed to submit its

regulatory filings on a timely basis, has failed to

meet the exchange's continuing listing standards

and/or filed for bankruptcy. A corresponding

description field will be generated by IQML for

this field when MsgParsingLevel ≥ 2 (see §3.2)

Exchange/other

(none)
Financial_Status

_Description
string

Human-readable name of the Financial Status

Indicator. Automatically reported with

Financial_Status_Indicator.

IQConnect

Fraction

Display Code

Fraction_

Display_ Code
string

Display formatting code. A corresponding

description field will be generated by IQML for

this field when MsgParsingLevel ≥ 2 (see §3.2)

DTN

(none)

Fraction_

Display_

Description

string

Human-readable name of Fraction Display Code.

Automatically reported with

Fraction_Display_Code.

IQConnect

High High float Today's highest trade price. Exchange/other

Last Last float
Price of last trade of 100+ units in regular

trading session
Exchange/other

Last Date Last_Date
MM/DD/

CCYY
Date of the last qualified trade. Exchange/other

Last Market

Center

Last_Market_

Center
integer

Market Center of most recent last qualified

trade.
Exchange/other

(none)
Last_Market_

Name
string

Human-readable name of the Last Market Center.

Automatically reported with Last_Market_Center
IQConnect

Last Size Last_Size integer Size of the most recent last qualified trade. Exchange/other

Last Time Last_Time
hh:mm:ss

.ffffff

Time (including microseconds) of the most

recent last qualified trade.
Exchange/other

Low Low float Today's lowest trade price. Exchange/other

Market

Capitalization

Market_

Capitalization
float

Real-time calculated market cap (Last price *

Common Shares Outstanding).
IQConnect

32 IQML User Guide

Requested

Field Name

Reported

Field Name

Field

Type
Description Data origin 25

Market Open Market_Open integer
1 = market open, 0 = market closed.

Note: valid for Futures and Future Options only.
DTN

(none)
Market_Open_

Description
string

Human-readable name of the Market Open field.

Automatically reported with Market_Open.
IQConnect

Message

Contents

Message_

Contents

non-

delimited

string of

single
characters

of

message

ID code

Possible single character values include:

 C – Last Qualified Trade

 E – Extended Trade = Form T trade

 O – Other Trade = any trade not accounted

 for by C or E

 b – A bid update occurred

 a – An ask update occurred

 o – An Open event occurred

 h – A High event occurred

 l – A Low event occurred

 c – A Close event occurred

 s – A Settlement event occurred
 v – A volume update occurred

Notes: you can get multiple codes in a single

message but you will only get one trade ID per

message. It is also possible to receive no codes

in a message if the fields that updated were not

trade or quote related. A corresponding

description field is generated by IQML for this

field when MsgParsingLevel ≥ 2 (see §3.2)

IQConnect

(none)
Message_

Description
string

Human-readable name of the Message Contents.

Automatically reported with Message_Contents.
IQConnect

Most Recent

Trade

Most_Recent_

Trade
float

Price of the most recent trade (including trades

that do not qualify for “Last”, i.e. outside regular

trading or <100 units)

Exchange/other

Most Recent

Trade

Aggressor

Most_Recent_

Trade_

Aggressor

integer

Identifies if the trade was executed at the bid or

the ask price. As of IQFeed 6.1, this feature is

only supported for CME and ICE exchanges;

unsupported symbols return [].

Possible values:

 0 – invalid or unsupported

 1 – latest trade was executed at Ask price

 2 – latest trade was executed at Bid price

 3 – latest trade was executed at other price

 [] – unknown or unsupported

(requires IQFeed client 6.1 or newer)

Exchange/other

(only provided

by some

exchanges)

(none)

Trade_

Aggressor_

Description

string

Human-readable name of the Most Recent Trade

Aggressor field. Automatically reported with

Most_Recent_Trade_Aggressor.

IQConnect

Most Recent

Trade

Conditions

Most_Recent_

Trade_

Conditions

string of

2-digit

hex

numbers

Conditions that identify the type of most recent

trade. A corresponding description field is

generated by IQML for this field when

MsgParsingLevel ≥ 2 (see §3.2, §8.7)

Exchange/other

(none)

Trade_

Conditions_

Description

string

Human-readable name of the Most Recent Trade

Conditions field. Automatically reported with

Most_Recent_Trade_Conditions.

IQConnect

Most Recent

Trade Date

Most_Recent_

Trade_Date

MM/DD/

CCYY
Date of most recent trade. Exchange/other

Most Recent

Trade Day

Code

Most_Recent_

Trade_Day_

Code

integer

The day of month (1-31) in which the most

recent trade occurred. (requires IQFeed client

6.1 or newer)

Exchange/other

33 IQML User Guide

Requested

Field Name

Reported

Field Name

Field

Type
Description Data origin 25

Most Recent

Trade

Market

Center

Most_Recent_

Trade_Market_

Center

integer

Market Center of most recent trade. A

corresponding description field will be generated

by IQML for this field when MsgParsingLevel

≥ 2 (see §3.2, §8.3)

Exchange/other

(none)
Most_Recent_

Market_Name
string

Human-readable name of the Most Recent Trade

Market Center. Automatically reported with

Most_Recent_Trade_Market_Center.

IQConnect

Most Recent

Trade Size

Most_Recent_

Trade_Size
integer Size of most recent trade. Exchange/other

Most Recent

Trade Time

Most_Recent_

Trade_Time

hh:mm:ss

.ffffff

Time (including microseconds) of most recent

trade.
Exchange/other

Net Asset

Value

Net_Asset_

Value
float

The market value of a mutual fund share. Equals

net assets / total number of shares outstanding.

Duplicates the Bid field. Mutual Funds only.

Exchange/other

Number of

Trades Today

Number_of_

Trades_Today
integer The number of trades for the current day. IQConnect/DTN

Open Open float
The opening price of the day. For commodities

this will be the first trade of the session.
Exchange/other

Open Interest Open_Interest integer
Derivatives open interest (IEOptions, Futures,

FutureOptions, SSFutures only).
Exchange/other

Open Range

1
Open_Range_1 float

For commodities only. Range value for opening

trades that aren’t reported individually.
Exchange/other

Open Range

2
Open_Range_2 float

For commodities only. Range value for opening

trades that aren’t reported individually.
Exchange/other

Percent Change Percent_Change float = Change / Close IQConnect

Percent Off

Average

Volume

Percent_Off_

Average_Volume
float Current Total Volume / Average Volume IQConnect

Previous Day

Volume

Previous_Day_

Volume
integer Previous Day's Volume. Exchange/other

Price-Earnings

Ratio
Price_Earnings_

Ratio
float

Real-time calculated PE (Last / Earnings Per

Share).
IQConnect

Range Range float Trading range for the current day (high - low) IQConnect

Restricted

Code
Restricted_Code string "N"=Short Sale not restricted, "R"=Restricted. Exchange/other

(none)
Restricted_Code

_Description
string

Human-readable name of Restricted Code field.

Automatically reported with Restricted_Code.
IQConnect

Settle Settle float Settle price (Futures or FutureOptions only). Exchange/other

Settlement

Date
Settlement_Date

MM/DD/

YYYY
The date that the Settle field is valid for. Exchange/other

Spread Spread float The difference between Bid and Ask prices. IQConnect

Symbol Symbol string The symbol name of the security IQConnect

Tick Tick integer
173=Up, 175=Down, 183=No Change. Based on

previous trade. Only valid for Last qualified trades
IQConnect

(none)
Tick_

Description
string

Human-readable name of the Tick field.

Automatically reported with Tick.
IQConnect

TickID TickID integer Identifier for tick (not necessarily sequential). DTN

34 IQML User Guide

Requested

Field Name

Reported

Field Name

Field

Type
Description Data origin 25

Total

Volume
Total_Volume integer Today's cumulative volume (number of shares).

IQConnect, DTN

or exchange

Type Type string "Q"=Update message, "P"=Summary message IQConnect

Volatility Volatility float Real-time calculated volatility: (High-Low)/Last IQConnect

VWAP VWAP float Volume Weighted Average Price. IQConnect/DTN

35 IQML User Guide

4.2 Fundamental information

Fundamental data on a symbol can be fetched using a 'fundamental' action, as follows:
>> data = IQML('fundamental', 'symbol','IBM')

data =

 Symbol: 'IBM'

 Exchange_ID: 7

 PE: 25.7

 Average_Volume: 4588000

 x52_Week_High: 180.95

 x52_Week_Low: 139.13

 Calendar_Year_High: 171.13

 Calendar_Year_Low: 144.395

 Dividend_Yield: 3.79

 Dividend_Amount: 1.5

 Dividend_Rate: 6

 Pay_Date: '03/10/2018'

 Ex_dividend_Date: '02/08/2018'

 Short_Interest: 17484332

 Current_Year_EPS: 6.17

 Next_Year_EPS: []

 Five_year_Growth_Percentage: -0.16

 Fiscal_Year_End: 12

 Company_Name: 'INTERNATIONAL BUSINESS MACHINE'

 Root_Option_Symbol: 'IBM'

 Percent_Held_By_Institutions: 59.9

 Beta: 1.05

 Leaps: []

 Current_Assets: 49735

 Current_Liabilities: 37363

 Balance_Sheet_Date: '12/31/2017'

 Long_term_Debt: 39837

 Common_Shares_Outstanding: 921168

 Split_Factor_1: '0.50 05/27/1999'

 Split_Factor_2: '0.50 05/28/1997'

 Market_Center: []

 Format_Code: 14

 Precision: 4

 SIC: 7373

 Historical_Volatility: 25.79

 Security_Type: 1

 Listed_Market: 7

 x52_Week_High_Date: '03/08/2017'

 x52_Week_Low_Date: '08/21/2017'

 Calendar_Year_High_Date: '01/18/2018'

 Calendar_Year_Low_Date: '02/09/2018'

 Year_End_Close: 153.42

 Maturity_Date: []

 Coupon_Rate: []

 Expiration_Date: []

 Strike_Price: []

 NAICS: 541512

 Exchange_Root: []

 Option_Premium_Multiplier: []

 Option_Multiple_Deliverable: []

 Session_Open_Time: []

 Session_Close_Time: []

 Base_Currency: []

 Contract_Size: []

 Contract_Months: []

 Minimum_Tick_Size: []

 First_Delivery_Date: []

 FIGI: 'BBG000BLNNH6'

36 IQML User Guide

 Security_SubType: []

 Price_Format_Description: 'Four decimal places'

 Exchange_Description: 'New York Stock Exchange (NYSE)'

 Listed_Market_Description: 'New York Stock Exchange (NYSE)'

 Security_Type_Description: 'Equity'

 Security_SubType_Description: ''

 SIC_Description: 'COMPUTER INTEGRATED SYSTEMS DESIGN'

 NAICS_Description: 'Computer Systems Design Services'

 SIC_Sector_Name: 'Services'

 NAICS_Sector_Name: 'Professional, Scientific, Technical services'

Notes:

1. the naming, interpretation and order of returned data fields is controlled by

IQFeed, not by IQML – DTN might change these fields in the future.

2. Splits – when only one split is available, Split_Factor_2 will be empty; when no

splits are known to IQFeed, both split fields will be empty. Splits are reported as

'#.## <mm/dd/yyyy date>', i.e. an American-format date rounded to 2 decimal

digits.29 In any case, only the last 2 splits are reported by IQFeed.30

3. the inclusion of the *_Description fields (Price_Format_Description,

Exchange_Description, etc.) depends on the MsgParsingLevel parameter

having value of 2 or higher (see §3.2 for details). When MsgParsingLevel is 1

or 0, these fields will not be part of the returned data struct.

4. Depending on your IQFeed client version, additional fundamental data fields

may be returned. For example, the following fields were added in client 6.1

(some fields only have values for certain security types, e.g. futures/options):
Session_Open_Time, Session_Close_Time, Base_Currency, Contract_Size, FIGI,

Contract_Months, Minimum_Tick_Size, First_Delivery_Date, and Security_SubType.

For example, (redacted for clarity):
 >> data = IQML('fundamental', 'symbol','@ES#')

 data =

 struct with fields:

 Symbol: '@ES#'

 Exchange_ID: 34

 PE: []

 Average_Volume: []

 x52_Week_High: 3006

 x52_Week_Low: 2350

 ...

 Company_Name: 'E-MINI S&P 500 SEPTEMBER 2019'

 Expiration_Date: '09/20/2019'

 Exchange_Root: 'ES'

 Session_Open_Time: '18:00:00'

 Session_Close_Time: '17:00:00'

 Base_Currency: 'USD'

 Contract_Size: 50

 Contract_Months: '--H--M--U--Z'

 Minimum_Tick_Size: 0.25

 Underlying_Contract: '@ESU19'

 Exchange_Description: 'Chicago Mercantile Exchange (CME)'

 Listed_Market_Description: 'Chicago Mercantile Exchange Mini Sized

 Contracts (CMEMINI)'

 Security_Type_Description: 'Future'

29 http://forums.iqfeed.net/index.cfm?page=topic&topicID=5582. Note that this could lead to numeric inaccuracies, for example

GOOGL’s split on 4/3/2014 is reported as 0.50 rather than the more accurate 1:1.998 = 0.5005. Also note that some splits (e.g.
GOOG’s 1:2.002 split on 3/27/2014) are not reported by IQFeed for some reason (probably a data error).

30 For additional (and more accurate) splits history, refer to https://www.stocksplithistory.com

http://forums.iqfeed.net/index.cfm?page=topic&topicID=5582
https://www.stocksplithistory.com/

37 IQML User Guide

To improve run-time performance, fundamental data is cached in Matlab memory for

each symbol. IQFeed is queried for fundamental data for a symbol only if the symbol

was not previously queried in the current Matlab session. This is typically a good

thing, because fundamental data is relatively stable. To force IQML to re-query

IQFeed for fundamental data even when it is cached, set the Debug parameter:
>> data = IQML('fundamental', 'symbol','AAPL', 'debug',true);

>> data = IQML('debug',false); % exit debug mode

It is possible to fetch fundamental data of multiple symbols in a single IQML

command, by specifying a colon-delimited or cell-array list of symbols: 31

>> data = IQML('fundamental', 'symbols','AAPL:GOOG') %or: {'AAPL','GOOG'}

data =

 1×2 struct array with fields:

 Symbol

 Exchange_ID

 PE

 ...

>> data(1)

ans =

 Symbol: 'AAPL'

 Exchange_ID: 5

 PE: 20.4

 Average_Volume: 26900000

 x52_Week_High: 228.87

 x52_Week_Low: 149.16

 ...

>> data(2)

ans =

 Symbol: 'GOOG'

 Exchange_ID: 5

 PE: 51.9

 Average_Volume: 1239000

 x52_Week_High: 1273.89

 x52_Week_Low: 909.7

 Calendar_Year_High: 1273.89

 ...

The list of fundamental data fields in IQFeed as of 1/7/2019 is listed below. Note that

IQFeed may modify this list at any time (for example, IQFeed client 6.1 has added

several fields). For details about any of these fields, please ask DTN/IQFeed. IQML

just reports the data, it has no control over the reported values or definition of data

fields. Note that the fundamental data fields cannot be modified, unlike quotes fields.

Field Name Field Type Description Data origin 32

52 Week High float Highest price of last 52 weeks. For futures: contract High DTN

52 Week High Date MM/DD/YYYY
The date of the highest price of the last 52 weeks. For

futures, this is the contract High Date.
DTN

52 Week Low float Lowest price of last 52 weeks. For futures: contract Low DTN

52 Week Low Date MM/DD/YYYY
The date of the lowest price of the last 52 weeks. For

futures, this is the contract Low Date.
DTN

Average Volume integer Average daily volume (4 week average) DTN

Balance sheet date MM/DD/YYYY Last date that a company issued their quarterly report. Exchange/other

31 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

32 In this table, “exchange/other” means either the exchange, or some other 3rd-party that provides data to DTN/IQFeed.

38 IQML User Guide

Field Name Field Type Description Data origin 32

Base Currency string Futures and Future Options Only (IQFeed 6.1 or newer) 3rd party

Beta float

A coefficient measuring a security’s relative volatility:

the covariance of this security’s price in relation to the

rest of the market. 30 day historical volatility.

Exchange/other

Cal. Year High Date MM/DD/YYYY Date at which High price for current calendar year occurred DTN

Cal. Year Low Date MM/DD/YYYY Date at which Low price for current calendar year occurred DTN

Calendar year high float High price for the current calendar year. DTN

Calendar year low float Low price for the current calendar year. DTN

Common shares

outstanding
float The amount of common shares outstanding (in thousands). Exchange/other

Company name string Company name or contract description DTN

Contract Months string
non-delimited string of upper-case single character month

codes (IQFeed 6.1 or newer)
3rd party

Contract Size string
Deliverable quantitiy of a future or option contract.

(IQFeed 6.1 or newer)
3rd party

Coupon Rate float Interest Rate for a Bond. Exchange/other

Current assets float
The amount of total current assets held by a company as

of a specific date in Millions (lastADate)
Exchange/other

Current liabilities float
The amount of total current liabilities held by a company

as of a specific date in Millions (lastADate).
Exchange/other

Current year

earnings per share
float

The portion of a company's profit allocated to each

outstanding share of common stock
Exchange/other

Dividend amount float The current quarter actual dividend Exchange/other

Dividend rate float The annualized dividend expected to be paid by company Exchange/other

Dividend yield float
The annual dividends per share paid by the company divided

by current market price per share of stock, as a % value.
Exchange/other

Exchange ID hexadecimal
This is the Exchange Group ID (code). Convert to decimal

and use the Listed Markets lookup to decode this value.
DTN

Exchange Root string The root symbol under which the exchange lists this symbol Exchange

Ex-dividend date MM/DD/YYYY

The actual date in which a stock goes ex-dividend,

typically about 3 weeks before the dividend is paid to

shareholders of record. The amount of the dividend is

reflected in a reduction of the share price on this date.

Exchange/other

Expiration Date MM/DD/YYYY IEOptions, Futures, FutureOptions, and SSFutures only

IEOptions by

the exchange;

others by DTN

FIGI string
Financial Instrument Global Identifier 33 (IQFeed 6.1 or

newer). For example: 'BBG000BLNNH6' (IBM)
3rd party

First Delivery Date MM/DD/YYYY Futures and Future Options Only (IQFeed 6.1 or newer) 3rd party

Fiscal year end integer
The numeric month in which the company’s fiscal year ends.

For example, 4=April, 10=October.
Exchange/other

Five-year growth

percentage
float Earnings Per Share growth rate over a five year period Exchange/other

Format Code string Display format code DTN

Historical Volatility float Volatility of daily close prices in the last 30 trading days 34 DTN

33 https://openfigi.com, https://omg.org/figi

34 DTN’s official description of this field is: “30-trading day volatility, calculated using Black-Scholes”. Apparently, the actual

https://openfigi.com/
https://omg.org/figi

39 IQML User Guide

Field Name Field Type Description Data origin 32

Leaps (there may

be more than one)
string Long term equity anticipation securities Exchange/other

Listed Market string The listing market ID DTN

Long-term debt float
The amount of long term debt held by a company as of a

specific date in Millions (lastADate).
Exchange/other

Maturity Date MM/DD/YYYY Date of maturity for a Bond. DTN

Minimum Tick Size float Minimum price movement. (IQFeed 6.1 or newer) 3rd party

NAICS integer North American Industry Classification System code 35 3rd party

Next year earnings

per share
float

Total amount of earnings per share a company is estimated

to accumulate over the next 4 quarters of current fiscal year
Exchange/other

Options Multiple

Deliverables
integer IEOptions only. 1 means they exist, 0 means they do not. 3rd party

Options Premium

Multiplier
float IEOptions only 3rd party

Pay date MM/DD/YYYY Date on which a company made its last dividend payment Exchange/other

PE float Price/Earnings ratio Exchange/other

Percent held by

institutions
float

A percentage of outstanding shares held by banks and

institutions.
Exchange/other

Precision integer Number of decimal digits DTN

Root Option

symbol
string A space separated list (there may be more than one) Exchange/other

Security SubType integer
The security’s SubType code (IQFeed 6.1 or newer).

1=Binary option, 2=weekly option, 3=ETF, []=other
DTN

Security Type string The security type code DTN

Session Close Time hh:mm:ss Futures and Future Options Only (IQFeed 6.1 or newer) 3rd party

Session Open Time hh:mm:ss Futures and Future Options Only (IQFeed 6.1 or newer) 3rd party

Short Interest integer

Total number of shares that were sold short and were not

repurchased to settle outstanding short market positions.

Valid data is only available for some exchanges/sec-types.36

3rd party

SIC integer
Standard Industrial Classification – a 4-digit federal code

that identifies the security’s specific industry.
Exchange/other

Split factor 1 string
A float a space, then MM/DD/YYYY.

For example: '0.5 12/20/2013'
Exchange/other

Split factor 2 string
A float a space, then MM/DD/YYYY.

For example: '0.5 12/20/2013'
Exchange/other

Strike Price float IEOptions only Exchange/other

Symbol string The Symbol ID to match with watch request DTN

Underlying Contract string
The specific future contract that underlies a continuous

future. For example, for @ES# this might be '@ESU19' 37
IQML

Year End Close float Price of Year End Close (Equities Only) DTN

calculation (updated overnight) computes the volatility of day-to-day price change values of the last 30 trading days, using the

last 31 daily close prices, as follows: 100*sqrt(252)*std(ln(closei+1/closei)), rounded to the nearest 0.01. For futures, the cal-
culation is apparently based on 90 (not 30) values. When a contract is newly-listed, fewer values are used, with a minimum of 4.

35 https://www.census.gov/eos/www/naics

36 http://forums.dtn.com/index.cfm?page=topic&topicID=5787
37 Unlike all other fields, this field is not reported by IQFeed but rather computed by IQML, based on the reported fields (Symbol

and Expiration Date). It contains a non-empty value only for continuous future contracts (e.g. @ES#).

http://www.census.gov/eos/www/naics/
https://www.census.gov/eos/www/naics
http://forums.dtn.com/index.cfm?page=topic&topicID=5787

40 IQML User Guide

4.3 Interval bars

Interval bars data for one or more symbols can be fetched using the 'intervalbars' action.

For example, to fetch the latest 60-second interval bar for the current E-Mini contract:

>> data = IQML('intervalbars', 'Symbol','@ES#')

data =

 Symbol: '@ES#'

 BarType: 'Complete interval bar from history'

 Timestamp: '2018-09-05 12:57:00'

 Open: 2887.75

 High: 2888.25

 Low: 2887.5

 Close: 2888.25

 CumulativeVolume: 1117565

 IntervalVolume: 913

 NumberOfTrades: 0

In the returned data struct, we can see the following fields:

 Symbol – the requested Symbol.

 BarType – typically ‘Complete interval bar from history’, but in some cases

might be ‘Complete interval bar from stream’ or ‘Updated interval bar’.

 Timestamp – server timestamp (string format) for this interval bar. The

timestamp is of the end of the bar, not the beginning.

 Open – price at the start of this interval bar.

 High – highest price during this interval bar.

 Low – lowest price during this interval bar.

 Close – price at the end of this interval bar.

 CumulativeVolume – total trade volume since start of the current trading day.38

 IntervalVolume – trade volume during this interval bar.

 NumberOfTrades – number of trades during this interval bar. Relevant only

when IntervalType is set to 'ticks'/'trades'.

The IntervalType (default: 'secs') and IntervalSize (default: 60) parameters should

typically be specified together. Note that IntervalSize must be a positive integer

value (i.e. its value cannot be 4.5 or 0). If IntervalType is 'ticks'/'trades', IntervalSize

must be 2 or higher. If IntervalType is 'volume', IntervalSize must be 100 or higher.

If IntervalType is 'secs', IntervalSize must be any integer between 1-300 (5 minutes),

or any multiple of 60 (1 minute) between 300-3600 (1 hour), or 7200 (2 hours).39

We can ask for multiple bars by setting NumOfEvents or MaxItems to a positive integer,

resulting in an array of structs in the format above (empty array if no data is available):

>> data = IQML('intervalbars', 'Symbol','@VX#', 'NumOfEvents',4)

data =

 4×1 struct array with fields:

 Symbol

 BarType

 ...

38 In IQML version 2.63 and earlier, this field was called CummlativeVolume

39 Note that IQFeed’s limitations on live 'secs' interval bars are stricter than the limitations on historical interval bars (§5.4):

http://forums.dtn.com/index.cfm?page=topic&topicID=5529

http://forums.dtn.com/index.cfm?page=topic&topicID=5529

41 IQML User Guide

>> data(1)

ans =

 Symbol: '@VX#'

 BarType: 'Complete interval bar from history'

 Timestamp: '2018-09-05 12:36:00'

 Open: 14.45

 High: 14.5

 Low: 14.45

 Close: 14.45

 CumulativeVolume: 57077

 IntervalVolume: 17

 NumberOfTrades: 0

IQFeed only returns interval bars that had market ‘action’. Other bars are not sent

from IQFeed – they will appear in IQML’s returned data as gaps in the Timestamp.

Also note that it is possible that not all the requested bars will be received before

IQML’s timeout (default value: 5 secs) returns the results:

>> data = IQML('intervalbars', 'Symbol','IBM', 'NumOfEvents',4)

Warning: IQML timeout: only partial data is returned. Perhaps the Timeout

parameter should be set to a value larger than 5 or the NumOfEvents parameter

to a value smaller than 4

data =

 2×1 struct array with fields:

 Symbol

 BarType

 ...

To control the maximal duration that IQML will wait for the data, set the Timeout

parameter. For example, to wait up to 60 secs to collect 4 bars:

>> data = IQML('intervalbars', 'Symbol','IBM', 'NumOfEvents',4, 'timeout',60);

Interval bars query fetches historical bars data, starting from the date/time that is set by

the BeginDateTime parameter (see the parameters table below). This is similar to

(and subject to the same limitations as) fetching historical interval data (see §5.4), but

with no specified end point. IQML will return both the historical bars, as well as new

(live) real-time streaming interval bars, as they become available. BeginDateTime’s

default value is 00:00:00 today (server time), so you will almost always get historical

bars before live streaming bars. If you run the query at mid-day, you may get hundreds

of historical bars before you get the first live streaming bar. So, if you set NumOfEvents

to a low value, you might receive only historical bars, without any live streaming bars.

Unlike quotes (§4.1), when you specify NumOfEvents > 1, IQML does not wait for

new bars to arrive; instead, it returns previous (historic) bars, as long as this does not

conflict with the specified BeginDateTime. For example, if you set NumOfEvents=5,

you will receive the latest 5 bars: 4 complete historic bars, as well as the current

(incomplete) bar. If you require live (future) interval bars, then set BeginDateTime,

or use the streaming mechanism that is described in §6.3. For example, if you set

BeginDateTime to 5 bars ago and NumOfEvents=15, then IQFeed will return the 5

historic bars and wait for 10 additional future bars (subject to the specified Timeout).

Additional data filtering parameters: MaxDays, BeginFilterTime and EndFilterTime.

42 IQML User Guide

You can query multiple symbols at the same time, in a single IQML command, by

specifying a colon-delimited or cell-array list of symbols. For example:

>> data = IQML('intervalbars', 'symbols',{'IBM','GOOG','AAPL'});

>> data = IQML('intervalbars', 'symbols','IBM:GOOG:AAPL'); % equivalent

If the query returns the same number of data elements for all symbols, the results will

be returned as a struct array, with columns corresponding to the requested symbols:

data =

 100×3 struct array with fields:

 Symbol

 BarType

 Timestamp

 Open

 High

 Low

 Close

 CumulativeVolume

 IntervalVolume

 NumberOfTrades

However, if IQML returns a different amount of data for various symbols, the results

are returned as a cell array, with cell elements corresponding to the requested symbols.

For example, in the following query, there is no symbol ‘XXX’ so IQML returns

empty results for this particular symbol:40

>> data = IQML('intervalbars', 'Symbol','IBM:GOOG:XXX', 'UseParallel',true)

data =

 1×3 cell array

 {100×1 struct} {100×1 struct} {0×0 double}

If you have the Professional license of IQML and also Matlab’s Parallel Computing

Toolbox, then setting the UseParallel parameter to true (or 1) will process the quotes

query for all the specified symbols in parallel (see discussion in §3.6):

>> data = IQML('intervalbars', 'symbols',{'IBM','GOOG','AAPL'}, ...

 'UseParallel',1);

The following parameters affect interval bars data queries:

Parameter Data type Default Description

Symbol or

Symbols 41

colon or

comma-

delimited

string or

cell-array

of strings

(none)

Limits the request to the specified

symbol(s). Examples:

 '@VX#'

 'IBM:AAPL:GOOG'

 'IBM,AAPL,GOOG'

 {'IBM', 'AAPL', 'GOOG'}

This parameter must be set to valid
symbol name(s) when NumOfEvents>0.
Multiple symbols can be parallelized using

the UseParallel parameter (see below).

40 The UseParallel parameter is set here in order to avoid the run-time error of “Symbol ‘XXX’ was not found”

41 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

43 IQML User Guide

Parameter Data type Default Description

UseParallel
logical

(true/false)
false

If set to true or 1, and if Parallel

Computing Toolbox is installed, then

querying multiple symbols will be done in

parallel (see §3.6; Professional IQML

license only).

MaxWorkers integer

(the current

parallel pool

size)

Maximal number of parallel workers to

use (up to the current pool size) when

UseParallel=true

NumOfEvents integer Inf

One of:

 inf – continuous endless streaming

interval bars for specified symbol(s)

 N>1 – stream only N interval bars

 1 – get only a single interval bar

 0 – stop streaming interval bars

 -1 – return latest interval bars data

while continuing to stream new bars

MaxItems integer 100
Returns up to the specified number of

bars (if available).

MaxDays integer 1 Max number of trading days to retrieve

IntervalType string 'secs'

Sets the type of interval size. One of the
following values:

 's' or 'secs' – time [seconds] (default)
 'v' or 'volume' – traded volume

 't' or 'ticks' – number of ticks

IntervalSize integer 60
Size of bars in IntervalType units. Must be

≥1 for secs, ≥2 for ticks, ≥100 for volume.

BeginFilterTime string '00:00:00'

Only return bars that begin after this time

of day (US Eastern time-zone). Format:

'hhmm', 'hh:mm', 'hhmmss' or 'hh:mm:ss'.

EndFilterTime string '23:59:59'

Only return bars that end before this time

of day (US Eastern time-zone). Format:

'hhmm', 'hh:mm', 'hhmmss' or 'hh:mm:ss'.

BeginDateTime

integer or

string or
datetime

object

''

(empty string)

meaning today

at 00:00:00

Only return bars that begin after this

date/time (US Eastern time-zone).

Format: Matlab datenum, or 'yyyymmdd

hhmmss', or 'yyyy-mm-dd hh:mm:ss' etc.

Timeout number 5.0
Max number of seconds to wait (0-9000)

for data in blocking mode (0 means infinite)

44 IQML User Guide

4.4 Market depth (Level 2)

Level 2 (II) market data on a symbol can be fetched using a 'marketdepth' action.

Starting in IQFeed client 6.2, the Level 2 data that is reported by IQFeed has changed

significantly, preventing IQML from keeping exact backward compatibility with the

format of the Level 2 data that was reported in IQFeed clients 6.1 or older. IQML

works with both client types, but the returned data will be slightly different depending

on the specific IQFeed client/protocol. The documentation below highlights the

differences between IQML results with IQFeed clients up to 6.1, vs. clients since 6.2.

4.4.1 Common functionality

The following example fetches Level 2 data for the S&P E-Mini continuous future:

>> data = IQML('marketdepth', 'symbol','@ES#')

data =

 10×1 struct array with fields:

 Symbol

 Bid

 Ask

 BidSize

 AskSize

 BidTime

 AskDate

 AskTime

 BidInfoValid

 AskInfoValid

 BidCount

 AskCount

 Condition

 Condition_Description

 ID

 ID_Description

 BidSizeRatio

 AskSizeRatio

The latest data (i.e., state of the market-depth table) is returned as a Matlab struct array,

whose elements correspond to the market-depth rows. For example, to see the data for

row #3 (i.e., 2 rows below the top-of-book row), you can access array element #3:

>> data(3)

ans =

 struct with fields:

 Symbol: '@ES#'

 Bid: 3878

 Ask: 3879.25

 BidSize: 86

 AskSize: 103

 BidTime: '10:51:27.753961'

 AskDate: '2021-02-22'

 AskTime: '10:51:28.411595'

 BidInfoValid: 1

 AskInfoValid: 1

 BidCount: 44

 AskCount: 50

 Condition: 52

 Condition_Description: 'regular'

 ID: 'MD03'

 ID_Description: 'Order book row #3'

 BidSizeRatio: 0.231182795698925

 AskSizeRatio: 0.207243460764588

45 IQML User Guide

Note: In IQFeed 6.2 or newer, AskDate field is reported without a corresponding BidDate;

in IQFeed 6.1 or older, the field is common to both Bid,Ask and called simply Date.

BidInfoValid and AskInfoValid values are logical (true/false) values, which appear

as 1 or 0 (respectively) in the returned data struct. The ID field ('MD03' in this case)

indicates that this is market-depth row 3 (also note the related ID_Description field).

BidCount and AskCount indicate how many separate trade orders there are for this

particular bid/ask level. These fields are only available in IQFeed 6.2 or newer.

BidSizeRatio and AskSizeRatio are the relative fraction of bid/ask size in this particular

bid/ask level. For example, if the total sum of BidSize in all the reported levels is 1000

and a particular level has BidSize=23, then BidSizeRatio will be 0.023. Note that if you

limit the reported levels (using the NumOfEvents and MaxLevels parameters), this

will affect the total sum of bid/ask sizes in the calculation of the SizeRatio fields.

Each incoming market depth message provides information on a single Level 2 data

row. IQFeed’s messages arrive at a random, unsorted, unpredictable order in two

groups: first the messages that define the current (snapshot) baseline of all rows, then

update messages for individual rows when traders add, cancel or modify orders.

Depending on the requested Symbol, IQFeed may report 5 to 15 market-depth rows.

To ensure that all baseline data rows are received, set NumOfEvents and MaxLevels

parameters to at least the total number of rows expected for the Symbol. For example:

>> data = IQML('marketdepth','symbol','@ES#','NumOfEvents',999,'MaxLevels',15)

data =

 15×1 struct array with fields:

 Symbol

 Bid

 Ask

 ...

The returned struct array can be converted into a Matlab table object, as follows:42

>> struct2table(data)

ans =

 15×18 table

 Symbol Bid Ask BidSize AskSize BidTime ...

 ______ _______ _______ _______ _______ _________________

 '@ES#' 2927.25 2927.5 58 121 '03:21:25.213504'

 '@ES#' 2927 2927.75 78 111 '03:21:22.040253'

 '@ES#' 2926.75 2928 94 129 '03:21:15.037291'

 '@ES#' 2926.5 2928.25 95 107 '03:21:04.023779'

 '@ES#' 2926.5 2928.75 104 184 '03:42:19.025285'

 '@ES#' 2926.25 2929 123 181 '03:42:43.020801'

 '@ES#' 2926 2929.25 137 127 '03:43:01.042949'

 '@ES#' 2925.75 2929.5 86 135 '03:42:01.029094'

 '@ES#' 2925.5 2929.75 183 161 '03:42:02.021818'

 '@ES#' 2925.25 2930 152 382 '03:42:07.003202'

 ...

Alternatively, you can also receive the results directly in table format, using the

OutputFormat parameter (see §3.5):

>> data = IQML('marketdepth', ..., 'OutputFormat','table');

42 Some fields at the table’s right side are not shown here due to space limitations, but are available in the actual Matlab object

46 IQML User Guide

If your IQFeed account is not authorized/subscribed for Level 2 data, you will receive

an error message whenever you request market depth data:43

Account not authorized for Level II

If your IQFeed account is authorized for Level 2 data but not for a certain exchange, you

will receive an error message when requesting market depth info from that exchange:

>> data = IQML('marketdepth', 'Symbol','IBM') % not subscribed to NYSE Level2

Error using IQML

Symbol 'IBM' was not found!

Note: IQFeed often reports an error that the requested symbol was not found, even

when this is not the case! This is probably due to a bug on IQFeed’s servers. In such

cases, if you are certain that you are indeed subscribed to the corresponding Level 2

data and that it should exist for the requested symbol, simply pause a few seconds and

then resubmit your query. Here is a code snippet for retrying the query up to 5 times:

tries = 5;

while tries > 0

 try

 data = IQML('marketdepth', ...);

 break % successful fetch – exit the retry loop

 catch err

 if tries == 1 % failed 5 attempts

 rethrow(err); % give up and rethrow the original error

 end

 tries = tries – 1;

 pause(2.0); % pause 2 secs before retrying the fetch query

 end

end

4.4.2 Detailed quotes in IQFeed 6.2 or newer

If you are using IQFeed client/protocol 6.2 or newer, you can request detailed insight

into the various price levels using the Detailed parameter (default: false). When

Detailed is set to true or 1, the price levels’ components are reported: the constituent

orders (for futures), or the top market maker quotes (for equities):

>> data = IQML('marketdepth', 'Symbol','@ES#', 'Detailed',1, ...

 'OutputFormat','table', 'MaxLevels',999)

data =

 211×18 table

 Symbol Bid Ask BidSize AskSize BidTime ...

 ______ _______ _______ _______ _______ _________________

 '@ES#' 3868.25 3871.5 2 1 '08:01:21.390568'

 '@ES#' 3867.75 3871.5 2 1 '07:53:00.399083'

 '@ES#' 3867.25 3874.5 1 10 '08:04:28.829508'

 '@ES#' 3865.75 3876 1 1 '07:44:45.468775'

 '@ES#' 3865.5 3876.25 2 2 '04:06:45.172317'

 '@ES#' 3864 3879.25 3 1 '04:06:36.324680'

 '@ES#' 3862.25 3880.75 2 1 '03:56:05.241568'

 '@ES#' 3862.25 3881 2 2 '04:23:28.283821'

 '@ES#' 3860 3881.25 1 10 '03:37:42.519913'

 '@ES#' 3860 3882.5 2 2 '03:55:39.598845'

 '@ES#' 3860 3887.25 5 1 '21:53:56.596841'

43 IQML does not automatically establish a conection with IQFeed’s L2 server during IQML startup, in order to avoid a display

of this error message for users who do not have an IQFeed Level 2 subscription. Instead, IQML connects to IQFeed’s L2 server

only as needed, upon the first IQML marketdepth request. This initial connection causes a very small delay in the first L2 query.

47 IQML User Guide

For futures, the returned data will include the order IDs of the constituent trade orders

(in the BidOrderID, AskOrderID fields) as well as their relative priority (in BidPriority

and AskPriority fields). For example:
>> table2struct(data(1,:))

ans =

 struct with fields:

 Symbol: '@ES#'

 Bid: 3868.25

 Ask: 3871.5

 BidSize: 2

 AskSize: 1

 BidTime: '08:01:21.390568'

 AskDate: '2021-02-22'

 AskTime: '08:04:46.779352'

 BidInfoValid: 1

 AskInfoValid: 1

 BidPriority: 9996864447

 AskPriority: 9996874599

 Condition: 52

 Condition_Description: 'regular'

 BidOrderID: 647979156407

 AskOrderID: 647981205874

 BidSizeRatio: 0.00118133490844654

 AskSizeRatio: 0.00515463917525773

In the case of equities, the top market-maker quotes will be reported, in this case with

BidMMID, AskMMID fields instead of BidOrderID, AskOrderID). Only the top quotes for each

market maker is reported (market width):44
>> data = IQML('marketdepth', 'Symbol','MSFT', 'Detailed',1, 'MaxLevels',999)

data =

 32×1 struct array with fields:

 Symbol

 Bid

 Ask

 ...

>> data(1)

ans =

 struct with fields:

 Symbol: 'MSFT'

 Bid: 234.13

 Ask: 234.15

 BidSize: 100

 AskSize: 227

 BidTime: '13:01:43.019850'

 AskDate: '2021-02-22'

 AskTime: '13:01:43.004548'

 BidInfoValid: 1

 AskInfoValid: 1

 BidPriority: 1

 AskPriority: 1

 Condition: 52

 Condition_Description: 'regular'

 BidMMID: 'BATS'

 AskMMID: 'NSDQ'

 BidMMID_Description: 'CBOE TRADING, INC.'

 AskMMID_Description: 'Nasdaq Execution Services, LLC.'

 BidSizeRatio: 0.0188679245283019

 AskSizeRatio: 0.0512762593178225

44 IQFeed does not offer deep market depth for equities, nor market width for futures. For such detailed data DTN offers

premium services such as Nasdaq TotalView (http://nasdaqtrader.com/Trader.aspx?id=Totalview2).

http://nasdaqtrader.com/Trader.aspx?id=Totalview2

48 IQML User Guide

Note that the rows are sorted by descending Bid and ascending Ask, such that BATS

may appear as the top price level for Bid (as in the snippet above), but only in row #2

for Ask. This can be understood by viewing the data in table format:
>> data = IQML('marketdepth', 'Symbol','MSFT', 'Detailed',1, ...

 'OutputFormat','table', 'MaxLevels',999)

data =

 32×18 table

 Symbol Bid Ask BidSize AskSize ... BidMMID AskMMID ...

 _______ ______ ______ _______ _______ _______ _______

 'MSFT' 234.13 234.15 100 227 'BATS' 'NSDQ'

 'MSFT' 234.13 234.16 200 100 'NSDQ' 'BATS'

 'MSFT' 234.11 234.49 1000 100 'IEXX' 'BOSX'

 'MSFT' 225.22 235.44 100 100 'BOSX' 'IEXX'

 'MSFT' 225.22 242.38 100 100 'VIRT' 'SSUS'

 'MSFT' 225.19 244.63 100 100 'SSUS' 'CINN'

 'MSFT' 224.96 245.14 100 100 'CINN' 'VIRT'

 'MSFT' 220.74 247.08 100 100 'SGAS' 'SGAS'

 'MSFT' 218.41 252.91 1000 1000 'ADAM' 'ADAM'

 'MSFT' 218.41 252.91 100 100 'BARD' 'BARD'

 'MSFT' 218.41 252.91 100 100 'BMOC' 'BMOC'

 'MSFT' 218.41 252.91 100 100 'CSTI' 'CSTI'

 ...

Also note that for equities, IQFeed returns market width (not depth) data – the top

bid/ask row (but not order-book depth) for each market maker that trades the equity.

Using the reported Level 2 data from different market makers enables arbitrage

trading: buying a security from market maker A (who offers the lowest Ask price)

and selling to market maker B (who offers the highest Bid price).

Note that depending on the time of your query you may receive a different set of

market-makers, between 0 and dozens of market maker rows. Market makers who do

not have any valid Bid/Ask are not reported by default. If you wish to receive Level 2

quotes even when they are empty (invalid Bid and Ask), set the IncludeEmptyQuotes

parameter to true or 1 (default value: false). For example:
>> IQML('marketdepth', 'symbol','MSFT', 'NumOfEvents',70, ...

 'IncludeEmptyQuotes',true, 'OutputFormat','table')

ans =

 67×14 table

 Symbol Bid Ask BidSize AskSize BidTime Date ...

 ______ ______ _______ _______ _______ _________________ ____________

 'MSFT' 0 0 0 0 '99:99:99.000000' '2019-05-01'

 'MSFT' 0 0 0 0 '99:99:99.000000' '2019-05-01'

 'MSFT' 0 129.39 0 600 '18:29:49.000347' '2019-05-01'

 'MSFT' 127.91 130.09 100 100 '04:03:41.004392' '2019-05-02'

 ...

4.4.3 Detailed quotes in IQFeed 6.1 or older

In IQFeed client/protocol 6.1 or older, the Detailed parameter is ignored:

 Futures are always reported without detail. In other words, each price level

displays the summary of all constituent trade orders for that price, without

details of the constituent orders (market depth).

 Equities are always reported with detail. In other words, each price level

displays the top bid/ask quotes of a different market maker (market width).45

45 IQFeed does not offer deep market depth for equities, nor market width for futures. For such detailed data DTN offers

premium services such as Nasdaq TotalView (http://nasdaqtrader.com/Trader.aspx?id=Totalview2).

http://nasdaqtrader.com/Trader.aspx?id=Totalview2

49 IQML User Guide

For example:
>> data = IQML('marketdepth', 'symbol','MSFT', 'NumOfEvents',50)

data =

 5×1 struct array with fields:

 ...

>> data(1)

ans =

 struct with fields:

 Symbol: 'MSFT'

 Bid: 0

 Ask: 129.39

 BidSize: 0

 AskSize: 600

 BidTime: '18:29:49.000347'

 Date: '2019-05-01'

 AskTime: '99:99:99.000000'

 BidInfoValid: 0

 AskInfoValid: 1

 Condition: 52

 Condition_Description: 'regular'

 ID: 'BATS'

 ID_Description: 'CBOE TRADING, INC.'

 BidSizeRatio: 0

 AskSizeRatio: 0.12

>> data(2)

ans =

 struct with fields:

 Symbol: 'MSFT'

 Bid: 127.91

 Ask: 130.09

 BidSize: 100

 AskSize: 100

 BidTime: '04:03:41.004392'

 Date: '2019-05-02'

 AskTime: '04:17:07.020285'

 BidInfoValid: 1

 AskInfoValid: 1

 Condition: 52

 Condition_Description: 'regular'

 ID: 'NSDQ'

 ID_Description: 'Nasdaq Execution Services'

 BidSizeRatio: 0.02

 AskSizeRatio: 0.02

>> struct2table(data)

ans =

 4×16 table

 Symbol Bid Ask BidSize AskSize BidTime Date ...

 ______ ______ ______ _______ _______ _________________ ____________

 'MSFT' 0 129.39 0 600 '18:29:49.000347' '2019-05-01'

 'MSFT' 127.91 130.09 100 100 '04:03:41.004392' '2019-05-02'

 'MSFT' 127.54 127.98 200 4800 '19:53:35.049950' '2019-05-01'

 'MSFT' 127.97 128.71 100 100 '04:17:13.037004' '2019-05-02'

 ...

In this example, which was ran outside regular trading hours (early morning of 2019-

05-02), BATS reported a valid Ask from the previous evening, but no valid Bid. The

other market makers (NSDQ, etc.) reported both valid Bid and Ask. Note that the

reported BidTime is a valid time whereas AskTime is not (rather than the opposite, as would

be expected, since only Ask is valid). This is apparently a bug in IQFeed 6.1’s data.46

46

 http://forums.iqfeed.net/index.cfm?page=topic&topicID=5594. This data bug is apparantly resolved in IQFeed 6.2.

http://forums.iqfeed.net/index.cfm?page=topic&topicID=5594

50 IQML User Guide

As noted above, depending on the time of your query you may receive a different set

of market-makers, between 0 and dozens of market maker rows. Market makers who

do not have any valid Bid/Ask are not reported by default. If you wish to receive

Level 2 quotes even when they are empty (invalid Bid and Ask), set the

IncludeEmptyQuotes parameter to true or 1 (default value: false). For example:
>> IQML('marketdepth', 'symbol','MSFT', 'NumOfEvents',70, ...

 'IncludeEmptyQuotes',true, 'OutputFormat','table')

ans =

 67×16 table

 Symbol Bid Ask BidSize AskSize BidTime Date ...

 ______ ______ _______ _______ _______ _________________ ____________

 'MSFT' 0 0 0 0 '99:99:99.000000' '2019-05-01'

 'MSFT' 0 0 0 0 '99:99:99.000000' '2019-05-01'

 'MSFT' 0 129.39 0 600 '18:29:49.000347' '2019-05-01'

 'MSFT' 127.91 130.09 100 100 '04:03:41.004392' '2019-05-02'

 ...

4.4.4 Common parameters

The following parameters affect market depth queries with all IQFeed client versions:

Parameter Data type Default Description

Symbol or

Symbols 47

colon or

comma-

delimited

string, or

cell-array

of strings

(none)

Limits the request to the specified symbol(s).
Examples:
 '@ES#'
 'IBM:AAPL:GOOG'
 'IBM,AAPL,GOOG'
 {'IBM', 'AAPL', 'GOOG'}

This parameter must be set to valid symbol
name(s) when NumOfEvents>0

NumOfEvents integer 10

One of:
 inf – continuous endless streaming

Level 2 data for specified symbol(s)
 N>1 – only process N incoming quotes
 1 – get only a single quote
 0 – stop streaming market depth data
 -1 – return the latest Level 2 data while

continuing to stream new data updates

MaxLevels integer 5 Max number of price levels (rows) to return

IncludeEmpty

Quotes

logical

(true/false)
false

If set to true or 1, empty Level 2 quotes (with

neither a valid Bid nor valid Ask) will also be

returned. By default (false), they will not be.

Detailed
logical

(true/false)
false

If set to true or 1, each price level’s components

will be reported: trade order IDs for futures;

market makers for equities. This parameter is

ignored in IQFeed client/protocol 6.1 or older.

Timeout number 5.0
Max number of seconds to wait (0-9000) for

data in blocking mode (0 means infinite)

Note: Market Depth (Level 2) data is only available in the Professional IQML license.

47 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

51 IQML User Guide

4.5 Greeks, fair value, and implied volatility

Extra data can be fetched (calculated) for asset options using the 'greeks' action:

 Greeks (Delta, Vega, Theta, Rho, Gamma etc.)

 Fair value for the derivative and the difference vs. actual trading price

 Implied volatility based on the fair vs. trading prices

>> data = IQML('greeks', 'symbol','IBM1814L116')

data =

 Symbol: 'IBM1814L116'

 Asset_Name: 'IBM DEC 2018 C 116.00'

 Strike_Price: 116

 Expiration_Date: '12/14/2018'

 Days_To_Expiration: 30

 Inferred_Asset_Side: 'Call'

 Underlying_Symbol: 'IBM'

 Underlying_Asset_Name: 'INTERNATIONAL BUSINESS MACHINE'

 Underlying_Spot: 121.3

 Underlying_Historic_Volatility: 37.1

 Assumed_Risk_Free_Rate: 0

 Assumed_Dividend_Yield: 0

 Asset_Fair_Value: 8.1193

 Asset_Latest_Price: 7.05

 Asset_Price_Diff: 1.0693

 Implied_Volatility: 0.28242

 Volatility_Used_By_Greeks: 0.371

 Delta: 0.68197

 Vega: 0.12404

 Theta: -0.076697

 Rho: 6.1318

 CRho: 6.7992

 Omega: 10.189

 Lambda: 10.189

 Gamma: 0.027646

 Vanna: -0.3527

 Charm: 0.0021809

 Vomma: 5.8043

 Veta: 2.4262

 Speed: -0.0012419

 Zomma: -0.061581

 Color: -0.00038078

 Ultima: -45.238

 Annual_Factor_Used: 365

 This_Asset_Latest_Quote: [1×1 struct]

 Underlying_Latest_Quote: [1×1 struct]

 This_Asset_Fundamentals: [1×1 struct]

 Underlying_Fundamentals: [1×1 struct]

The reported Matlab struct contains a few fields with basic information on the derivative

and its underlying, followed by fair-value, implied volatility and Greek values.

At the bottom of the returned data-struct, four sub-structs provide direct access to the

latest quotes data (§4.1, for example data.This_Asset_Latest_Quote.Total_Volume) and

fundamenta data (§4.2, for example data.Underlying_Fundamentals.Average_Volume), for

both the option asset and its underlying stock.

Note that the returned quotes data is subject to the Fields parameter value that was set

in the most recent quotes data query (see §4.1). If the most recent Fields value does

not include pricing data (Most_Recent_Trade, Bid, Ask, Last, or Close fields), then some

returned data fields (for example Asset_Price_Diff and Implied_Volatility) will be empty.

52 IQML User Guide

The following Greek values are reported by IQML:

Field Symbol
Derivative

order
Definition Description

Delta Δ 1 ∂V/∂S
Sensitivity of fair value to changes in the

underlying asset’s spot price

Vega ν 1 ∂V/∂σ
Sensitivity of fair value to changes in the

underlying asset’s volatility; also called Kappa

Theta Θ 1 -∂V/∂τ Sensitivity of fair value to maturity time (decay)

Rho ρ 1 ∂V/∂r Sensitivity of fair value to risk-free rate

CRho - 1 ∂V/∂b Sensitivity of fair value to the carry-rate

Omega,

Lambda

Ω

λ
1 Δ × S/V

% change in fair value due to a 1% change in

the underlying asset price (these are synonym

fields, both are reported for convenience)

Gamma Γ 2 ∂Δ/∂S
Sensitivity of Delta to changes in the

underlying asset’s spot price

Vanna - 2 ∂Δ/∂σ
Sensitivity of Delta to changes in the

underlying asset’s volatility

Charm - 2 -∂Δ/∂τ Sensitivity of Delta to maturity time (decay)

Vomma - 2 ∂ν/∂σ
Sensitivity of Vega to changes in underlying

asset’s volatility; also sometimes called Volga

Veta - 2 ∂ν/∂τ Sensitivity of Vega to the maturity time

Speed - 3 ∂Γ/∂S
Sensitivity of Gamma to changes in the

underlying asset’s spot price

Zomma - 3 ∂Γ/∂σ
Sensitivity of Gamma to changes in the

underlying asset’s volatility

Color - 3 ∂Γ/∂τ Sensitivity of Gamma to maturity time (decay)

Ultima - 3 ∂3V/∂σ3
Sensitivity of Vomma (Volga) to changes in the

underlying asset’s volatility

You can request data for multiple symbols at the same time, in a single IQML command,

by specifying the symbols using a colon-delimited string or a cell-array. For example:

>> data = IQML('greeks', 'symbols',{'IBM1814L116','IBM1814X116'});

>> data = IQML('greeks', 'symbols','IBM1814L116:IBM1814X116'); % equivalent

The result will be an array of Matlab structs that correspond to the requested symbols:

data =

 2×1 struct array with fields:

 Symbol

 Asset_Name

 Strike_Price

 ...

If you have Matlab’s Parallel Computing Toolbox, set the UseParallel parameter to true

(or 1) to process the Greeks query for the specified symbols in parallel (see §3.6):

>> data = IQML('greeks', 'symbols',{'IBM1814L116','IBM1814X116'}, ...

 'UseParallel',true);

53 IQML User Guide

Notes:

1. Greeks and related derivative data (the the 'greeks' action in general) are only

available in IQML Professional and trial licenses, not in the Standard license.

2. Greeks, fair-price and implied vol values are computed by IQML on your local

computer. They are NOT provided by IQFeed, and are NOT approved by DTN.

3. There is a performance impact: the calculations require some data fetches from

IQFeed. These extra fetches and calculations may take up to 0.3-1 secs per query,

depending on CPU, IQFeed round-trip latency, and the specific parameters.

4. The calculations assume vanilla European-style options using Black-Scholes-

Merton’s model.48
 Using IQML’s calculations with other derivatives (American/

Asian/barrier/exotic options etc.) may result in incorrect/misleading values.

5. There are various possible ways to estimate implied volatility from the option’s

trading price and fair value. IQML uses a standard Newton-Raphson iterative

approximation method; other methods may result in slightly different values.

6. Certain fields sometimes report invalid values. For example, Implied_Volatility

may contain –Inf or +Inf when the Newton-Raphson algorithm fails to converge

to a valid value. Likewise, some Greeks may contain a NaN value in certain cases

(for example, a contract so far out-of-the-money that it has no trading price).

7. Some Greeks are also known by other names: Vega is sometimes called Kappa;

Vomma is also known as Volga or vega convexity; Omega is also called Lambda

or elasticity; Charm is also known as delta decay; and Color as gamma decay.

8. Various sources/systems calculate Greeks in different manners. For example,

Vega, Rho, Veta and Ultima values are sometimes divided by 100 (but not in

IQML); Theta, Charm, Veta and Color are sometimes annualized and

sometimes divided by a representative number of days per year

(365/364/360/253/252) to provide 1-day estimates (customizable in IQML,

365 by default);49 The foreign rate/dividends yield is ignored by some sources

and included by others in the calculations; Some sources report Color as the

positive rate of change of Gamma relative to maturity time, while others

report it as the negative rate of change.50 In addition, some sources apparently

have buggy math implementations.51 The result is that different sources

provide different Greek values for the same inputs. IQML’s values are

basically identical to those of Matlab’s Financial Toolbox, NAG and Maple.52

Unfortunately, IQFeed’s standalone Option Chains utility reports different

values. IQML adheres to the core math formulae53 and we believe that IQML

provides mathematically-accurate results. However, the discrepancy between

the values reported by different systems means that you must carefully ensure

that IQML’s reported values fit your needs and expectations.

48 Support for American options is planned in a future release of IQML; there are no current plans to support Asian/exotic options.

49 Matlab’s Financial Toolbox, NAG and Maple report annualized values; for annual values in IQML, set the AnnualFactor to 1.
50 For example, the reported Color value is negative in NAG compared to IQML and Maple.

51 This does not imply that there are no calculation bugs in IQML’s implementation; the Greeks calculation is not trivial.

52 Excluding a few quirks, such as a negative Color value reported by NAG, or Maple’s Lambda calculation, or the AnnualFactor

of 1 used by both NAG & Maple. Also compare the very similar values reported by the online calculator http://option-price.com

53 John Hull, Options, Futures, and Other Derivatives (ISBN 9780134472089); https://en.wikipedia.org/wiki/Greeks_(finance)

http://option-price.com/
https://en.wikipedia.org/wiki/Greeks_(finance)

54 IQML User Guide

By default, IQML uses the derivative’s fundamental data and default 0% rates in its

calculations. You can override these defaults using the following optional parameters:

 UnderlyingSymbol – by default this is the Asset_Name’s first string token, or
the first portion of Symbol. For example, for IBM1814L116, Asset_Name='IBM
DEC 2018 C 116.00' so Underlying_Symbol is set to 'IBM' (the first token in the
Asset_Name); for @BOF20P28500 the Underlying_Symbol is set to '@BOF20'
(Soybean Oil Jan 2020 Future).54

 To check the auto-inferred

UnderlyingSymbol, check the Underlying_Asset_Name field in the returned data.
The Underlying_Symbol value can be overrriden using the UnderlyingSymbol
parameter. For example, you could specify that the underlying symbol for
Greeks computation of GOOG1816K1000 is not the default 'GOOG'
(Alphabet Inc Class C), but rather 'GOOGL' (Class A).

 Side – by default, the option side ('Call' or 'Put') is determined by IQML from
the derivative contract’s Asset_Name. For example, for IBM1814L116,
Asset_Name='IBM DEC 2018 C 116.00', which is automatically inferred to be a
Call option. You can override the inferred side for contracts that have a non-
standard Asset_Name (or one which is not properly reported by IQFeed in its
Fundamental Data message) that IQML cannot properly analyze.

 HistoricVolatility – this is usually reported by IQFeed in the underlying
asset’s fundamental data (data.Underlying_Fundamentals.Historical_Volatility)
and this is used in IQML by default. Instead of this reported value, you can specify
another value (for example, the S&P 500 volatility), as a fixed percent value.

 UseImpliedVolatility – by default, IQML uses HistoricVolatility to calculate
Greek values. Set UseImpliedVolatility to 1 or true to calculate Greeks using
the Implied_Volatility instead (this may be useful for some commodities).

 RiskFreeRate – this is the domestic risk-free rate. IQML uses 0% by default; you
can specify any other fixed percentage rate (based on e.g. LIBOR55 or T-bill56).

 DividendsYield – this is the underlying asset’s dividend yield. IQML uses 0%

by default; you can specify any other fixed percentage value. In the context of
Forex currencies, this value may represent the foreign risk-free (carry) rate.

 DaysToExpiration – by default, IQML determines the duration until contract
expiry (maturity) based on its Expiration_Date. This duration can be set to any
positive number of days (not necessarily an integer value).

 AnnualFactor – by default, IQML normalizes the reported Theta, Charm,
Veta and Color values by dividing the computed annualized value by 365 in
order to provide 1-day estimates. You can override this scaling factor to any
positive number. Setting a value of 1 provides annualized results (i.e., not 1-day
estimates), as reported by Matlab’s Financial Toolbox, NAG and Maple. For

various uses you could also use other factors such as 364, 360, 253, 252, 12 or 4.

54 Some short-listed future contracts do not have an immediately inferable UnderlyingSymbol. For example, the underlying

symbol of @CF20C4000 (Corn Jan 2020 Call 4000) is not @CF20 (which does not exist). In such cases, IQML tries to use a

corresponding contract of the next or the following months (in this case @CH20 - Corn March 2020). Sometimes this mechanism
fails. For example, the underlying of @S2Z19C8700 (Soybeans Week 2 Dec 2019 Call 8700) is not @S2Z19, @S2F20 etc.

(which do not exist) but rather @SZ20 (Soybeans Jan 2020). In such cases, you must specify the UnderlyingSymbol manually.

55 You can query the current LIBOR rate with IQML, for example using symbol ONLIB.X (overnight rate), 1MLIB.X (1 month),
3MLIB.X (3 months), or 1YLIB.X (1 year). Additional durations are also available

(http://iqfeed.net/symbolguide/index.cfm?pick=indexRATES&guide=mktindices), but a 1-month rate is often used even for

shorter or longer option durations, for consistency. Also see http://forums.iqfeed.net/index.cfm?page=topic&topicID=4387.
56 You can query the current T-bill rate with IQML, for example using symbol TB30.X (30-day rate), IRX.XO (91 days),

TB180.X (180 days), or 1YCMY.X (1 year). Also see http://forums.iqfeed.net/index.cfm?page=topic&topicID=4387.

http://iqfeed.net/symbolguide/index.cfm?pick=indexRATES&guide=mktindices
http://forums.iqfeed.net/index.cfm?page=topic&topicID=4387
http://forums.iqfeed.net/index.cfm?page=topic&topicID=4387

55 IQML User Guide

Here is a usage example with some non-default parameters:

>> data = IQML('greeks', 'symbol','IBM1814L116', 'DaysToExpiration',13.5, ...

 'RiskFreeRate',2.5, 'DividendsYield',3.2, 'AnnualFactor',1)

The following parameters affect Greeks data queries:

Parameter Data type Default Description

Symbol or

Symbols 57

colon-
delimited
string, or

cell-array

of strings

(none)

Limits the query to the specified symbol(s).
Examples:
 'GOOG1816K1000'
 'IBM1814L116:GOOG1816K1000'
 {'IBM1814L116', 'GOOG1816K1000'}

This parameter must be set to valid symbol
name(s). Multiple symbols can be parallelized
using the UseParallel parameter (see below).

UseParallel
logical

(true/false)
false

If set to true or 1, and if Parallel Computing
Toolbox is installed, then querying multiple
symbols will be done in parallel (see §3.6).

MaxWorke

rs
integer

(current parallel

pool size)

Max number of parallel workers to use (up

to the current pool size) when UseParallel=1

Underlying

Symbol
string

'' (i.e. taken from

the contract name)
Symbol of the derivative’s underlying asset

Side string
'' (i.e. taken from

the contract name)
Either 'Call' or 'Put'

HistoricVol

atility
number

-1 (i.e. taken from

the underlying

asset’s reported

historic volatility)

Value that represents the underlying’s price
volatility (in percent). 1.0 means 1%;
-1 means a dynamic value based on the
underlying asset’s reported historic volatility.

UseImplied

Volatility

logical

(true/false)
false

If set to true or 1, the Implied_Volatility (not

HistoricVolatility) will be used for Greeks

RiskFreeR

ate
number 0.0

Domestic risk-free rate

Specified in percent; 1.0 means 1%.

DividendsY

ield
number 0.0

Underlying stock’s dividends yield, or the
foreign currency risk-free (carry) rate.
Specified in percent; 1.0 means 1%.

DaysToExp

iration
number

-1 (i.e. taken from

the contract’s

expiration date)

Number of days until the contract expires

(matures)

AnnualFac

tor
number 365

The computed Theta, Charm, Veta and
Color values are divided by this factor
before being reported. Typical values are
365, 364, 360, 253, 252, 12, 4 or 1.

Note: The Greeks functionality is only available in the Professional and trial IQML

licenses, not in the Standard license.

57 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

56 IQML User Guide

4.6 Market summary data and scanner

All the queries described so far in this chapter return data for individually-specified

Symbols. We can retrieve a complete market snapshot of all traded securities of a
specific SecType and Exchange, using a 'summary' query:

>> data = IQML('summary') % latest 5-minute data for all NYSE equities

data =

 4749×1 struct array with fields:

 Symbol

 Exchange

 Type

 Last

 TradeSize

 TradedMarket

 TradeDate

 TradeTime

 Open

 High

 Low

 Close

 ... (total of 28 data fields)

>> data(1)

ans =

 struct with fields:

 Symbol: 'A'

 Exchange: 7

 Type: 1

 Last: 72.5315

 TradeSize: 5

 TradedMarket: 5

 TradeDate: 20190711

 TradeTime: 103502

 Open: 73.77

 High: 73.78

 Low: 72.5315

 Close: 73.37

 Bid: 72.51

 BidMarket: 18

 BidSize: 200

 Ask: 72.54

 AskMarket: 5

 AskSize: 100

 Volume: 257497

 PDayVolume: 1785225

 UpVolume: 84799

 DownVolume: 80276

 NeutralVolume: 92422

 TradeCount: 2371

 UpTrades: 733

 DownTrades: 832

 NeutralTrades: 806

 VWAP: 73.1309

This query shows that 4749 equities are currently trading on NYSE.58 This data is
daily (i.e., the cummulative day’s Open/High/Low/Volume etc.), and is updated on
IQFeed’s servers every 5 minutes. DTN says that “the timing of the snapshot is not
guaranteed, but data will be gathered every 5 minutes”. Therefore, you should assume
for safety that the data is up to 5 minutes old. To get the latest data, use real-time
snapshot (§4.1) and fundamental (§4.2) queries, or streaming quotes (§6.1).

58 This query was run on July 11, 2019 at 11am EDT

57 IQML User Guide

The default DataType parameter value ('snapshot') fetches trading data. To fetch a

market summary of fundamental data, set DataType='fundamental'. For example:

>> data = IQML('summary', 'DataType','fundamental')

data =

 4749×1 struct array with fields:

 Symbol

 Description

 PeRatio

 AvgVolume

 ... (total of 41 data fields)

>> data(1)

ans =

 struct with fields:

 Symbol: 'A'

 Description: 'AGILENT TECHNOLOGIES'

 PeRatio: 21

 AvgVolume: 1908

 DivYield: 0.89

 DivAmount: 0.164

 DivRate: 0.656

 PayDate: 20190724

 ExDivDate: 20190701

 CurrentEps: 3.5

 SIC: 3825

 Precision: 4

 Display: 14

 GrowthPercent: -0.14

 FiscalYearEnd: 20181001

 Volatility: 16.5

 ListedMarket: 7

 OptionRoots: 'A'

 InstitutionalPercent: 86.905

 YearEndClose: 67.46

 Beta: 1.35

 Assets: 3848

 Liabilities: 1171

 BalanceSheetDate: 20190430

 LongTermDebt: 1799

 CommonSharesOutstanding: 315993

 MarketCap: 23184

 x52WeekHigh: 82.27

 x52WeekHighDate: 20190321

 x52WeekLow: 61.01

 x52WeekLowDate: 20181024

 CalHigh: 82.27

 CalHighDate: 20190321

 CalLow: 62

 CalLowDate: 20190103

 LastSplit: []

 LastSplitDate: []

 PrevSplit: []

 PrevSplitDate: []

 NAICS: 334516

 ShortInterest: 4130628

You can control the query using the DataType (default: 'snapshot'), SecType

(default: 'equity') and/or Exchange (default: 'NYSE') parameters:

>> data = IQML('summary', 'SecType','bond', 'Exchange','NYSE', ...

 'DataType','fundamental');

58 IQML User Guide

>> struct2table(data)

ans =

 6326×11 table

 Symbol Description Precision Display ListedMarket MaturityDate CouponRate ...

 ___________ __ _________ _______ ____________ ____________ __________

 'A20.CB' 'AGILENT TECHNOLOGIES INC. 5.0% SR NTS' [] 12 7 20200715 [] ...

 'A23.CB' 'AGILENT TECHNOLOGIES INC. 3.875% 07/15/2' [] 12 7 20230715 3.875

 'A26.CB' 'AGILENT TECHNOLOGIES INC 3.05 09/22/2026' [] 12 7 20260922 3.050

 'AA.28.CB' 'ALUMINUM CO OF AMERICA 6.75% NTS 1/15/28' [] 12 7 20280115 []

 'AA20.CB' 'ALCOA INC. 6.15% SR NTS' [] 12 7 20200815 []

 'AA21.CB' 'ALCOA INC. 5.4% SR NTS' [] 12 7 20210415 []

 'AA22.CB' 'ALCOA INC NT 5.87%' [] 12 7 20220223 []

 'AA24.CB' 'ALCOA INC 5.125% 10/01/2024' [] 12 7 20241001 []

 'AA27.CB' 'ALCOA INC 5.9% NTS 2/1/27' [] 12 7 20270201 5.900

 'AA37.CB' 'ALCOA INC 5.95% NTS 2/1/37' [] 12 7 20370201 5.950

 'AAP20.CB' 'ADVANCE AUTO PARTS INC. 5.75%' [] 12 7 20200501 []

 'AAP22.CB' 'ADVANCE AUTO PARTS INC 4.5%' [] 12 7 20220115 []

 'AAP23.CB' 'ADVANCE AUTO PARTS 4.5 12/01/23' 2 12 7 20231201 []

 'AAPL22.CB' 'APPLE INC 1.00% NOTES 22' [] 0 7 20221110 []

 ...

Note that there is no Symbol parameter in a 'summary' query – data for all the symbols

that match the specified SecType and Exchange is returned. For historic market

summaries, add the Date parameter (see §5.6 for details).

By default, only data fields that contain information are returned. For example, in the

snapshot query for equities, only 28 of 35 data fields are reported; 7 fields are removed

from the returned struct array since they contain an empty ([]) value for all securities:

MutualDiv, SevenDayYield, OpenInterest, Settlement, SettlementDate, ExpirationDate,

Strike.59 Similarly, 3 additional fields (High, Low and VWAP) are not reported for bonds

(only 25 fields contain information). To include all these fields (with their empty data

values) in the reported data, set the ReportEmptyFields parameter to true (or 1):
>> data = IQML('summary', 'ReportEmptyFields',true)

data =

 4749×1 struct array with fields:

 Symbol

 Exchange

 ... (total of 35 data fields)

>> data(1)

ans =

 struct with fields:

 Symbol: 'A'

 ...

 NeutralTrades: 806

 VWAP: 73.1309

 MutualDiv: []

 SevenDayYield: []

 OpenInterest: []

 Settlement: []

 SettlementDate: []

 ExpirationDate: []

 Strike: []

Likewise, with a 'fundamental' query, only 41 of 47 possible fields are reported for

equities (EstEps, MaturityDate, CouponRate, LEAPs, WRAPs and Expiration fields are not

reported);60 for bonds only 11 fields are reported (Symbol, Description, Precision, Display,

ListedMarket, MaturityDate, CouponRate, x52WeekHigh, x52WeekHighDate, x52WeekLow and

x52WeekLowDate), while 36 other fields are not. As before, to include these fields (with

their empty data values) in the reported data, set ReportEmptyFields to true (or 1).

59 Additional fields (for example, Open, High, Low) are missing when the query is run early in the day, before start of trading.

60 The EstEps field was reported by IQFeed in some runs but not others; the reason for this is unclear.

59 IQML User Guide

Market summary queries can take a long time to download data, depending on amount of

data and your computer speed. To ensure the query does not time-out before completing

the download, the default Timeout value for summary queries is set to 300 secs, unlike

other queries (5 secs). In some cases, you may need to specify an even larger Timeout.

To reduce processing time, numeric codes (e.g., Exchange, TradedMarket and NAICS) are not

interpreted into textual form, unlike the corresponding real-time snapshot (§4.1) and

fundamental (§4.2) queries. Use a lookup query (§8) to fetch a description of such codes.

The returned data can be filtered based on multiple criteria, effectively serving as a

market scanner (for the latest data by default, or for any other historic date). This is

done by setting the Filter parameter to the relevant criteria. For example, to return all

NYSE equities whose latest market capitalization is larger than $5Bn, we set a condition

on the MarketCap data field (which reports values in $Mn, so $5Bn=5000):
data = IQML('summary', 'SecType','Equity', 'DataType','fundamental', ...

 'Exchange','NYSE', 'Filter','MarketCap>5000');

This query only returns 1398 equities, compared to the unfiltered 4749. Multiple filter

criteria can be specified using a cell-array. For example (this returns just 100 equities):
data = IQML(..., 'Filter',{'MarketCap>5000','PeRatio<9'}); %all criteria req'd

Multiple filter criteria are AND’ed, meaning that all of the criteria conditions must be

met for a security to be reported. Instead of a cell-array of separate criteria, you can

combine all the conditions in a single filter criterion, separated by the & operator:61
data = IQML(..., 'Filter','MarketCap>5000 & PeRatio<9'); %all criteria req'd

If you need an OR condition (e.g., Market-cap>$5B or P/E<9), use the | operator:62
data = IQML(..., 'Filter','MarketCap>5000 | PeRatio<9'); %any criteria req'd

In general, any Matlab expression (arithmetic, function etc.) that involves reported data

field(s) and results in a scalar logical value is an acceptable Filter critera. For example:
data = IQML(..., 'Filter','log(MarketCap/1000) + 2*PeRatio > 25');

Criteria conditions are case-sensitive and must use exactly the same field names as

the reported data fields, otherwise the criteria will be ignored. For example:
data = IQML(..., 'Filter','marketcap>5000');

Warning: ignoring bad summary filter 'marketcap>5000': Unrecognized function

or variable 'marketcap'

(Type "warning off IQML:summary:filter" to suppress this warning.)

Whenever any field is included in a Filter condition, securities that do not have data

for that field (have an empty [] value) will automatically be filtered out of the

returned data – they are considered to have failed the entire condition, even if it was

only a part of an or condition. For example, if your filter condition is MarketCap>5000,

then securities that have MarketCap=[] (i.e. unknown) will not be reported.

Note: the data filtering operation is not done at the data source (IQFeed) but in IQML,

after downloading the entire (unfiltered) data from IQFeed. Therefore, filtered queries

always take longer to process than regular (unfiltered) summary queries. Filtering is vec-

torized, so the extra filtering time is usually negligible compared to the data download.

61

 Starting in IQML v2.67 you can also use the string 'and' (e.g. 'MarketCap>5000 and PeRatio<9'), but '&' syntax is still preferable

62 Starting in IQML v2.67 you can also use the string 'or' (e.g. 'MarketCap>5000 or PeRatio<9'), but '|' syntax is still preferable

60 IQML User Guide

Note: Market summaries are only available with IQFeed client 6.1 or newer, and only

if you are subscribed to the requested data at DTN and there is a relevant data for

download (summary data is only available for some combinations of SecType and

Exchange). In all other cases, you may receive an error such as one of the following:

The 'summary' query is only supported by IQFeed client 6.1 or newer; you are

using version 6.0.

IQML market summary query error: 50004,User not authorized for market summary

file requested.

IQML market summary query error: 50007,No file available.

A related mechanism for fetching pre-filtered market scans for a select number of

Exchanges and Filters is available by setting DataType='Top'. This scanner type does

not depend on DTN subscription or IQFeed 6.1, and is much faster than snapshot queries.

However, it is limited to just 13 predefined filters and 3 US exchanges (AMEX, NYSE,

NASDAQ), only supports equities, does not provide historic data, and returns only up

to top 50 matching equity symbols63 with a few relevant data fields (far fewer fields

than the snapshot queries), updated every 5 minutes during the trading day:

>> data = IQML('summary', 'DataType','top', 'Exchange','NYSE', 'Filter','active')

data =

 50×1 struct array with fields:

 ...

>> data(1)

ans =

 struct with fields:

 Last_Update_Time: '2019/07/12 16:25 EST'

 Exchange: 'NYSE'

 Symbol: 'ABEV'

 Company_Name: 'AMBEV S.A.'

 Last_Price: 4.84

 Previous_Price: 4.95

 Price_Change_Dollars: -0.11

 Price_Change_Percent: -2.222

 Last_Volume: 50633779

 Previous_Volume: 27402071

 Volume_Change_Percent: 84.78

Several Filter types return additional data fields, depending on the filter. For example:

>> data = IQML('summary', 'DataType','top', 'Filter','volume spike');

>> data(1)

ans =

 struct with fields:

 Last_Update_Time: '2019/07/16 16:25 EST'

 Exchange: 'NYSE'

 Symbol: 'CPE'

 Company_Name: 'CALLON PETROLEUM'

 Last_Price: 5.73

 Previous_Price: 5.38

 Price_Change_Dollars: 0.35

 Price_Change_Percent: 6.506

 Last_Volume: 55574971

 Previous_Volume: 57244474

 Volume_Change_Percent: -2.92

 Average_Volume: 8296000

 Volume_vs_Avg_Change_Percent: 569.9

63 The reported equities must not only match the predefined Filter condition, but also have a close price > $2 and volume > 0.

61 IQML User Guide

Here’s another example – top NASDAQ equities with last price lower than their VWAP:

>> data = IQML('summary', 'DataType','top', 'Exchange','NASDAQ', ...

 'Filter','vwap % down');

>> data(1)

ans =

 struct with fields:

 Last_Update_Time: '2019/07/16 16:25 EST'

 Exchange: 'NASDAQ'

 Symbol: 'IMRN'

 Company_Name: 'IMMURON LTD ADR'

 Last_Price: 4.3

 Previous_Price: 2.93

 Price_Change_Dollars: 1.37

 Price_Change_Percent: 46.758

 Last_Volume: 11022919

 Previous_Volume: 4704

 Volume_Change_Percent: 234230.76

 VWAP: 5.427

 Last_Minus_VWAP_Chng_Pct: -20.77

Note that the 'Top' query may return empty ([]) data for some combinations of

Exchange and Filter on certain dates, depending on the market data and availability

of the requested scanner on IQFeed’s servers.64 Also note that the reported data may

by up to 5 minutes old during the trading day (depending on the query time).

The following table summarizes the differences between market summary query types:

 Snapshot Fundamental Top

DataType 'snapshot' 'fundamental' 'top'

Exchange Multiple Only AMEX, NYSE, NASDAQ

SecType Multiple Only 'equity'

Date
Latest (intra-day) or

historic (end of day)

Only latest (updated every 5

minutes during the trading day)

Filter type
Any Matlab function of any

combination of data fields

Only one of 13 predefined

types

Filter combinations Multiple criteria supported Not supported

Historic Date support Yes Not supported (only latest)

Query processing time Tens/hundreds of secs <1 sec

IQFeed client required 6.1 or newer 5.0 or newer

IQFeed connection
Requires an active IQFeed

connection (IQConnect login)

Does not require an active

IQFeed connection

Result data fields Up to 35 fields Up to 47 fields Only 11-13 data fields

Result records
All securities that fit the

parameters (many thousands)
Only up to the top 50 securities

Data refresh time Every 5 minutes during the trading day 65

64 As of December 2019, IQFeed has a known server problem causing AMEX data to return no results. See

https://web.archive.org/web/20190907202634/http://www.iqfeed.net/dev/api/stats_doc.txt
65 Except bid/ask, which are reportedly those of the last trade (possibly older than 5 minutes) – see

http://forums.dtn.com/index.cfm?page=topic&topicID=5871

https://web.archive.org/web/20190907202634/http:/www.iqfeed.net/dev/api/stats_doc.txt
http://forums.dtn.com/index.cfm?page=topic&topicID=5871

62 IQML User Guide

The following parameters affect market summary data queries:

Parameter Data type Default Description

DataType string 'snapshot' Either 'snapshot', 'fundamental' or 'top'

Exchange string 'NYSE' One of the markets listed in §8.3

SecType string 'Equity'
One of the security types listed in §8.4.

SecType is ignored when DataType='top'

Date

integer or

string or
datetime

object

now

(latest

available

data)

Date for which to fetch the end-of-day
data. See §5.6 for details. Examples:
 737089 (Matlab datenum format)

 datetime('Jan 29, 2018')

 20180129 (yyyymmdd format)

 '20180129'

 '2018/01/29'

 '2018-01-29'

Date is ignored when DataType='top'

ReportEmptyFields logical false or 0
If true, then irrelevant data fields (which
contain empty [] values for all securities)
are reported; if false (default), they are not

Filter

string 'active'

When DataType='top', one of:66

 'active' – most active (highest volume)
 'gainer' – highest positive price $ change
 'loser' – lowest negative price $ change
 '% gainer' – highest pos. price % change
 '% loser' – lowest neg. price % change
 '52 week high' – daily high > 52-week
 '52 week low' – daily low < 52-week
 'volume up' – compared to previous
 'volume spike' – compared to average
 'VWAP up' – last price > VWAP
 'VWAP down' – last price < VWAP
 'VWAP % up' – % above VWAP
 'VWAP % down' – % below VWAP

string or

cell-array

of strings

{}

When DataType='snapshot','fundamental':

Zero or more filter criteria (condition
strings) – Matlab expression(s) involving
the reported data fields, which result in a

logical (true/false) value. Examples:
 'MaturityDate > 20241231'
 'MarketCap > 5000 & PeRatio < 9'
 {'MarketCap > 5000', 'Beta >= 1.2'}

Timeout number 300
Max number of seconds to wait for incoming

data (0-9000, where 0 means infinite)

Note: market summary functionality is only available in the Professional IQML license

66 See https://web.archive.org/web/20190907202634/http://www.iqfeed.net/dev/api/stats_doc.txt for details

https://web.archive.org/web/20190907202634/http:/www.iqfeed.net/dev/api/stats_doc.txt

63 IQML User Guide

In addition to the market summary features above, IQFeed offers hundreds of market

indices, stats, breadths and indicators using dedicated “virtual” symbols. In general,

market indices have a suffix of .X (or .XO for CBOE indices),67 and calculated

stats/indicators have a suffix of .Z.68 Their current and historic values can be queried

in IQML just as any other symbol, subject to having the necessary DTN data subsc-

ription. Some examples for such symbols:

 NDX.X – NASDAQ 100 index

 SPX.XO – S&P 500 index

 VIX.XO – Volatility index

 TNX.XO – 10-year US T-Note

 NASTRIN.Z – NASDAQ Composite index TRIN (trading index)

 TIQD.Z – NASDAQ Composite index underlying issues ticks decreases

 VILA.Z – LSE underlying issues shares volume increases

 VCNED.Z – NYSE ARCA equity puts contracts volume decreases

 DI6D.Z – S&P 500 issues Dollar volume decreases

 JTFT.Z – FTSE 100 net tick total

 RIRT.Z – Russell 2000 trading index (TRIN)

 SCQIT.Z – NASDAQ index calls trading index (TRIN)

 H30NL.Z – NYSE 30-day new lows

 AI1T.Z – Dow Jones Industrial Average components’ average price

 M200NA.Z – Percent of NYSE stock prices below their 200-day moving avg.

 PREM.Z – E-mini S&P 500 market premium

 FRNT.Z – NYSE new 52-week high/low ratio

 IRGT.Z – NASDAQ Global Select increasing/decreasing issues ratio

 JTQT.Z – NASDAQ net up-down ticks

 JV6T.Z – S&P 500 net puts-calls volume

 TCQID.Z – NASDAQ Composite index calls ticks decreases

 IPCFA.Z – CBOE equity ETFs calls issues increases

 OPNET.Z – NYSE equity (stocks + ETFs) calls open interest total

 @EM.OI.Z or GLB.OI.Z – 1-month Eurodollar future open interest

 @EM.VOL.Z or GLB.VOL.Z – 1-month Eurodollar future total volume

67 https://ws1.dtn.com/IQ/Guide/indices_index.html

68 https://ws1.dtn.com/IQ/Guide/DTNCalculatedIndicators.pdf , https://ws1.dtn.com/IQ/Guide/stats_all.html

https://ws1.dtn.com/IQ/Guide/indices_index.html
https://ws1.dtn.com/IQ/Guide/DTNCalculatedIndicators.pdf
https://ws1.dtn.com/IQ/Guide/stats_all.html

64 IQML User Guide

5 Historical and intra-day data

Historical data can be retrieved via the 'history' action, subject to your account

subscription rights, and IQFeed’s pacing limitations. Several data-types are available,

which can be set using the DataType parameter (default: 'day').69

5.1 Daily data

To retrieve historic daily data bars, set DataType to 'd' or 'day' (or just leave this

parameter out, since 'day' is the default data type), and set the asset’s Symbol:
>> data = IQML('history', 'symbol','IBM');

>> data = IQML('history', 'symbol','IBM', 'dataType','day') %equivalent

data =

 100×1 struct array with fields:

 Symbol

 Datestamp

 Datenum

 High

 Low

 Open

 Close

 PeriodVolume

 OpenInterest

We received an array of Matlab structs containing daily bars, one per each of the last

N trading days (excluding currently-trading day’s bar for IQFeed clients 6.0 or older;

including the current day’s bar for 6.1 or newer). By default, we receive up to N=100

data bars, ordered from oldest to newest. We ran the query above using IQFeed client

5.2 on March 6, 2018 so we received daily data from 2017-10-10 until 2018-03-05:
>> data(1)

ans =

 Symbol: 'IBM'

 Datestamp: '2017-10-10'

 Datenum: 736978

 High: 148.95

 Low: 147.65

 Open: 147.71

 Close: 148.5

 PeriodVolume: 4032601

 OpenInterest: 0

>> data(end)

ans =

 Symbol: 'IBM'

 Datestamp: '2018-03-05'

 Datenum: 737124

 High: 157.49

 Low: 153.75

 Open: 154.12

 Close: 156.95

 PeriodVolume: 3670630

 OpenInterest: 0

You can aggregate the numeric values into Matlab arrays as follows:
dates = {data.Datestamp}; % cell-array of strings

closes = [data.Close]; % array of numeric values

You can then use these arrays for vectorized processing, plotting etc. For example:
dates2 = datetime(dates); % array of datetime objects

[maxVal, maxIdx] = max(closes); % maximal value and location index

[minVal, minIdx] = min(closes); % minimal value and location index

69 http://iqfeed.net/dev/api/docs/HistoricalviaTCPIP.cfm

http://iqfeed.net/dev/api/docs/HistoricalviaTCPIP.cfm

65 IQML User Guide

plot(dates2, closes); hold on;

plot(dates2(maxIdx), maxVal, '^g'); % maximal data point – green ▲

plot(dates2(minIdx), minVal, 'vr'); % minimal data point – red ▼

You can change the order at which the data bars are reported, using the DataDirection

parameter (1 means oldest-to-newest (default); -1 means newest-to-oldest):
>> data = IQML('history', 'symbol','IBM', 'dataDirection',-1);

>> data(1)

ans =

 Symbol: 'IBM'

 Datestamp: '2018-03-05'

 Datenum: 737124

 High: 157.49

 Low: 153.75

 Open: 154.12

 Close: 156.95

 PeriodVolume: 3670630

 OpenInterest: 0

It is possible that there may be fewer than N=100 daily bars for an asset. For example,

the symbol @EMF19 (1-month Euro-Dollar Jan 2019 future on CME) started trading

on 2018-01-12, so we only get 35 daily bars when we run the query on 2018-03-06:
>> data = IQML('history', 'symbol','@EMF19');

data =

 35×1 struct array with fields:

 Symbol

 ...

You can ask IQFeed to limit the maximal number of data bars (N) using the

MaxItems parameter:
>> data = IQML('history', 'symbol','IBM', 'maxItems',20)

data =

 20×1 struct array with fields:

 Symbol

 ...

In this example, data(1).Datestamp='2018-02-05', i.e. 20 trading days ago.

Note that the MaxItems parameter only has an effect if the additional data bars

actually exist. In other words, it controls the maximum number of returned data bars –

the actual number of bars may be less than this value.70

70 For example, IQFeed’s trial account is limited to 1-year of daily data points; IQFeed automatically trims trial-account queries

down to this limit: http://forums.dtn.com/index.cfm?page=topic&topicID=5535

http://forums.dtn.com/index.cfm?page=topic&topicID=5535

66 IQML User Guide

When the number of data bars that IQFeed sends is very large, it could take a while

for the information to be sent. In such a case, IQML might time-out on the request and

return only partial data. Such a case is detected and reported by IQML:
>> data = IQML('history', 'symbol','IBM', 'maxItems',-1)

Warning: IQML timeout: only partial data is returned: the Timeout parameter

should be set to a value larger than 5

data =

 1274×1 struct array with fields:

 Symbol

 ...

As suggested by the message, you can set the Timeout parameter to a high value in

order to allow IQML more time to gather the data before returning the results:
>> data = IQML('history', 'symbol','IBM', 'maxItems',-1, 'timeout',60) %oldest:1/2/96

data =

 5577×1 struct array with fields:

 Symbol

 ...

You can also specify a BeginDate/EndDate interval for the returned data. Dates can be

specified in several formats: numeric Matlab datenum (737089), Matlab datetime

object, numeric yyyymmdd (20180129), string ('2018/01/29', '2018-01-29', '20180129').

Note that MaxItems takes precedence over BeginDate, regardless of DataDirection.

For example, if MaxItems=5, you will only get the 5 latest bars, for any BeginDate.71

You can request historical data for multiple symbols at the same time, in a single IQML

command, by specifying a colon-delimited or cell-array list of symbols. For example:

>> data = IQML('history', 'symbol',{'IBM','GOOG','AAPL'}, 'maxItems',20)

>> data = IQML('history', 'symbol','IBM:GOOG:AAPL', 'maxItems',20) %equivalent

The result will be an array of Matlab structs that correspond to the requested symbols

(3 symbols with 20 data-points each, in this example):
data =

 20×3 struct array with fields:

 Symbol

 ...

>> data(1,2) % 2nd index (column) is the symbol; GOOG data is in data(:,2)

ans =

 struct with fields:

 Symbol: 'GOOG'

 Datestamp: '2018-07-10'

 Datenum: 737251

 High: 1159.59

 Low: 1149.59

 Open: 1156.98

 Close: 1152.84

 PeriodVolume: 798412

 OpenInterest: 0

In certain cases, when you request historic data for multiple symbols, you might

receive a different number of data bars for different symbols, depending on data

availability. In such cases, the result will not be an N-by-M struct array, but a cell

array (one cell for each symbol) that contains struct arrays. For example:
data =

 1×3 cell array

 {77×1 struct} {100×1 struct} {55×1 struct}

71 Note: Regular IQFeed accounts have access to 15+ years of daily data, but IQFeed limits its trial account to just 365 days of

historical daily data – see https://help.dtniq.com/support-faqs

https://help.dtniq.com/support-faqs

67 IQML User Guide

IQML queries for multiple symbols or dates (if BeginDate and EndDate are specified)

can be parallelized using the UseParallel parameter, if you have a Professional IQML

license and Matlab’s Parallel Computing Toolbox (§3.6):

>> data = IQML('history', 'UseParallel',true, 'symbol',symbols) %multi-symbols

>> data = IQML('history', 'UseParallel',true, 'symbol','IBM',...

 'BeginDate',19900102, 'EndDate',20181028) %date range

By default, IQML reports 9 data fields for each daily history bar: Symbol, Datestamp,

Datenum, High, Low, Open, Close, PeriodVolume, and OpenInterest. If the Fields

parameter is set to an empty value ({} or ''), the current set of fields and the full list of

available fields, are reported (in this case, a Symbol parameter is unnecessary):

>> data = IQML('history', 'fields',{})

data =

 struct with fields:

 CurrentFields: {1×9 cell}

 AvailableFields: {1×9 cell}

>> data.AvailableFields

ans =

 1×9 cell array

 Columns 1 through 6

 {'Symbol'} {'Datestamp'} {'Datenum'} {'High'} {'Low'} {'Open'}

 Columns 7 through 9

 {'Close'} {'PeriodVolume'} {'OpenInterest'}

If you have the Professional (or trial) IQML license, you can request IQML to report

fewer data fields, and/or change the reported fields order, using the optional Fields

parameter. Fields can be set to any subset of AvailableFields, as either a cell-array of

strings, or as a comma-separated string. All subsequent daily history queries will report

the requested fields, in the specified order, until Fields is changed again. For example:

>> data = IQML('history', 'Symbol','IBM', 'Fields',{'Datenum','Close'})

>> data = IQML('history', 'Symbol','IBM', 'Fields','Datenum,Close') %equivalent

data =

 100×1 struct array with fields:

 Datenum

 Close

>> data(1)

ans =

 struct with fields:

 Datenum: 737751

 Close: 134.34

The order of the specified Fields indicates the order in which the data fields will be

reported. For example, to change the order of the reported data fields above:

>> data = IQML('history', 'Symbol', 'IBM', 'Fields','Close,Datenum ')

data =

 100×1 struct array with fields:

 Close

 Datenum

As noted, Fields can be set to any subset of the AvailableFields. If a bad field is

specified (one which is not available in IQFeed), an error message will be displayed:

>> data = IQML('history', 'Symbol','IBM', 'Fields','Close, xyz')

Error using IQML

Bad field 'xyz' was requested in IQML history command (check the spelling).

Available fields are: Symbol,Timestamp,Datenum,High,Low,Open,Close,...

68 IQML User Guide

As noted above, whenever we change the set of fields (or even just their order), this

new set of fields is used in all subsequent daily history queries in the current Matlab

session.

To revert the reported set of fields to the default set (AvailableFields), set Fields to

'All' (or 'all'):

>> data = IQML('history', 'Symbol','IBM', 'Fields','all')

data =

 100×1 struct array with fields:

 Symbol

 Datestamp

 Datenum

 High

 Low

 Open

 Close

 PeriodVolume

 OpenInterest

Note: there are several important differences between the Fields parameter in history queries

and in quotes queries (§4.1):

1. The Symbol field is not mandatory in history queries, and does not necessarily need

to be the first reported data field, unlike in quotes queries.

2. IQML reports all available history data fields by default. You can use the Fields

parameter to reduce the reported data fields, even down to just a single data field. In

contrast, quotes queries report only some of the available fields by default.

The fewer fields that you request, the faster the processing time and the smaller the

memory usage. To improve run-time performance and reduce memory consumption,

request only those data fields that are actually needed by your program.

The following parameters affect daily history data queries:

Parameter Data type Default Description

Symbol or

Symbols 72

colon or

comma-

delimited

string or

cell-array

of strings

(none)

Limits query to specified symbol(s). Examples:

 '@VX#'

 'IBM:AAPL:GOOG'

 'IBM,AAPL,GOOG'

 {'IBM', 'AAPL', 'GOOG'}

This parameter must be set to valid symbol

name(s). Multiple symbols can be parallelized

using the UseParallel parameter (see below).

DataDirection integer

1

meaning

oldest first,

newest last

Sets the order of data bars in the returned

struct array. One of the following values:
 1 means oldest-to-newest (default)
 -1 means newest-to-oldest

MaxItems integer 100
Report up to specified number of data bars

(if available). -1 or inf mean all available.

72 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

69 IQML User Guide

Parameter Data type Default Description

BeginDate

integer or

string or

datetime

object

'1900/01/01'

(i.e., from as

early as data

is available)

Earliest bar date to report. Examples:
 737089 (Matlab datenum format)
 datetime('Jan 29, 2018')
 20180129 (yyyymmdd format)
 '20180129'
 '2018/01/29'
 '2018-01-29'

Note: if there are more data points than

MaxItems between BeginDate–EndDate,

only the last MaxItems data points (from

EndDate backward) will be returned,

regardless of BeginDate.

EndDate

integer or

string or

datetime

'2099/12/31'

(i.e., until

now)

Latest bar date to report.

See BeginDate parameter above for details.

Timeout number 5.0
Max # of seconds to wait for incoming data

(0-9000, where 0 means infinite)

UseParallel
logical

(true/false)
false

If set to true or 1, and if Parallel Computing
Toolbox is installed, then querying multiple
symbols or dates will be done in parallel
(see §3.6; Professional IQML license only).

MaxWorkers
integer

(1-∞)

(the current

parallel pool

size, up to 15)

Maximal number of parallel workers to use

(up to the current pool size) when UseParallel

=true. Note: increased parallelization might

cause IQFeed run-time throttling errors.

Fields

colon or

comma-

separated

string, or

cell-array

of strings

'Symbol,

Datestamp,

Datenum,

High, Low,

Open, Close,

PeriodVolume,

OpenInterest'

Sets the list of data fields reported by IQML

for each data bar, as a sub-set of IQFeed’s

default set of 9 fields.

If Fields is set to an empty value ({} or ''),

the list of current, available fields is returned.

If Fields is not empty, subsequent history

queries in the same Matlab session will

return the specified fields, in the specified

order (Professional IQML license only).

Examples:

 'Datestamp:Open:Close'

 'Datestamp,Open,Close'

 {'Datestamp', 'Open', 'Close'}

 'All' (indicates all available fields)

Progress string

''

(empty

string)

When Progress is set to 'console', the data

download progress is displayed in the

console. See §5.4 for details.

70 IQML User Guide

5.2 Weekly data

To retrieve historic weekly data bars, set DataType to 'w' or 'week':
>> data = IQML('history', 'symbol','FB', 'dataType','week')

data =

 100×1 struct array with fields:

 Symbol

 Datestamp

 Datenum

 High

 Low

 Open

 Close

 PeriodVolume

 OpenInterest

As with the daily bars, we received an array of Matlab structs containing weekly bars,

one per each of the last N weeks (excluding currently-trading day for IQFeed clients

6.0 or older; including the current day for 6.1 or newer). By default we receive up to

N=100 data bars (~2 years), ordered from oldest to newest. We ran the query above

on Tuesday March 6, 2018 using IQFeed client 5.2 so we received weekly data from

Friday 2016-04-15 (the data bar for April 11-15, 2016) until 2018-03-05 (the data bar

for Monday March 5, 2018 only, excluding March 6). Each bar’s Datestamp indicates

the end-date of the bar. Note that all data bars except for the latest have a Friday date.

As with the daily bars, you can change the data bars order, using the DataDirection

parameter (1 means oldest-to-newest (default); -1 means newest-to-oldest).
>> data = IQML('history', 'symbol','FB', 'dataType','week', 'dataDirection',-1);

As with the daily bars, you can ask IQFeed to limit the maximal number of data bars

(N) using the MaxItems parameter:
>> data = IQML('history', 'symbol','FB', 'dataType','week', 'maxItems',20);

In this example, data(1).Datestamp='2017-10-27', i.e. the Friday 20 weeks ago.

As with the daily bars, you can set the Timeout parameter to a high value in order to

allow IQML more time to gather data before returning the results. This is typically not

necessary for weekly data requests, because of the relatively small amount of data.

You can also specify a BeginDate for the returned data. Dates can be specified in various

formats: as a numeric Matlab datenum (737089), a Matlab datetime object, numeric

yyyymmdd (20180129), or as a string ('2018/01/29', '2018-01-29', '20180129').73

For example, if we a query with a BeginDate of Monday Jan 29, 2018, we will receive

data bars starting on Friday Feb 2, 2018 (which includes the weekly data of Jan 29):
>> data = IQML('history','symbol','FB','dataType','week','BeginDate',20180129);

Note: IQFeed clients 6.0 or earlier do not report a data bar for the currently-trading day;

clients 6.1 or newer do report a data bar that includes the current trading day.

Also note that MaxItems has precedence over BeginDate, regardless of DataDirection.

For example, if MaxItems=5, we’ll only get the 5 latest bars, even if there are more

than 5 weeks between BeginDate and EndDate.

73 Note: Regular IQFeed accounts can access 15+ years of historic data, but IQFeed limits trial accounts to just one year – see

https://help.dtniq.com/support-faqs. Also note that in some cases, depending on current day-of-week compared to the requested

BeginDate, an addidional (older) bar might be returned that includes the week that was prior to the requested BeginDate.

https://help.dtniq.com/support-faqs

71 IQML User Guide

As with daily data requests, you can request historical data for multiple symbols at the

same time, in a single IQML command, by specifying a colon-delimited or cell-array

list of symbols. For example:
>> data = IQML('history', 'symbol',{'IBM','GOOG','AAPL'}, ...

 'dataType','week', 'maxItems',20)

>> data = IQML('history', 'symbol','IBM:GOOG:AAPL', ...

 'dataType','week', 'maxItems',20) %equivalent

The result will be an array of Matlab structs that correspond to the requested symbols

(3 symbols with 20 data-points each, in this example):
data =

 20×3 struct array with fields:

 Symbol

 Datestamp

 ...

In certain cases, when you request historic data for multiple symbols, you might

receive a different number of data bars for different symbols, depending on data

availability. In such cases, the result will not be an N-by-M struct array, but a cell

array (one cell for each symbol) that contains struct arrays. For example:
data =

 1×3 cell array

 {77×1 struct} {100×1 struct} {55×1 struct}

IQML queries for multiple symbols can be parallelized using the UseParallel parameter, if

you have a Professional IQML license and Matlab’s Parallel Computing Toolbox (§3.6):
>> data = IQML('history', 'symbol',symbols, 'UseParallel',true, ...

 'dataType','week', 'maxItems',20)

By default, IQML reports 9 data fields for each weekly history bar: Symbol,

Datestamp, Datenum, High, Low, Open, Close, PeriodVolume, and OpenInterest.

If the Fields parameter is set to an empty value ({} or ''), the current set of fields and the

full list of available fields, are reported (in this case, a Symbol parameter is unnecessary).

If you have the Professional (or trial) IQML license, you can request IQML to report

fewer data fields, and/or change the reported fields order, using the optional Fields

parameter. All subsequent weekly history queries will report only the requested

fields, in the specified order. Fewer fields mean faster processing time and smaller

memory usage. Refer to §5.1 for a description of the Fields parameter usage.

The following parameters affect weekly history data queries:

Parameter Data type Default Description

Symbol or

Symbols 74

colon or

comma-

delimited

string or

cell-array

of strings

(none)

Limits the query to the specified symbol(s).

Examples:

 '@VX#'

 'IBM:AAPL:GOOG'

 'IBM,AAPL,GOOG'

 {'IBM', 'AAPL', 'GOOG'}

This parameter must be set to valid symbol

name(s). Multiple symbols can be parallelized

using the UseParallel parameter (see below).

74 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

72 IQML User Guide

Parameter Data type Default Description

DataDirection integer

1
meaning oldest

bar is first,

newest is last

Sets the order of data bars in the returned
struct array. One of the following values:

 1 means oldest-to-newest (default)

 -1 means newest-to-oldest

MaxItems integer 100
Reports up to specified number of data bars
(if available). -1 or inf mean all available.

BeginDate

integer or

string or

datetime

object

'1900/01/01'

(i.e., from as

early as data

is available)

Earliest bar to report. Examples:
 737089 (Matlab datenum format)
 datetime('Jan 29, 2018')
 20180129 (yyyymmdd format)
 '20180129'
 '2018/01/29'
 '2018-01-29'

Note: if there are more data points than
MaxItems between BeginDate and
EndDate, only the latest MaxItems data
points (from EndDate backward) will be
returned, regardless of BeginDate.

EndDate

integer or

string or

datetime

'2099/12/31'

(i.e., until

now)

Latest bar date to report.

See BeginDate parameter above for details.

Timeout number 5.0
Max number of seconds to wait for incoming
data (0-9000, where 0 means infinite)

UseParallel
logical

(true/false)
false

If set to true or 1, and if Parallel Computing
Toolbox is installed, then querying multiple
symbols will be done in parallel (see §3.6;
Professional IQML license only).

MaxWorkers
integer

(1-∞)

(the current

parallel pool

size, up to 15)

Max number of parallel workers to use (up
to the current pool size) when UseParallel=1
Increased parallelization might cause errors.

Fields

colon or

comma-

separated

string, or

cell-array

of strings

'Symbol,

Datestamp,

Datenum,

High, Low,

Open, Close,

PeriodVolume,

OpenInterest'

Sets the list of data fields reported by IQML
for each data bar, as a sub-set of IQFeed’s
default set of 9 fields.

If Fields is set to an empty value ({} or ''),
the list of current, available fields is returned.

If Fields is not empty, subsequent history
queries in the same Matlab session will
return the specified fields, in the specified
order (Professional IQML license only).

Examples:

 'Datestamp:Open:Close'

 'Datestamp,Open,Close'

 {'Datestamp', 'Open', 'Close'}

 'All' (indicates all available fields)

73 IQML User Guide

5.3 Monthly data

To retrieve historic monthly data bars, set DataType to 'm' or 'month':
>> data = IQML('history', 'symbol','FB', 'dataType','month')

data =

 100×1 struct array with fields:

 Symbol

 Datestamp

 Datenum

 High

 Low

 Open

 Close

 PeriodVolume

 OpenInterest

As with the daily bars, we received an array of Matlab structs containing monthly

bars, one per each of the last N months (excluding currently-trading day for IQFeed

clients 6.0 or older; including the current day for IQFeed clients 6.1 or newer). By

default we receive up to N=100 data bars (~8 years), ordered from oldest to newest.

We ran the example query above on March 6, 2018 using IQFeed client 5.2 so we

received monthly data from 2009-12-31 (the data bar for 12/2009) until 2018-03-05

(the data bar for March 2018 up to March 5, 2018, excluding data from March 6).

As with the daily bars, you can change the data bars order, using the DataDirection

parameter (1 means oldest-to-newest (default); -1 means newest-to-oldest).
>> data = IQML('history', 'symbol','FB', 'dataType','month', ...

 'dataDirection',-1);

As with the daily bars, you can ask IQFeed to limit the maximal number of data bars

(N) using the MaxItems parameter:

>> data = IQML('history', 'symbol','FB', 'dataType','month', 'maxItems',20);

In this example, data(1).Datestamp='2016-08-31', i.e. 20 months ago.

As with the daily bars, you can set the Timeout parameter to a high value in order to

allow IQML more time to gather data before returning the results. This is typically not

necessary for monthly data requests, because of the relatively small amount of data.

You can also specify a BeginDate for the returned data. Dates can be specified in various

formats: as a numeric Matlab datenum (737089), a Matlab datetime object, numeric

yyyymmdd (20180129), or as a string ('2018/01/29', '2018-01-29', '20180129').

For example, if we a query with a BeginDate of Jan 29, 2018, we will receive data

bars starting on Jan 31, 2018 (which includes the monthly data of Jan 29):

>> data = IQML('history','symbol','FB','dataType','month','BeginDate',20180129);

Note: IQFeed clients 6.0 or earlier do not report a data bar for the currently-trading day;

clients 6.1 or newer do report a data bar that includes the current trading day.

Also note that MaxItems has precedence over BeginDate, regardless of DataDirection.

For example, if MaxItems=5, we’ll only get the 5 latest bars, even if there are more

than 5 months between BeginDate and EndDate.75

75 Note: Regular IQFeed accounts can access 15+ years of historic data, but IQFeed limits trial accounts to just one year – see

https://help.dtniq.com/support-faqs

https://help.dtniq.com/support-faqs

74 IQML User Guide

As with daily data requests, you can request historical data for multiple symbols at the

same time, in a single IQML command, by specifying a colon-delimited or cell-array

list of symbols. For example:

>> data = IQML('history', 'symbol',{'IBM','GOOG','AAPL'}, ...

 'dataType','month', 'maxItems',20)

>> data = IQML('history', 'symbol','IBM:GOOG:AAPL', ...

 'dataType','month', 'maxItems',20) %equivalent

The result will be an array of Matlab structs that correspond to the requested symbols

(3 symbols with 20 data-points each, in this example):
data =

 20×3 struct array with fields:

 Symbol

 Datestamp

 ...

In certain cases, when you request historic data for multiple symbols, you might

receive a different number of data bars for different symbols, depending on data

availability. In such cases, the result will not be an N-by-M struct array, but a cell

array (one cell for each symbol) that contains struct arrays. For example:
data =

 1×3 cell array

 {77×1 struct} {100×1 struct} {55×1 struct}

IQML queries for multiple symbols can be parallelized using the UseParallel parameter, if

you have a Professional IQML license and Matlab’s Parallel Computing Toolbox (§3.6):

>> data = IQML('history', 'symbol',symbols, 'UseParallel',true, ...

 'dataType','month', 'maxItems',20)

By default, IQML reports 9 data fields for each monthly history bar: Symbol,

Datestamp, Datenum, High, Low, Open, Close, PeriodVolume, and OpenInterest.

If the Fields parameter is set to an empty value ({} or ''), the current set of fields and the

full list of available fields, are reported (in this case, a Symbol parameter is unnecessary).

If you have the Professional (or trial) IQML license, you can request IQML to report

fewer data fields, and/or change the reported fields order, using the optional Fields

parameter. All subsequent monthly history queries will report only the requested

fields, in the specified order. Fewer fields mean faster processing time and smaller

memory usage. Refer to §5.1 for a description of the Fields parameter usage.

The following parameters affect monthly history data queries:

Parameter Data type Default Description

Symbol or

Symbols 76

colon or

comma-

delimited

string or

cell-array

of strings

(none)

Limits the query to the specified symbol(s).

Examples:

 '@VX#'

 'IBM:AAPL:GOOG'

 'IBM,AAPL,GOOG'

 {'IBM', 'AAPL', 'GOOG'}

This parameter must be set to valid symbol

name(s). Multiple symbols can be parallelized

using the UseParallel parameter (see below).

76 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

75 IQML User Guide

Parameter Data type Default Description

DataDirection integer

1
meaning oldest

bar is first,

newest is last

Sets the order of data bars in the returned
struct array. One of the following values:

 1 means oldest-to-newest (default)

 -1 means newest-to-oldest

MaxItems integer 100
Returns up to the specified number of data
bars (if available). -1 means all available.

BeginDate

integer or

string or

datetime

object

'1900/01/01'

(i.e., from as

early as data

is available)

Earliest bar that includes a date. Examples:

 737089 (Matlab datenum format)

 datetime('Jan 29, 2018')

 20180129 (yyyymmdd format)

 '20180129'

 '2018/01/29'

 '2018-01-29'

Note: if there are more data points than

MaxItems between BeginDate and

EndDate, only the last MaxItems data

points (from EndDate backward) will be

returned, regardless of BeginDate.

EndDate

integer or

string or

datetime

'2099/12/31'

(i.e., until

now)

Latest bar date to report.

See BeginDate parameter above for details.

Timeout number 5.0
Max number of seconds to wait for incoming
data (0-9000, where 0 means infinite)

UseParallel
logical

(true/false)
false

If set to true or 1, and if Parallel Computing
Toolbox is installed, then querying multiple
symbols will be done in parallel (see §3.6;
Professional IQML license only).

MaxWorkers
integer

(1-∞)

(the current

parallel pool

size, up to 15)

Max number of parallel workers to use (up
to the current pool size) when UseParallel=1
Increased parallelization might cause errors.

Fields

colon or

comma-

separated

string, or

cell-array

of strings

'Symbol,

Datestamp,

Datenum,

High, Low,

Open, Close,

PeriodVolume,

OpenInterest'

Sets the list of data fields reported by IQML
for each data bar, as a sub-set of IQFeed’s
default set of 9 fields.

If Fields is set to an empty value ({} or ''),
the list of current, available fields is returned.

If Fields is not empty, subsequent history
queries in the same Matlab session will
return the specified fields, in the specified
order (Professional IQML license only).

Examples:
 'Datestamp:Open:Close'
 'Datestamp,Open,Close'
 {'Datestamp', 'Open', 'Close'}
 'All' (indicates all available fields)

76 IQML User Guide

5.4 Interval data

To retrieve historic data bars having a custom width, possibly as short as a single

second, set DataType to 'i' or 'interval', and set the asset’s Symbol:
>> data = IQML('history', 'symbol','FB', 'dataType','interval')

data =

 100×1 struct array with fields:

 Symbol

 Timestamp

 Datenum

 High

 Low

 Open

 Close

 TotalVolume

 PeriodVolume

 NumberOfTrades

>> data(end)

ans =

 Symbol: 'IBM'

 Timestamp: '2018-03-07 09:43:00'

 Datenum: 737126.404861111

 High: 156.97

 Low: 156.77

 Open: 156.83

 Close: 156.77

 TotalVolume: 215082

 PeriodVolume: 16080

 NumberOfTrades: 0

The returned data struct here is similar to the struct returned by the daily, weekly and

monthly historical data queries. Unlike those queries, interval-query result does not

include an OpenInterest field, but does include two new fields: TotalVolume (which

indicates the total daily volume up to that bar), and NumberOfTrades. Also note that we

get a Timestamp field (US Eastern timezone), not Datestamp as with other history queries.

Bars that had no trading action are not reported. In the example query above, we see

the following Timestamp values, where we clearly see a gap during non-trading hours:

>> {data.Timestamp}'

ans =

 100×1 cell array

 {'2018-03-06 14:59:00'}

 {'2018-03-06 15:00:00'}

 {'2018-03-06 15:01:00'}

 ... % contiguous data bars

 {'2018-03-06 15:59:00'}

 {'2018-03-06 16:00:00'}

 {'2018-03-06 16:03:00'}

 {'2018-03-06 16:11:00'}

 ...

 {'2018-03-07 08:45:00'}

 {'2018-03-07 09:22:00'}

 {'2018-03-07 09:31:00'}

 {'2018-03-07 09:32:00'}

 ... % contiguous data bars

 {'2018-03-07 09:43:00'}

 {'2018-03-07 09:44:00'}

As with the other queries, the current (partial) interval bar is never reported, nor bars

that have no data (e.g., 16:04-16:10, 8:34-8:44, 8:46-9:21 in the example above).

77 IQML User Guide

The default interval size is 60 secs (aligned on the full-minute mark). You can specify

different interval sizes using the IntervalSize parameter. For example, a 15-sec interval:

>> data=IQML('history','symbol','FB','dataType','interval','intervalSize',15);

IQFeed is smart enough to automatically align data bars to full minutes/hours when

the requested IntervalSize enables this (as is the case for 15 or 60-sec intervals). For

example, with 15-sec IntervalSize we may get bars for 10:04:30, 10:04:45, 10:05:00.

When such alignment is not possible, you will get non-aligned bars. For example,

with a 13-sec IntervalSize: 09:59:18, 09:59:31, 09:59:57, 10:00:10.

By default, IntervalSize specifies the interval’s size in seconds and all the bars have

this same duration. You can change this by setting the IntervalType parameter

(default: 'secs') to 'volume' or 'ticks'/'trades'. Naturally, if you change IntervalType,

the data bars will now have non-equal durations.

>> data = IQML('history', 'symbol','FB', 'dataType','interval', ...

 'intervalType','ticks');

The IntervalType (default: 'secs') and IntervalSize (default: 60) parameters should

typically be specified together. Note that IntervalSize must be a positive integer

value (i.e. its value cannot be 4.5 or 0). If IntervalType is 'ticks'/'trades', IntervalSize

must be 2 or higher; If IntervalType is 'volume', IntervalSize must be 100 or higher;

If IntervalType is 'secs', IntervalSize must be between 1 and 86400 (1 day).77

By default, IQML reports data in intervals whose labels are set at the end of the

interval. For example, a data item at 11:12:34 with IntervalSize=60 (1 minute) will

be included in the interval labeled ‘11:13:00’. You can modify this default behavior

by setting the LabelAtBeginning parameter to 1 (or true), so that the labels are set at

the beginning. In this example, the data item will be reported in the ‘11:12:00’ interval.

Note: using LabelAtBeginning parameter requires IQFeed client version 6.0 or newer.

By default, IQML only reports interval data from today. This means that if you run a

query during the weekend, you will not see any data:78

>> data = IQML('history', 'symbol','FB', 'dataType','interval')

data =

 1×0 empty double row vector

You can ask to see additional (older) calendar days by specifying a positive Days

parameter value. If you set Days to -1, then all available information will be reported,

subject to the other filter criteria.

Similarly, you can specify a date/time window for the returned data: only bars

between the specified BeginDateTime and EndDateTime (US Eastern time) will be

reported, regardless of the value of the Days parameter.

Note: queries having UseParallel=true are only parallelized if BeginDateTime is

specified, or if multiple Symbols are specified (see below). Single-Symbol queries

that have an empty (unspecified) BeginDateTime are not parallelizable.

77 Note that IQFeed’s limitations on live 'secs' interval bars (§4.3, §6.3) are stricter than the limitations on historical interval bars:

http://forums.dtn.com/index.cfm?page=topic&topicID=5529

78 IQML versions up to 2.42 reported a NO_DATA error in such cases; IQML returns [] without an error in version 2.43 or newer.

http://forums.dtn.com/index.cfm?page=topic&topicID=5529

78 IQML User Guide

In addition, you can specify a daily time-window: only bars between BeginFilterTime

and EndFilterTime in each day (US Eastern time-zone) will be reported. This could

be useful, for example, to limit the results only to the regular trading hours.

As with the daily bars, you can change the data bars order, using the DataDirection

parameter (1 means oldest-to-newest (default); -1 means newest-to-oldest).

>> data=IQML('history','symbol','FB','dataType','interval','dataDirection',-1);

As with the daily bars, you can ask IQFeed to limit the maximal number of data bars

(N) using the MaxItems parameter:

>> data = IQML('history', 'symbol','FB', 'dataType','interval', 'maxItems',20);

Note that MaxItems takes precedence over BeginDateTime, regardless of

DataDirection. For example, if MaxItems=5, you will only get the 5 latest bars

(before EndDateTime), regardless of the specified BeginDateTime.

As with the daily bars, you can set the Timeout parameter to a high value in order to

allow IQML more time to gather data before returning the results (or set to -1 to

disable the timeout entirely). This is especially important for historic interval and

ticks data queries, since they could return a huge number of data points, which can

take a lot of time to download and process.

In addition to Timeout, for long queries it is advisable to set the Progress parameter

to 'console', in order to display a periodic progress update message in the console

every 1000 data points (every ~1-2 secs), as well as at the end of the query:

>> data = IQML('history', 'symbol','IBM', 'dataType','interval', ...

 'IntervalType','ticks', 'IntervalSize',10, ...

 'BeginDateTime','20200623 100000', ...

 'EndDateTime', '20200623 160000', ...

 'MaxItems',-1, 'timeout',-1, 'progress','console');

1000 history data points processed for IBM. Latest: 2020-06-23 13:30:42 ...

2000 history data points processed for IBM. Latest: 2020-06-23 15:34:06 ...

2460 history data points processed for IBM. Latest: 2020-06-23 15:59:59

As with daily data requests, you can request historical data for multiple symbols at the

same time, in a single IQML command, by specifying a colon-delimited or cell-array

list of symbols. For example:

>> data = IQML('history', 'symbol',{'IBM','GOOG','AAPL'}, ...

 'dataType','interval', 'maxItems',20)

>> data = IQML('history', 'symbol','IBM:GOOG:AAPL', ...

 'dataType','interval', 'maxItems',20) %equivalent

The result will be an array of Matlab structs that correspond to the requested symbols

(3 symbols with 20 data-points each, in this example):

data =

 20×3 struct array with fields:

 Symbol

 Datestamp

 ...

79 IQML User Guide

In certain cases, when you request historic data for multiple symbols, you might

receive a different number of data bars for different symbols, depending on data

availability. In such cases, the result will not be an N-by-M struct array, but a cell

array (one cell for each symbol) that contains struct arrays. For example:

data =

 1×3 cell array

 {77×1 struct} {100×1 struct} {55×1 struct}

IQML queries for multiple symbols or a date/time range (i.e., if BeginDateTime is

specified) can be parallelized using the UseParallel parameter, if you have a

Professional IQML license and Matlab’s Parallel Computing Toolbox (see §3.6):

>> data = IQML('history', 'dataType','interval', 'UseParallel',true, ...

 'symbol',symbols) % multiple symbols parallelized

>> data = IQML('history', 'dataType','interval', 'UseParallel',true, ...

 'symbol','IBM' ,... % single-symbol date-range parallelized

 'BeginDateTime',20181026100000, ...

 'EndDateTime', 20181026110000)

In some cases, users may be tempted to use the historical data mechanism to retrieve

real-time data. This is relatively easy to set-up. For example, using an endless Matlab

loop that sleeps for 60 seconds, requests the latest historical data for the past minute

and then goes to sleep again, or using a periodic timer object that wakes up every

minute. In such cases, consider using streaming rather than historical queries (see §6).

Some software vendors make a distinction between intra-day and historical

information. However, as far as IQFeed and IQML are concerned, this is merely a

semantic difference and there is no practical difference.

Note: IQFeed limits interval data to the past 180 calendar days if you make the

request outside trading hours, but just past 8 days for requests during US trading

hours (9:30-16:30 US Eastern time, Mon-Fri). So, if you request month-old data during

trading hours you will get empty results, even if the request was just for a single hour.79

The only exception to the 8/180-day limitation are interval bars of full minutes

(IntervalType='secs' and IntervalSize a multiple of 60), since these bars are pre-

computed and have a lesser impact on IQFeed’s servers. The other interval types are

computed on-the-fly from tick data, and so are limited in duration in order not to

overload IQFeed’s servers, especially during trading hours when server load is high.

IQFeed imposes other limitations based on interval size: minute data is only available

since 2005-2007;80
 longer intervals (daily/weekly/monthly) can access up to 15+ years.81

IQFeed subscriptions for daily and intra-day data are different. If you only subscribed

for daily data, you will receive a run-time error when fetching intra-day interval data:

IQML historic data query (EURGBP.FXCM) error: Unauthorized user ID

(your IQFeed account is not authorized for this data)

79 The above is true for IQFeed regular accounts; IQFeed trial accounts are limited to only 4 days of intraday data and just one

year of daily data (see https://help.dtniq.com/support-faqs)

80 Specifically for minute (60 sec) intervals, IQFeed’s developer FAQ indicates that “Minute interval data dating back to mid
2005 for select contracts and mid 2007 for all others [is available]”.

81 Again, these values are for regular IQFeed accounts; IQFeed limits trial accounts (see note #79 above)

https://help.dtniq.com/support-faqs

80 IQML User Guide

Also note that IQFeed’s interval data typically exclude irregular “O” trades (see §5.5).

By default, IQML reports 10 data fields for each interval bar: Symbol, Timestamp,

Datenum, High, Low, Open, Close, TotalVolume, PeriodVolume, and NumberOfTrades.

If the Fields parameter is set to an empty value ({} or ''), the current set of fields and the

full list of available fields, are reported (in this case, a Symbol parameter is unnecessary).

If you have the Professional (or trial) IQML license, you can request IQML to report

fewer data fields, and/or change the reported fields order, using the optional Fields

parameter. All subsequent interval history queries will report only the requested

fields, in the specified order. Fewer fields mean faster processing time and smaller

memory usage. Refer to §5.1 for a description of the Fields parameter usage.

Finally, note that whereas sub-daily data may report data from non-trading days (e.g.,

Sunday night, when ES starts trading), these are typically added to the following

trading day’s bar with daily/weekly/monthly bars.82

82 http://forums.dtn.com/index.cfm?page=topic&topicID=5608

http://forums.dtn.com/index.cfm?page=topic&topicID=5608

81 IQML User Guide

The following parameters affect interval history data queries:

Parameter Data type Default Description

Symbol or

Symbols 83

colon or

comma-

delimited

string or

cell-array

of strings

(none)

Limits the query to the specified symbol(s).

Examples:

 '@VX#'

 'IBM:AAPL:GOOG'

 'IBM,AAPL,GOOG'

 {'IBM', 'AAPL', 'GOOG'}

This parameter must be set to valid symbol

name(s). Multiple symbols can be parallelized

using the UseParallel parameter (see below).

DataDirection integer

1, meaning

oldest bar is

first, newest

is last

Sets the order of data bars in the returned

struct array. One of the following values:

 1 means oldest-to-newest (default)

 -1 means newest-to-oldest

LabelAtBeginn

ing
logical

(true/false)
false

 0: data at 11:17:41 is reported as ‘11:18’

 1: same data is reported as ‘11:17’

MaxItems integer 100
Returns up to the specified number of data

bars (if available). -1 means all available.

Days integer

1

meaning

today only

Number of preceding calendar days to

process. -1 means unlimited (all available

data, subject to the other criteria), 1 means

today, 2 means today & yesterday, etc.

IntervalType string 'secs'

Sets the type of interval size. One of the

following values:

 's' or 'secs' – time [seconds] (default)

 'v' or 'volume' – traded volume

 't', 'trades' or 'ticks' – number of ticks

IntervalSize integer 60
Size of bars in IntervalType units. Must be

≥1 for secs, ≥2 for ticks, ≥100 for volume bars

BeginFilterTime string '00:00:00'

Only return bars that begin after this time of

day (US Eastern time-zone). Only relevant

when Days>0 or BeginDateTime is not ''.

Format: hhmm, hh:mm, hhmmss or hh:mm:ss

EndFilterTime string '23:59:59'

Only return bars that end before this time of

day (US Eastern time-zone). Only relevant

when Days>0 or BeginDateTime is not ''.

Format: hhmm, hh:mm, hhmmss or hh:mm:ss

83 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

82 IQML User Guide

Parameter Data type Default Description

BeginDateTime

integer or

string or

datetime
object

''

(empty

string)
meaning

from as

early as

data is

available

Only return bars that begin after this

date/time (US Eastern time-zone).

Overrides the Days parameter.

Format: Matlab datenum, or 'yyyymmdd

hhmmss', or 'yyyy-mm-dd hh:mm:ss' etc.

Note: MaxItems has precedence over

BeginDateTime: If there are more data

points than MaxItems between Begin/

EndDateTime, only the last MaxItems

data points (from EndDateTime backward)

are returned, regardless of BeginDateTime.

EndDateTime

integer or

string or

datetime
object

''

(empty

string)

meaning

now

Only return bars that end before this

date/time (US Eastern time-zone).

Overrides the Days parameter.

Format: Matlab datenum, or 'yyyymmdd

hhmmss', or 'yyyy-mm-dd hh:mm:ss' etc.

Timeout number 5.0
Max number of seconds to wait for incoming

data (0-9000, where 0 means infinite)

UseParallel
logical

(true/false)
false

If true or 1, and Parallel Computing Toolbox

is installed, then querying multiple symbols

or a date/time range will be done in parallel

(see §3.6; Professional IQML license only).

MaxWorkers
integer

(1-∞)

(the current

parallel pool

size, up to 15)

Maximal number of parallel workers to use

(up to the current pool size) when UseParallel

=true. Note: increased parallelization might

cause IQFeed run-time throttling errors.

Fields

colon or

comma-

separated

string, or

cell-array

of strings

'Symbol,

Timestamp,

Datenum,

High, Low,

Open, Close,

TotalVolume,

PeriodVolume

NumberOf-

Trades'

Sets the list of data fields reported by IQML

for each data bar, as a sub-set of IQFeed’s

default set of 10 fields.

If Fields is set to an empty value ({} or ''),

the list of current, available fields is returned.

If Fields is not empty, subsequent history

queries in the same Matlab session will

return the specified fields, in the specified

order (Professional IQML license only).

Examples:

 'Timestamp:Open:Close'

 'Timestamp,Open,Close'

 {'Timestamp', 'Open', 'Close'}

 'All' (indicates all available fields)

Progress string
''

(empty
string)

When Progress is set to 'console', the down-

load progress is displayed in the console.

83 IQML User Guide

5.5 Tick data

Unlike data bars, which aggregate ticks and provide summary information, it is also

possible to retrieve historic individual trades (“ticks”). To retrieve this data, set

DataType to 't' or 'ticks', and set the asset’s Symbol:
>> data = IQML('history', 'symbol','AAPL', 'dataType','ticks')

data =

 100×1 struct array with fields:

 Symbol

 Timestamp

 Datenum

 Last

 LastSize

 TotalVolume

 Bid

 Ask

 TickID

 BasisForLast

 TradeMarketCenter

 TradeConditions

 TradeAggressorCode

 DayOfMonth

 BasisDescription

 TradeMarketName

 TradeDescription

 AggressorDescription

>> data(end)

ans =

 Symbol: 'AAPL'

 Timestamp: '2019-10-04 09:45:03.862626'

 Datenum: 737702.406294699

 Last: 224.67

 LastSize: 100

 TotalVolume: 5226196

 Bid: 224.66

 Ask: 224.68

 TickID: 7432

 BasisForLast: 'C'

 TradeMarketCenter: 19

 TradeConditions: '01'

 TradeAggressorCode: 0

 DayOfMonth: 4

 BasisDescription: 'Last qualified trade'

 TradeMarketName: 'Nasdaq Trade Reporting Facility (NTRF)'

 TradeDescription: 'Normal Trade'

 AggressorDescription: 'Unknown/unsupported'

The data struct here is quite different than the historical bar queries above. Notice the

Timestamp field, specified in micro-second precision (US Eastern time-zone). See a

discussion of the time resolution in the next page. The DayOfMonth, TradeAggressorCode

and AggressorDescription fields only appear if you use IQFeed client 6.1 or newer.

Note that the textual Description fields depend on the MsgParsingLevel parameter

having a value of 2 or higher (see §3.2 and §8)

Also note that only trade ticks are provided, along with the Bid and Ask prices at the

time of the trade. IQFeed does not report historic non-trading ticks (i.e., Bid/Ask

changes that occurred between the trades).

The Last and LastSize fields typically refer to the last trade. The type (“basis”) of

data in these fields is determined according to the BasisForLast field, which is

84 IQML User Guide

explained in the BasisDescription field for convenience.84 Possible basis values are:85

 C – Last qualified trade (during regular trading hours).

 E – Extended trade = form T trade (outside regular trading hours).

 O – Other trade = any trade not accounted for by C or E.

 S – Settle = daily settle (only applicable to commodities).

In general, algo-trading should rely only on “C” trades, and possibly also “E” trades.

“O” trades often have wide price swings (i.e. large variation from mainstream trading

prices); this adds noise to charts and may confuse data analytics.86 IQFeed’s interval

data (§5.4) typically exclude such irregular “O” trades.

Note that the difference between TotalVolume values from one tick to the next does not

always equal LastSize, since some trade types (e.g. implied and block trades) are not

reported with a separate tick, but are included in the next tick’s TotalVolume.87

Also note that TickID values are not always increasing, and almost never contiguous.

They are generally provided by the exchange as unique trade identifiers and so should

not be used as an indicator of missing data, and their order is not quarantined. Instead,

it is better to rely on the Timestamp or Datenum fields.

In some cases, implied (rather than normal trade) ticks are reported. For example, the

following tick was retrieved for the VIX index continuous future (@VX#):

>> data = IQML('history', 'symbol','@VX#', 'dataType','ticks');

>> data(1)

ans =

 Symbol: '@VX#'

 Timestamp: '2019-10-04 09:42:41.499000'

 Datenum: 737702.404646979

 Last: 18.68

 LastSize: 1

 TotalVolume: 16711

 Bid: 18.65

 Ask: 18.7

 TickID: 6118279

 BasisForLast: 'O'

 TradeMarketCenter: 32

 TradeConditions: '4D'

 TradeAggressorCode: 0

 DayOfMonth: 4

 BasisDescription: 'Other trade = any trade not accounted for by C or E'

 TradeMarketName: 'CBOE Futures Exchange (CFE)'

 TradeDescription: 'Implied'

 AggressorDescription: 'Unknown/unsupported'

Note that in the case of @VX# on CBOE, the ticks are only reported in millisecond

resolution, not microseconds as for IBM. In this case, Timestamp still shows 6 digits

after the seconds decimal, but they always end in 000 (…:57.899000). The actual

time resolution of reported ticks depends on the specific exchange and security type.88

84 Note that the textual Description fields depend on the MsgParsingLevel parameter having a value of 2 or higher (see §3.2)

85 Other tick types (basis codes) are NOT reported by IQFeed: http://forums.dtn.com/index.cfm?page=topic&topicID=5783
(these other tick types are usually rare). Additional tick types may possibly be added by IQFeed in the future.

86 http://forums.iqfeed.net/index.cfm?page=topic&topicID=3898

87 http://forums.dtn.com/index.cfm?page=topic&topicID=5855
88 Micro-second resolution is only available with IQFeed client 5.2 or newer, and only in certain setups (e.g. CMEGroup and

equity markets). Contact IQFeed support if you are unsure about the resolution provided by a certain setup configuration.

http://forums.dtn.com/index.cfm?page=topic&topicID=5783
http://forums.iqfeed.net/index.cfm?page=topic&topicID=3898
http://forums.dtn.com/index.cfm?page=topic&topicID=5855

85 IQML User Guide

By default, IQML only reports ticks data from today. This means that if you run a

query during the weekend or any other non-trading day, you will not see any data:89

>> data = IQML('history', 'symbol','FB', 'dataType','ticks')

data =

 1×0 empty double row vector

You can ask to see additional (older) calendar days by specifying a positive Days

parameter value. If you set Days to -1, then all available information will be reported,

subject to the other filter criteria.

Similarly, you can specify a date/time window for the returned data: only bars

between the specified BeginDateTime and EndDateTime (both of them US Eastern

time-zone) will be reported, regardless of the value of the Days parameter.

Note: queries having UseParallel=true are only parallelized if BeginDateTime is

specified, or if multiple Symbols are specified (see below). Single-Symbol queries

that have an empty (unspecified) BeginDateTime are not parallelizable.

In addition, you can specify a daily time-window: only ticks between BeginFilterTime

and EndFilterTime in each day (US Eastern time-zone) will be reported. This could

be useful, for example, to limit the results only to the regular trading hours.

You can also limit the maximal number of ticks using the MaxItems parameter.

Note: by default IQFeed limits ticks data to the past 180 calendar days if you make

the request outside trading hours, but just past 8 days for requests during US trading

hours (9:30-16:30 US Eastern time).90 This means that if during trading hours you

request historic data from a month ago, you will get none (empty results), even if the

request was just for a single hour of data.91

You can change the order of the reported ticks, using the DataDirection parameter (1

means oldest-to-newest (default); -1 means newest-to-oldest). MaxItems has precedence

over BeginDateTime, regardless of DataDirection. For example, if MaxItems=5,

we’ll only get the 5 latest ticks (before EndDateTime), regardless of BeginDateTime.

As with daily data requests, you can request data for multiple symbols at the same time,

in a single IQML command by specifying a colon-delimited or cell-array list of Symbols:

>> data = IQML('history', 'symbol',{'IBM','GOOG','AAPL'}, ...

 'dataType','ticks', 'maxItems',20)

>> data = IQML('history', 'symbol','IBM:GOOG:AAPL', ...

 'dataType','ticks', 'maxItems',20) %equivalent

The result will be an array of Matlab structs that correspond to the requested symbols

(3 symbols with 20 data-points each, in this example):
data =

 20×3 struct array with fields:

 Symbol

 Datestamp

 ...

89 IQML versions up to 2.42 reported a NO_DATA error in such cases; IQML returns [] without an error in version 2.43 or newer.
90 Historic ticks older than 180 days can be purchased from DTN – http://forums.iqfeed.net/index.cfm?page=topic&topicID=4376

91
 This is true for regular IQFeed accounts; IQFeed trials are limited to 4 days of intraday data (https://help.dtniq.com/support-faqs)

http://forums.iqfeed.net/index.cfm?page=topic&topicID=4376
https://help.dtniq.com/support-faqs

86 IQML User Guide

In certain cases, when you request historic data for multiple symbols, you might

receive a different number of data bars for different symbols, depending on data

availability. In such cases, the result will not be an N-by-M struct array, but a cell

array (one cell for each symbol) that contains struct arrays. For example:

data =

 1×3 cell array

 {77×1 struct} {100×1 struct} {55×1 struct}

IQML queries for multiple symbols or a date/time range (i.e., if BeginDateTime is

specified) can be parallelized using the UseParallel parameter, if you have a

Professional IQML license and Matlab’s Parallel Computing Toolbox (see §3.6):

>> data = IQML('history', 'dataType','ticks', 'UseParallel',true, ...

 'symbol',symbols) % multiple symbols parallelized

>> data = IQML('history', 'dataType','ticks', 'UseParallel',true, ...

 'symbol','IBM' ,... % single-symbol date-range parallelized

 'BeginDateTime',20181026100000, ...

 'EndDateTime', 20181026110000)

By default, IQML reports 18 data fields for each tick: Symbol, Timestamp, Datenum,

Last, LastSize, TotalVolume, Bid, Ask, TickID, BasisForLast, TradeMarketCenter,

TradeConditions, TradeAggressorCode, DayOfMonth, BasisDescription,

TradeMarketName, TradeDescription, and AggressorDescription.92 If the Fields

parameter is set to an empty value ({} or ''), the current set of fields and the full list of

available fields, are reported (in this case, a Symbol parameter is unnecessary). If you

have the Professional (or trial) IQML license, you can request IQML to report fewer

data fields, and/or change the reported fields order, using the optional Fields

parameter. All subsequent tick history queries will report only the requested fields, in

the specified order. Fewer fields mean faster processing time and smaller memory

usage. Refer to §5.1 for a description of the Fields parameter usage.

Finally, as with other IQML commands, you can set the Timeout parameter to a high

value in order to allow IQML more time to gather data before returning the results (or

set to -1 to disable the timeout entirely). This is especially important for historic

interval and ticks data queries, since they could return a huge number of data points,

which can take a lot of time to download and process.

In addition to Timeout, for long queries it is advisable to set the Progress parameter

to 'console', in order to display a periodic progress update message in the console

every 1000 data points (every ~1-2 secs), as well as at the end of the query:

>> data = IQML('history', 'symbol','IBM', 'dataType','ticks', ...

 'BeginDateTime','20200623 150000', ...

 'EndDateTime', '20200623 152000', ...

 'MaxItems',-1, 'timeout',-1, 'progress','console');

1000 history data points processed for IBM. Latest: 2020-06-23 15:05:06.665127...

2000 history data points processed for IBM. Latest: 2020-06-23 15:11:43.512718...

3000 history data points processed for IBM. Latest: 2020-06-23 15:16:47.954088...

3489 history data points processed for IBM. Latest: 2020-06-23 15:20:00.076970

92 The textual fields BasisDescription, TradeMarketName, TradeDescription and AgressorDescription are IQML-

generated textual interpretations of the codes in the IQFeed-generated BasisForLast, TradeMarketCenter,

TradeConditions and TradeAggressorCode fields respectively, as governed by the MsgParsingLevel parameter (see §3.2)

87 IQML User Guide

The following parameters affect ticks history data queries:

Parameter Data type Default Description

Symbol or

Symbols 93

colon or

comma-

delimited

string or

cell-array

of strings

(none)

Limits the query to the specified symbol(s).

Examples:

 '@VX#'

 'IBM:AAPL:GOOG'

 'IBM,AAPL,GOOG'

 {'IBM', 'AAPL', 'GOOG'}

This parameter must be set to valid symbol

name(s). Multiple symbols can be parallelized

using the UseParallel parameter (see below).

DataDirection integer

1
meaning

oldest tick
is first,

newest last

Sets the order of ticks in the returned struct

array. One of the following values:

 1 means oldest-to-newest (default)

 -1 means newest-to-oldest

MaxItems integer 100
Returns up to the specified number of ticks

(if available). -1 means all available.

Days integer

1

meaning

today only

Number of preceding calendar days to
process. -1 means unlimited (all available
data, subject to the other criteria), 1 means
today, 2 means today & yesterday, etc.

BeginFilterTime string '00:00:00'

Only return ticks that begin after this time of

day (US Eastern). Only relevant when

Days>0 or BeginDateTime is not ''. Format:

‘hhmm’, ‘hh:mm’, ‘hhmmss’ or ‘hh:mm:ss’.

EndFilterTime string '23:59:59'

Only return ticks that end before this time of

day (US Eastern). Only relevant when

Days>0 or BeginDateTime is not ''. Format:

‘hhmm’, ‘hh:mm’, ‘hhmmss’ or ‘hh:mm:ss’.

BeginDateTime

integer or

string or

datetime
object

''

(empty

string)

meaning

from as

early as

data is

available

Only return ticks that begin after this

date/time (US Eastern time-zone).

Overrides the Days parameter.

Format: Matlab datenum, or 'yyyymmdd

hhmmss', or 'yyyy-mm-dd hh:mm:ss' etc.

Note: MaxItems has precedence over

BeginDateTime: If there are more data

points than MaxItems between

BeginDateTime and EndDateTime, only

the last MaxItems data points (from

EndDateTime backward) will be returned,

regardless of BeginDateTime.

93 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

88 IQML User Guide

Parameter Data type Default Description

EndDateTime

integer or

string or

datetime
object

''

(empty

string)

meaning

now

Only return ticks that end before this

date/time (US Eastern time-zone)

Overrides the Days parameter.

Format: Matlab datenum, or 'yyyymmdd

hhmmss', or 'yyyy-mm-dd hh:mm:ss' etc.

Timeout number 5.0
Max number of seconds to wait for incoming

data (0-9000, where 0 means infinite)

UseParallel
logical

(true/false)
false

If set to true or 1, and if Parallel Computing

Toolbox is installed, then querying multiple

symbols or a date/time range will be done

in parallel (see §3.6; Professional IQML

license only).

MaxWorkers
integer

(1-∞)

(the current

parallel pool

size, up to 15)

Maximal number of parallel workers to use

(up to the current pool size) when UseParallel

=true. Note: increased parallelization might

cause IQFeed run-time throttling errors.

Fields

colon or

comma-

separated

string, or

cell-array

of strings

'Symbol,

Timestamp,

Datenum, Last,

LastSize,

TotalVolume,

Bid, Ask,

TickID,

BasisForLast,

TradeMarket-

Center,

TradeCondi-

tions,

TradeAggres-

sorCode,

DayOfMonth,

BasisDescrip-

tion,

TradeMarket-

Name,

TradeDescrip-

tion,

AggressorDes-

cription'

Sets the list of data fields reported by IQML

for each data bar, as a sub-set of IQFeed’s

default set of 18 fields.

If Fields is set to an empty value ({} or ''),

the list of current, available fields is

returned.

If Fields is not empty, subsequent history

queries in the same Matlab session will

return the specified fields, in the specified

order (Professional IQML license only).

Examples:

 'Timestamp:Bid:Ask'

 'Timestamp,Bid,Ask '

 {'Timestamp', 'Bid', 'Ask'}

 'All' (indicates all available fields)

Progress string

''

(empty

string)

When Progress is set to 'console', the data

download progress is periodically displayed

in the console.

89 IQML User Guide

5.6 Market summary data and scanner

All the queries described so far in this chapter return historic data for individually-

specified Symbols. We can retrieve historic end-of-day market state (quotes/trades and

fundamental data) of all traded securities as-of a single historic date (May 20, 2018 or

later), using a 'summary' query (see §4.6) with a non-default Date parameter:

>> data = IQML('summary', 'Date',20190110) %all NYSE equities on Jan 10, 2019
data =
 4706×1 struct array with fields:
 Symbol

 Exchange
 Type
 Last
 ... (total of 28 data fields)

>> data(1)
ans =
 struct with fields:
 Symbol: 'A'
 Exchange: 7
 Type: 1
 Last: 69.9
 TradeSize: 3350
 TradedMarket: 7
 TradeDate: 20190110
 TradeTime: 180131
 Open: 69.05

 High: 69.95
 Low: 68.6
 Close: 69.25
 Bid: 50
 BidMarket: 11
 BidSize: 400
 Ask: 69.9
 AskMarket: 11
 AskSize: 100
 Volume: 1080882
 PDayVolume: 2442291
 UpVolume: 413506
 DownVolume: 231604
 NeutralVolume: 435772
 TradeCount: 10340
 UpTrades: 3070

 DownTrades: 2819
 NeutralTrades: 4447
 VWAP: 69.5782

This query shows that 4706 equities were traded on NYSE on Jan 10, 2019. The data

may change over time, as DTN retroactively fixes its historic records.

The default DataType parameter value ('snapshot') fetches end-of-day trading data.

To fetch end-of-day fundamental data, set DataType='fundamental':94

>> data = IQML('summary', 'Date',20190110, 'DataType','fundamental');

Note that there is no Symbol parameter in a 'summary' query – data for all the

symbols that match the specified SecType (default: 'equity'), Exchange (default:

'NYSE') and/or Date (default: now/latest) is returned. For historic snapshot trading

data of specific symbols, use one of the other query types (§5.1-§5.5). Unfortunately,

there is no corresponding alternative for historic fundamental data of specific symbols.

94 Note that we only receive 4705 securities in the fundamental query compared to 4706 securities for the snapshot query (ASXw

has snapshot data but no fundamentals) – this is an IQFeed data error. NYSE bonds on the same date show a similar phenomemon:

three symbols (CVS.24.CB, DUK.46B.CB, TXT27.CB) have snapshot data but no fundamentals. All these are IQFeed data errors.

90 IQML User Guide

We can filter the returned data for various criteria using the Filter parameter (see §4.6),
effectively serving as a market scanner for the requested historic date.

Using end-of-day historic summary query enables fetching the data for securities that
are no longer traded (expired contacts95 and delisted equities96). Fetching historic data
for such non-trading symbols using any other query type is not possible.

Note: Market summary is only available with IQFeed client 6.1 or newer, and only if you
are subscribed to the requested DTN data, and only if IQFeed has relevant history data
(data is only available for trading days since May 20, 2018, and only for some SecType/
Exchange combinations). Otherwise, you may receive an error such as one of these:

The 'summary' query is only supported by IQFeed client 6.1 or newer; you are

using version 6.0.

IQFeed market summary query error: Code: 50004 - User not authorized for

market summary file requested.

IQFeed market summary query error: Code: 50007 - No file available for NASDAQ

on 2020-11-29 (possibly a non-trading day; try a different Date).

The following parameters affect historic market summary queries (see §4.6 for details):

Parameter Data type Default Description

DataType string 'snapshot' Either 'snapshot' or 'fundamental' (not 'top')

Exchange string 'NYSE' One of the markets listed in §8.3

SecType string 'Equity' One of the security types listed in §8.4

Date

integer or

string or
datetime

object

now

(latest

available

data)

Date for which to fetch the end-of-day data
(May 20, 2018 or later). Examples:

 737454 (Matlab datenum format)
 datetime('Jan 29, 2019')
 20190129 (yyyymmdd format)
 '20190129'
 '2019/01/29'
 '2019-01-29'

ReportEmptyFields logical false or 0
If true, then irrelevant data fields (which
contain empty [] values for all securities)
are reported; if false (default), they are not

Filter

string or

cell-array

of strings

{}

Zero or more filter criteria (condition
strings) – Matlab expression(s) involving
the reported data fields, which result in a

logical (true/false) value. Examples:
 'MaturityDate > 20241231'
 'MarketCap > 5000 & PeRatio < 9'
 {'MarketCap > 5000', 'Beta >= 1.2'}

Timeout number 300
Max number of seconds to wait for incoming
data (0-9000, where 0 means infinite)

Note: market summary functionality is only available in the Professional IQML license

95 A [huge] static text file containing a [very long] list of expired option symbols is available for download from DTN’s website

(http://www.iqfeed.net/downloads/beta/IEOPTION.zip; see http://forums.iqfeed.net/index.cfm?page=topic&topicID=3326 for

details). Note that this file is not actively maintained, so it is better to use the API functionality via IQML.

96 A static text file containing a list of delisted ticker symbols is available for download from DTN’s website
(http://www.iqfeed.net/downloads/beta/EQUITY.zip; see http://forums.iqfeed.net/index.cfm?page=topic&topicID=5822 for

details). Note that this file is not actively maintained, so it is better to use the API functionality via IQML.

http://www.iqfeed.net/downloads/beta/IEOPTION.zip
http://forums.iqfeed.net/index.cfm?page=topic&topicID=3326
http://www.iqfeed.net/downloads/beta/EQUITY.zip
http://forums.iqfeed.net/index.cfm?page=topic&topicID=5822

91 IQML User Guide

6 Streaming data

Streaming data is a near-real-time mechanism, where IQFeed sends ongoing

asynchronous update messages to IQML of tick (quote and trade) and news events.

These events are accumulated in IQML memory buffers. They can either be queried

asynchronously (via ad-hoc queries that “peek” at the latest accumulated data without

disturbing the ongoing streaming, as shown in §6.1-§6.4), or handled synchronously

(immediately as each event is received, using callbacks (§10) or alerts (§11)).

Depending on your IQFeed subscription, streaming may be delayed by 10+ minutes

compared to a real-time feed (a real-time data subscription is needed for live data).97

6.1 Streaming quotes

The streaming quotes mechanism has two distinct parts:

1. Request IQFeed to start sending a stream of quotes for a specified security.

This is done by using the 'quotes' action and setting a NumOfEvents

parameter to a positive >1 value.

2. At any later time(s), you can access the accumulated quotes using either of the

following alternatives:

a. Use 'quotes' action and NumOfEvents of -1 (minus one). This will return

the latest streamed data, without stopping the background streaming.

b. If you set the AssignTo variable in the original request, you can directly

access the streamed data in the specified base workspace variable.

For example, to request 100 streaming quotes for a continuous VIX future contract:
IQML('quotes', 'Symbol','@VX#', 'NumOfEvents',100)

IQFeed will start sending quotes to IQML in the background, up to the specified

NumOfEvents, without affecting normal Matlab processing. You can continue to work

in Matlab, process/display information etc., while quotes accumulate in the background.

Quotes will only stream in the background in non-blocking mode. If you assign the

IQML command results to a variable, the request is treated as blocking and IQML will

wait for all the events to accumulate (or Timeout to occur), as described in §4.1:
IQML('quotes', 'Symbol','@VX#', 'NumOfEvents',100); % streaming, non-blocking

data = IQML('quotes', 'Symbol','@VX#', 'NumOfEvents',100); % blocking

NumOfEvents can be any number >1 for streaming (a value of 1 is the standard snapshot

query in §4.1). To collect streaming quotes endlessly, set NumOfEvents to inf. Note

that in Matlab, inf is a number (not a string), so do not enclose it in quotes ('inf').

The quotes are collected into an internal data buffer in IQML. A different buffer is

maintained for each symbol. The buffer size can be controlled using the MaxItems

parameter, which has a default value of 1. This means that by default only the latest

streaming quote of each type (bid/ask) is stored, along with high/low/close data.

If you set a higher value for MaxItems,98 then up to the specified number of latest

quotes will be stored. For example, to store the latest 5 quotes:
IQML('quotes', 'Symbol','@VX#', 'NumOfEvents',100, 'MaxItems',5)

97 See §9.3 for a programmatic method to determine whether your exchange subscription is delayed or real-time.

98 MaxItems is a numeric parameter like NumOfEvents, so don’t enclose the parameter value within string quotes (‘’)

92 IQML User Guide

Note: MaxItems increases memory usage, multiplied by the number of streamed symbols.99

Subsequent requests to retrieve the latest accumulated quotes buffer data, without

stopping the background streaming, should use NumOfEvents < 0 (e.g. -1). These

requests return a Matlab data struct similar to the following:
>> data = IQML('quotes', 'Symbol','@VX#', 'NumOfEvents',-1)

data =

 Symbol: '@VX#'

 Command: 'w@VX#'

 isActive: 1

 EventsToProcess: 100

 EventsProcessed: 57

 LatestEventDatenum: 737128.637260451

 LatestEventTimestamp: '20180309 15:17:39'

 DataType: 'quotes and trades'

 ProcessType: 'stream'

 AssignTo: ''

 errorMsg: ''

 BufferSize: 5

 Buffer: [5×1 struct]

 LatestData: [1×1 struct]

In the returned data struct, we can see the following fields:

 Symbol – the requested Symbol.

 Command – the command sent to IQFeed, including the requested Symbol.

 isActive – logical flag indicating whether quotes are currently streamed for this

security. When NumOfEvents ticks are received, this flag is set to false (0).

 EventsToProcess – total number of streaming ticks requested for the security

(using the NumOfEvents parameter).

 EventsProcessed – number of streaming ticks received for this security. When

EventsProcessed >= EventsToProcess, streaming quotes are turned off and

isActive is set to false (0). Note that it is possible that EventsProcessed >

EventsToProcess, since it takes a while for the streaming cancellation request

to reach IQFeed, and during this time a few additional ticks may have arrived.

 LatestEventDatenum – Matlab numeric datenum representation of the

LatestEventTimestamp (local timezone).

 LatestEventTimestamp – timestamp (string format) when this quote event was

received by IQML (local timezone).

 DataType – type of data to stream (set by DataType parameter, see below).

 ProcessType – always equal to 'stream' for streaming quotes.

 AssignTo – the name of the assigned variable in the base Matlab workspace

(=AssignTo parameter, see below). In normal cases, this field is empty ('').

 errorMsg – contains the error message in case streaming cannot be processed

(for example: 'Symbol not found'). In normal cases, this field is empty ('').

 BufferSize – size of the data buffer (=MaxItems parameter, see below).

 Buffer – buffer of size BufferSize, accumulating the latest quote updates.

 LatestData – latest quote event received from IQFeed.

99 Quotes use up to ~16KB of Matlab memory (depending on the selected Fields). So, if MaxItems=1000, each streamed

symbol would need up to 1000*16KB = 16MB of Matlab memory when its buffer becomes full (which could take a while).

Streaming 100 symbols will require up to ~1.6GB. Such large memory usage might significantly degrade overall performance.

93 IQML User Guide

Here is a simulated timeline that illustrates the use of streaming data in IQML:

Time
Events

so far
User command Description

9:50:00 0
IQML('quotes', 'Symbol','IBM',

'MaxItems',100,'NumOfEvents',100)
Streaming data for IBM starts.

Up to 100 events to accumulate.

9:50:10 23
data = IQML('quotes',

'symbol','IBM', 'NumOfEvents',-1)
Return the 23 accumulated quotes;

background streaming continues.

9:50:20 42
data = IQML('quotes',

'symbol','IBM', 'NumOfEvents',-1)
Return the 42 accumulated quotes;

background streaming continues.

9:50:30 57
IQML('quotes', 'Symbol','IBM',

'MaxItems',80, 'NumOfEvents',80)

Reduce max # of events 10080.

Only 57 events accumulated until

now, so streaming continues.

9:50:40 65
data = IQML('quotes',

'symbol','IBM', 'NumOfEvents',-1)
Return the 65 accumulated quotes;

background streaming continues.

9:50:50 72
IQML('quotes', 'Symbol','IBM',

'NumOfEvents',0)

Reduce max # of events 800.

72 events accumulated until now, so

streaming stops immediately.

Different quotes are sent independently from IQFeed server with a unique timestamp.

Note: data.LatestEventDatenum and data.LatestEventTimestamp are specified in local

time-zone. In contrast, data.LatestData.Most_Recent_Trade_Time and data.Buffer.-

Most_Recent_Trade_Time use the server time-zone, typically US Eastern.

To get the quotes data, simply read the fields of the returned data struct, for example:100
>> data.LatestData

ans =

 Symbol: '@VX#'

 Most_Recent_Trade: 17.08

 Most_Recent_Trade_Size: []

 Most_Recent_Trade_Time: '08:06:20.716000'

 Most_Recent_Trade_Market_Center: 32

 Total_Volume: 4507

 Bid: 17.05

 Bid_Size: 63

 Ask: 17.1

 Ask_Size: 244

 Open: 17.2

 High: 17.35

 Low: 17

 Close: 17.23

 Message_Contents: 'Cbasohlcv'

 Message_Description: 'Last qualified trade; A bid update

 occurred; An ask update occurred; A

 settlement occurred; An open declaration

 occurred; A high declaration occurred; A

 low declaration occurred; A close decla-

 ration occurred; A volume update occurred'

 Most_Recent_Trade_Conditions: '4D'

 Trade_Conditions_Description: 'Implied'

 Most_Recent_Market_Name: 'CBOE Futures Exchange (CFE)'

Note that data.LatestData is typically the same as data.Buffer(end), regardless of

the values of MaxItems or NumOfEvents.101

100 The textual description fields depend on the MsgParsingLevel parameter having a value of 2 or higher (see §3.2 and §8)

101 When NumOfEvents events have been received, IQFeed is instructed to stop streaming updates, but some update messages

94 IQML User Guide

Each streaming security asset can have a different BufferSize, by specifying a different

MaxItems value in the command (large for heavily-traded assets, small for others).

Once the data is retrieved, you can direct IQML to clear (empty) the internal Buffer,

by setting ClearBuffer to true or 1. The latest buffer will be returned, and the internal

Buffer (but no other field) will be immediately emptied, awaiting new streaming quotes:102
data = IQML('quotes', 'symbol','IBM', 'NumOfEvents',-1, 'ClearBuffer',true);

To stop collecting streaming quotes, simply resend a request with NumOfEvents=0:
IQML('quotes', 'symbol','IBM', 'NumOfEvents',0);

IQFeed reports 16 standard data fields by default. If you have the Professional (or

trial) IQML license, you can customize the returned data fields by requesting up to 50+

additional fields, removing standard fields, and setting the order of the reported fields.

This can be done using the Fields parameter, as explained in §4.1. For example:
IQML('quotes', 'symbol','IBM', 'fields','Last,Ask,Bid', 'numOfEvents',6);

Note: setting the Fields parameter only affects streaming data from then on – it does

not affect previously-received data. Therefore, you should set Fields parameter in the

initial streaming command, not ongoing data-fetch commands (NumOfEvents<0).

When DataType is 'q' or 'quotes', whenever any of the requested data fields (either

the standard 16 fields, or a customized set) gets updated (not necessarily to a different

value), a new tick (update/quote) message is sent/streamed. Adding data fields means

a corresponding increase in tick messages. It is not possible in IQFeed to request data

fields without the corresponding update messages for these fields (or vice versa). The

only exception to this rule is setting DataType to 't' or 'trades': in this case only trade

updates (containing all the requested fields) will be streamed, but no field updates.

In summary, the fewer data fields that are requested, the faster the run-time processing,

and the lower the corresponding tick message rate, thus enabling a larger number of

usable quotes to be streamed and processed by your Matlab program each second.

You can specify multiple symbols for streaming at the same time, in a single IQML

command, by specifying a colon-delimited or cell-array list of symbols. For example:
IQML('quotes', 'symbols',{'IBM','GOOG','AAPL'}, 'numOfEvents',6);

IQML('quotes', 'symbols','IBM:GOOG:AAPL', 'numOfEvents',6); % equivalent

And similarly, when retrieving the accumulated streaming data:
>> data = IQML('quotes', 'symbol','IBM:GOOG:AAPL', 'numOfEvents',-1);

data =

 1×3 struct array with fields:

 Symbol

 Command

 isActive

 EventsToProcess

 EventsProcessed

 LatestEventDatenum

 LatestEventTimestamp

 DataType

 ProcessType

 BufferSize

 Buffer

 LatestData

may already be on their way from IQFeed before streaming actually stops. These extra update messages are not accumulated

in the Buffer, but the latest of these messages will be reflected in LatestData field.

102 During the buffer clear operation some streaming data may be lost, so it is advised not to clear too often.

95 IQML User Guide

>> data(1).LatestData

ans =

 struct with fields:

 Symbol: 'IBM'

 Most_Recent_Trade: 142.48

 Most_Recent_Trade_Size: 41149

 Most_Recent_Trade_Time: '17:33:40.531781'

 Most_Recent_Trade_Market_Center: 19

 ...

To get the latest data for all streamed symbols, omit the Symbol parameter (or set it to

empty ['']) in the IQML command. Note: this will return both active and non-active streams:
 >> data = IQML('quotes', 'numOfEvents',-1); % no symbol: return ALL streams
data =

 1×5 struct array with fields:

 Symbol

 Command

 ...

Similarly, to cancel all active streams in a single command, omit Symbol (or set it to ''):103
>> IQML('quotes', 'numOfEvents',0); % no symbol: stop ALL streams

IQFeed typically allows streaming up to 500 symbols. This limit can be increased by

paying DTN for increased data subscriptions. In any case, the actual maximal number of

concurrently-streaming symbols is limited by performance considerations (see §3.6).

Note: Streaming quote messages are automatically processed by IQML in the

background, reducing the CPU time that is left available to process other IQML queries

(e.g., a blocking historical data query) or Matlab analysis functions. It is therefore

advisable to stop streaming IQFeed data when not needed, even if only temporarily.

In cases of high load (such as market open/close), numerous streaming messages

(quote ticks, news items etc.) may flood the system, causing Matlab to appear frozen

for long minutes, until the events backlog is fully processed. For such cases, use IQML’s

built-in overflow protection mechanism with OverflowMode and MaxEventsBacklog

parameters. By default, OverflowMode is 0 (no protection); when OverflowMode is

set to 1, then in cases of extreme load, if more than MaxEventsBacklog messages

(default=100) have still not yet been processed, then any additional messages will be

immediately dropped (ignored) and not processed. This allows Matlab time to process

the backlog, before additional new messages are accepted for processing. The

downside is that new (more recent) messages are ignored, whereas the older messages

in the backlog are processed. Alternatively, set OverflowMode to 2 to ignore the older

messages in the backlog and only process the newer messages. This OverflowMode=2

alternative is a bit slower than the OverflowMode=1 alternative, so the messages

processing rate of OverflowMode=1 will unusally be higher. In summary:

 OverflowMode=0 does not protect from messages overflow; all messages

will be processed. Matlab may appear frozen when flooded with IQFeed events.

 OverflowMode=1 will drop new messages when the backlog is too large; this

is the fastest overflow handling alternative, having minimal CPU overhead.

 OverflowMode=2 will drop old messages when the backlog is too large; this

is slower than OverflowMode=1, but more responsive to new messages.

103 Note that cancelling all active streams cancels streaming regional updates (§6.2) in addition to streaming quotes.

96 IQML User Guide

Notes about the usage of OverflowMode:

 OverflowMode is only relevant for streaming data. Overflow protection is

automatically disabled (OverflowMode set to 0) for any other (blocking) query.

For example, if you request blocking market data (NumOfEvents>0) while

quotes are streaming, overflow handling will be disabled from then onward.

 OverflowMode and MaxEventsBacklog are specific to each of the major

IQFeed data query ports: Level1, Level2, and Lookup. When you specify

these parameters in a query, they are automatically assigned to the appropriate

data port and only affect the messages arriving via that port. For example, you

can set different overflow handling parameters for Level1 and Level2 data.

Similarly, a blocking historic data query (using the Lookup port) does not

disable overflow handling for streaming quotes (using the Level1 port).

Note that during non-trading hours, there is no streaming data (naturally). To test the

streaming-data mechanism during non-trading hours, try to use the dummy symbol

TST$Y, for which IQFeed sends a continuous 24/7 stream of pre-recorded data.104

When debugging streaming, it is sometimes useful to assign the streamed data to a

base Matlab workspace variable, which can be monitored live using Matlab’s Variable

Explorer or directly checked/used within a Matlab script, without a need to call

IQML('quotes',…,'numOfEvents',-1) to constantly refetch the latest data. This data

mirroring can be done by setting the AssignTo parameter to any valid Matlab variable

name or assignment target, for example: 'myData' or 'streamed.VX' or 'data{3}'.

>> IQML('quotes', ..., 'AssignTo','myData');

% streaming data in background is mirrored in base workspace variable myData:

>> myData

myData =

 struct with fields:

 Symbol: '@VX#'

 Command: 'w@VX#'

 isActive: 1

 EventsToProcess: Inf

 EventsProcessed: 129

 LatestEventDatenum: 737902.831878183

 LatestEventTimestamp: '20200421 19:57:54'

 DataType: 'quotes and trades'

 ProcessType: 'stream'

 AssignTo: 'myData'

 errorMsg: ''

 BufferSize: 100

 Buffer: [100×1 struct]

 LatestData: [1×1 struct]

Here is a summary of the IQML parameters that directly affect streaming quotes:

Parameter Data type Default Description

Symbol or

Symbols 105

colon or

comma-

delimited

(none)

Limits request to specified symbol(s). E.g.:

 '@VX#'

 'IBM:AAPL:GOOG'

104 IQFeed’s streaming functionality of TST$Y is currently broken. To get notified when DTN reports that the functionality is

fixed, follow this forum thread: http://forums.dtn.com/index.cfm?page=topic&topicID=4286

105 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

http://forums.dtn.com/index.cfm?page=topic&topicID=4286

97 IQML User Guide

string, or

cell-array

of strings

 'IBM,AAPL,GOOG'

 {'IBM', 'AAPL', 'GOOG'}
This parameter must be set to valid symbol
name(s) when NumOfEvents>0

NumOfEvents integer MaxItems

One of:
 inf – continuous endless streaming

quotes for the specified security
 N>1 – stream only N quotes
 1 – get only a single quote (default)
 0 – stop streaming quotes
 -1 – return latest accumulated quotes data

while continuing to stream new quotes data

MaxItems integer 1

Number of streaming quotes stored in cyclic

buffer. Once this number of quotes are received

old quotes are discarded as new quotes arrive.

DataType string 'q'

One of:

 'q' or 'quotes' (default) – stream both

trades & quote (bid/ask update) events

 't' or 'trades' – stream trade events only

Fields

colon or

comma-

separated

string, or

cell-array

of strings

'Symbol,

Most Recent

Trade,

Most Recent

Trade Size,

Most Recent

Trade Time,

…'

(see §4.1)

Sets the list of data fields reported by IQFeed
for each quote. IQFeed’s default set has 16
fields; 50+ additional fields can be specified.

If Fields is set to an empty value ({} or ''),
the list of current, available fields is returned.

If Fields is not empty, subsequent quotes
queries will return the specified fields, in the
specified order (Professional IQML license
only). The Symbol field is always returned
first, even if not specified.

Examples:

 {'Bid', 'Ask', 'Last'}

 'Bid, Ask, Last'

 'Bid:Ask:Last'

 'All' (indicates all available fields)

ClearBuffer
logical

(true/false)
false

If true or 1, the internal cyclic quotes buffer is

cleared after the data is returned to the caller

AssignTo string

''

(empty

string)

Contains the assignment target (typically a

variable name) in the base Matlab workspace,

useful for stream debugging.

OverflowMode integer []

If set, the overflow handling for the query’s

IQFeed data port is updated as follows:

 0 – none (all messages are processed)

 1 – drop new msgs until backlog clears

 2 – drop old backlog messages (slower)

MaxEventsBacklog integer 100
Size of messages backlog, per IQFeed data

port, above which overflow handling is done

98 IQML User Guide

6.2 Regional updates

Regional quotes are Bid and Ask prices delivered from various regional markets

(exchanges). The streaming regional market update mechanism has two parts, just

like streaming ticks (§6.1):

1. Request IQFeed to start sending a stream of regional updates. This is done by

using the 'regional' action and setting a NumOfEvents parameter to a positive >1

value. You must specify the Symbol(s) for which regional updates will stream.

2. At any later time(s), you can access the accumulated regional updates using

either of the following alternatives:

a. Use 'regional' action and NumOfEvents of -1 (minus one). This will

return the latest streamed data, without stopping the background streaming.

b. If you set the AssignTo variable in the original request, you can directly

access the streamed data in the specified base workspace variable.

For example, to request 100 streaming regional updates for Facebook:

IQML('regional', 'Symbol','FB', 'NumOfEvents',100)

This causes IQFeed to start sending regional updates to IQML in the background, up

to the specified NumOfEvents, without affecting normal Matlab processing. You can

continue to work with Matlab, process and display information etc., while the regional

updates accumulate in the background.

Regional updates will only stream in the background in non-blocking mode. If you

assign the IQML command results to a variable, the request is treated as blocking and

IQML will wait for all data to accumulate (or Timeout to occur), as described in §7.2:
IQML('regional', 'Symbol','FB', 'NumOfEvents',100); % streaming, non-blocking

data = IQML('regional', 'Symbol','FB', 'NumOfEvents',100); % blocking

NumOfEvents can be any number higher than 1 for streaming to work (a value of 1

is the standard snapshot regional-update request described in §7.2). To collect

streaming regional updates endlessly, set NumOfEvents to the value inf. Note that in

Matlab, inf is a number (not a string), so do not enclose it in quotes ('inf').

The regional updates are collected into an internal data buffer in IQML. A different

buffer is maintained for each symbol. The buffer size can be controlled using the

MaxItems parameter, which has a default value of 1106. This means that by default

only the latest streaming regional update that affect the specified symbols will be

stored in the buffer and become accessible for later processing.

If you set a higher value for MaxItems, then up to the specified number of latest

regional update items will be stored. For example, to store the latest 5 updates:

IQML('regional', 'Symbol','FB', 'NumOfEvents',100, 'MaxItems',5)

Note that using a large MaxItems increases memory usage. This could have an

adverse effect if you set a very large buffer size (many thousands) and/or streaming of

a large number of different securities.107

106 Note that MaxItems is a numeric parameter like NumOfEvents, so don’t enclose the parameter value within string quotes (‘’)

107 Each regional update item uses 2KB of Matlab memory. During trading hours, there could be dozens of updates per second
for highly liquid symbols (i.e., 500MB or more per hour, if all updates are saved). Limiting MaxItems to some finite value

ensures that the memory usage and performance impact remain low.

99 IQML User Guide

Subsequent requests to retrieve the latest accumulated regional updates buffer data,

without stopping the background streaming, should use NumOfEvents = -1 (minus one).

These requests return a Matlab data struct similar to the following:

>> data = IQML('regional', 'Symbol','FB', 'NumOfEvents',-1)

data =

 Symbol: 'FB'

 Command: 'S,REGON,FB'

 isActive: 1

 EventsToProcess: 100

 EventsProcessed: 83

 LatestEventDatenum: 737146.784037153

 LatestEventTimestamp: '20180327 18:49:00'

 DataType: 'regional'

 ProcessType: 'stream'

 AssignTo: ''

 errorMsg: ''

 BufferSize: 5

 Buffer: [5×1 struct]

 LatestData: [1×1 struct]

In the returned data struct, we can see the following fields:

 Symbol – the requested Symbol.

 Command – the command sent to IQFeed, including the requested Symbol.

 isActive – a logical flag indicating whether regional updates are currently

being streamed for this security. When NumOfEvents ticks have been

received, this flag is set to false (0).

 EventsToProcess – total number of streaming regional updates requested

(using the NumOfEvents parameter).

 EventsProcessed – number of streaming regional updates received. When

EventsProcessed >= EventsToProcess, streaming updates are turned off and

isActive is set to false (0).

Note that it is possible that EventsProcessed > EventsToProcess, since it takes

a while for the streaming cancellation request to reach IQFeed and during this

time a few additional update messages may have arrived.

 LatestEventDatenum – Matlab numeric datenum representation of the

LatestEventTimestamp (local timezone).

 LatestEventTimestamp – timestamp (string format) when this regional update

event was received by IQML (local timezone).

 DataType – always equal to 'regional' for streaming regional updates.

 ProcessType – always equal to 'stream' for streaming regional updates.

 AssignTo – the name of the assigned variable in the base Matlab workspace

(=AssignTo parameter, see below). In normal cases, this field is empty ('').

 errorMsg – contains the error message in case streaming cannot be processed

(for example: 'Symbol not found'). In normal cases, this field is empty ('').

 BufferSize – size of the data buffer (=MaxItems parameter, see below).

 Buffer – buffer of size BufferSize, accumulating the latest regional updates.

 LatestData – latest regional update event received from IQFeed.

To get the regional updates data, simply read the fields of the returned data struct:108

108 The textual Description fields depend on the MsgParsingLevel parameter having a value of 2 or higher (see §3.2 and §8)

100 IQML User Guide

>> data.LatestData

ans =

 RegionalBid: 155.34

 RegionalBidSize: 100

 RegionalBidTime: '12:29:45'

 RegionalAsk: 155.55

 RegionalAskSize: 200

 RegionalAskTime: '12:29:45'

 FractionDisplayCode: 14

 DecimalPrecision: 4

 FractionDisplayDescription: 'Four decimal places'

 MarketCenter: 11

 MarketCenterDescription: 'NYSE Archipelago (NYSE_ARCA)'

Each update has an associated timestamp, since different regional updates are sent

separately and independently from IQFeed server.

Note: data.LatestEventDatenum and data.LatestEventTimestamp are specified in the

local time-zone; in contrast, data.LatestData.RegionalBidTime and .RegionalAskTime

are specified in the server’s time-zone (typically US Eastern time zone).

Note that data.LatestData is typically the same as data.Buffer(end), regardless of

the values of MaxItems or NumOfEvents.109

Each streaming security asset can have a different BufferSize, by specifying a

different MaxItems value in the streaming command. This can be used for specifying

a larger MaxItems for heavily-traded assets vs. lightly-traded ones.

Once the data is retrieved, you can direct IQML to clear (empty) the internal Buffer, by

setting ClearBuffer to true or 1. The latest buffer will be returned, and the internal Buffer

(but no other field) will be immediately emptied, awaiting new regional updates:110
data = IQML('regional', 'symbol','FB', 'NumOfEvents',-1, 'ClearBuffer',true);

To stop collecting regional updates, simply resend a request with NumOfEvents=0:
IQML('regional', 'symbol','FB', 'NumOfEvents',0);

You can specify multiple symbols for streaming at the same time, in a single IQML

command, by specifying a colon-delimited or cell-array list of symbols. For example:
IQML('regional', 'symbols',{'IBM','GOOG','AAPL'}, 'numOfEvents',6);

IQML('regional', 'symbols','IBM:GOOG:AAPL', 'numOfEvents',6); % equivalent

As with streaming quotes (§6.1), to get the latest data for all streamed symbols, omit

the Symbol parameter or set it to empty ['']. This returns all streams (both active/not):
 >> data = IQML('regional', 'numOfEvents',-1); % no symbol: get ALL streams
data =

 1×5 struct array with fields:

 Symbol

 Command

 isActive

 EventsToProcess

 ...

Similarly, to cancel all active streams in a single command, omit Symbol (or set it to ''):111
>> IQML('regional', 'numOfEvents',0); % no symbol: ALL streams are stopped

109 When NumOfEvents events have been received, IQFeed is instructed to stop streaming updates, but one or more update

messages may already be on their way from IQFeed before streaming actually stops. These extra update messages are not

accumulated in the Buffer, but the latest of these messages will be reflected in LatestData field.

110 During and around the time of the buffer clear, some streaming data may be lost, so it is advised not to clear to often…

111 Note that cancelling all active streams cancels streaming quotes (§6.1) in addition to streaming regional updates.

101 IQML User Guide

When debugging streaming, it is sometimes useful to assign the streamed data to a

base Matlab workspace variable, which can be monitored live using Matlab’s Variable

Explorer or directly checked/used within a Matlab script, without a need to call

IQML('regional',…,'numOfEvents',-1) to constantly refetch the latest data. This data

mirroring can be done by setting the AssignTo parameter to any valid Matlab variable

name or assignment target, for example: 'myData' or 'streamed.FB' or 'data{3}'.
>> IQML('regional', ..., 'AssignTo','myData');

% streaming data in background is mirrored in base workspace variable myData:

>> myData

myData =

 Symbol: 'FB'

 Command: 'S,REGON,FB'

 isActive: 1

 EventsToProcess: 100

 EventsProcessed: 83

 ...

Here is a summary of the IQML parameters that affect streaming regional updates:

Parameter Data type Default Description

Symbol or

Symbols 112

colon or

comma-

delimited

string, or

cell-array

of strings

(none)

Limits the request to the specified symbol(s).

Examples:

 '@VX#'

 'IBM:AAPL:GOOG'

 'IBM,AAPL,GOOG'

 {'IBM', 'AAPL', 'GOOG'}
This parameter must be set to valid symbol
name(s) when NumOfEvents>0

NumOfEvents integer MaxItems

One of:
 inf – continuous endless streaming

regional updates for specified security
 N>1 – stream only N regional updates
 1 – get only a single update (default)
 0 – stop streaming regional updates
 -1 – return the latest accumulated

regional updates data while continuing
to stream new regional updates data

MaxItems integer 1

Number of streaming regional updates stored

in a cyclic buffer. Once this number of

updates has been received, the oldest update

is discarded whenever a new update arrives.

ClearBuffer
logical

(true/false)
false

If true or 1, the internal cyclic quotes buffer is

cleared after the data is returned to the caller.

AssignTo string

''

(empty

string)

Contains the assignment target (typically a

variable name) in the base Matlab workspace,

useful for stream debugging.

Note: Regional updates data is only available in the Professional IQML license.

112 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

102 IQML User Guide

6.3 Interval bars

The streaming interval bars feature has two parts, just like streaming ticks (§6.1):

1. Request IQFeed to start sending a stream of interval bars for a specified

security. This is done by using the 'intervalbars' action and setting a

NumOfEvents parameter to a positive >1 value.

2. At any later time(s), you can access the accumulated interval bars using either

of the following alternatives:

a. Use 'intervalbars' action and NumOfEvents of -1 (minus one). This will

return the latest streamed data, without stopping the background streaming.

b. If you set the AssignTo variable in the original request, you can directly

access the streamed data in the specified base workspace variable.

For example, request 80 streaming interval bars of a continuous VIX future contract:
IQML('intervalbars', 'Symbol','@VX#', 'NumOfEvents',80)

This causes IQFeed to start sending interval bars to IQML in the background, up to

the specified NumOfEvents, without affecting normal Matlab processing. This

means you can continue to work with Matlab, process data, display information etc.

Quotes will only stream in the background in non-blocking mode. If you assign the

IQML command results to a variable, the request is treated as blocking and IQML will

wait for all the events to accumulate (or Timeout to occur), as described in §4.1:
IQML('intervalbars', 'Symbol','@VX#', 'NumOfEvents',80); % streaming, non-blocking

data = IQML('intervalbars', 'Symbol','@VX#', 'NumOfEvents',80); % blocking

NumOfEvents can be any number higher than 1 for streaming to work. To collect

streaming quotes endlessly, set NumOfEvents to the value inf. Note that in Matlab,

inf is a number (not a string), so do not enclose it in quotes ('inf').

The quotes are collected into an internal data buffer in IQML. A different buffer is

maintained for each symbol. The buffer size can be controlled using the MaxItems

parameter, which has a default value of 1. This means that by default only the latest

streaming interval bar is stored.

If you set a higher value for MaxItems,113 then up to the specified number of latest

quotes will be stored, subject to IQFeed server limitations:114
IQML('intervalbars', 'Symbol','@VX#', 'NumOfEvents',80, 'MaxItems',3)

Note that using a large MaxItems increases memory usage. This may have an adverse

effect if you use a large buffer (many thousands) and/or stream multiple Symbols.115

Each streaming security asset can have a different BufferSize, by specifying a

different MaxItems value in the streaming command. This can be used for specifying

a larger MaxItems for heavily-traded assets vs. lightly-traded ones.

113 MaxItems is a numeric parameter like NumOfEvents, so don’t enclose the parameter value within string quotes (‘’)

114 The number of reported bars may possibly be limited by the IQFeed server, depending on your data subscriptions and exchange.
115 Interval bars use ~2KB of Matlab memory. So, if MaxItems=1000, each streamed symbol would need 1000*2KB = 2MB of

Matlab memory when its buffer becomes full (which could take a while). Streaming 100 symbols will require up to ~200MB.

103 IQML User Guide

Subsequent requests to retrieve the latest accumulated interval bars buffer data,

without stopping the background streaming, should use NumOfEvents = -1 (minus

one). These requests return a Matlab data struct similar to the following:

>> data = IQML('intervalbars', 'Symbol','@VX#', 'NumOfEvents',-1)

data =

 Symbol: '@VX#'

 Command: 'BW,@VX#,60,,1,3,,,B'

 isActive: 0

 EventsToProcess: 80

 EventsProcessed: 80

 LatestEventDatenum: 737902.504044143

 LatestEventTimestamp: '20200421 12:05:49.414'

 DataType: 'intervalbars'

 ProcessType: 'stream'

 AssignTo: ''

 errorMsg: ''

 MaxDaysToProcess: 1

 BufferSize: 3

 Buffer: [3×1 struct]

 LatestData: [1×1 struct]

In the returned data struct, we can see the following fields:

 Symbol – the requested Symbol.

 Command – the command sent to IQFeed, including the requested Symbol.

 isActive – logical flag indicating whether interval bars are currently streamed for

the security. Once NumOfEvents bars are received this flag is set to false (0).

 EventsToProcess – total number of streaming interval bars requested for the

security (using the NumOfEvents parameter).

 EventsProcessed – number of streaming interval bars received for this security.

When EventsProcessed>=EventsToProcess, streaming is turned off and isActive

is set to false (0). Note: it is possible that EventsProcessed > EventsToProcess,

since it takes a while for the streaming cancellation request to reach IQFeed,

and during this time a few additional bars may have arrived.

 LatestEventDatenum – Matlab numeric datenum representation of the

LatestEventTimestamp (local timezone).

 LatestEventTimestamp – timestamp (string format) when this bar event was

received by IQML (local timezone).

 DataType – always equal to 'intervalbars' for streaming interval bars.

 ProcessType – always equal to 'stream' for streaming interval bars.

 AssignTo – the name of the assigned variable in the base Matlab workspace

(=AssignTo parameter, see below). In normal cases, this field is empty ('').

 errorMsg – contains the error message in case streaming cannot be processed

(for example: 'Symbol not found'). In normal cases, this field is empty ('').

 MaxDaysToProcess – max number of trading days to process (=MaxDays param).

 BufferSize – size of the data buffer (=MaxItems parameter, see below).

 Buffer – buffer of size BufferSize, accumulating the latest quote updates.

 LatestData – single latest interval bar received from IQFeed.

104 IQML User Guide

To retrieve the interval bars data, read the fields of the returned data struct:116
>> data.LatestData

ans =

 Symbol: '@VX#'

 BarType: 'Complete interval bar from history'

 Timestamp: '2020-04-21 04:50:00'

 Open: 38.95

 High: 38.95

 Low: 38.85

 Close: 38.9

 CumulativeVolume: 6381

 IntervalVolume: 18

 NumberOfTrades: 0

 BarTypeCode: 'BH'

 EventDatenum: 737902.504044143

 EventTimestamp: '20200421 12:05:49.414'

Note that data.LatestData is typically the same as data.Buffer(end), regardless of

the values of MaxItems or NumOfEvents.117

IQFeed sends interval bars asynchronously, with a Timestamp that identifies each bar

(server timezone, typically US Eastern timezone). Note that data.LatestEventDatenum=

data.LatestData.EventDatenum and data.LatestEventTimestamp=data.LatestData.-

EventTimestamp are specified in the local timezone (your computer’s time). Also note

that LatestEventTimestamp and EventTimestamp have a different format than Timestamp.

The data.LatestData.NumberOfTrades field indicates the number of trades that occurred

within this bar (i.e., not cumulative). This field is only relevant when IntervalType is

'ticks'/'trades'. In all other cases, the field will be empty ([]) or 0.

The IntervalType (default: 'secs') and IntervalSize (default: 60) parameters should

typically be specified together. Note that IntervalSize must be a positive integer

value (i.e. its value cannot be 4.5 or 0). If IntervalType is 'ticks'/'trades', IntervalSize

must be 2 or higher. If IntervalType is 'volume', IntervalSize must be 100 or higher.

If IntervalType is 'secs', IntervalSize must be any integer between 1-300 (5 minutes),

or any multiple of 60 (1 minute) between 300-3600 (1 hour), or 7200 (2 hours).118

The data.LatestData.BarType and BarTypeCode fields indicate if this is a historic bar

(BH), a complete bar from the live (real-time) stream (BC), or an update bar (BU).

Unlike other streaming types, intervalbar queries also fetch historic bars data, starting

from the date/time that is set by the BeginDateTime parameter. This is similar to

(and subject to the same limitations as) historic interval data (§5.4), but with no

specified end point. BeginDateTime’s default value is 00:00:00 today (server time),

so we almost always get historic (BH) bars before live streaming (BC) bars. IQML

will immediately return the historic bars, and new realtime streaming bars as they

become available. If we run the query at mid-day, we may get hundreds of historic

bars before the first live streaming bar. Depending on the specified BeginDateTime

116 See §4.3 for an explanation of the fields in this data struct

117 When NumOfEvents events have been received, IQFeed is instructed to stop streaming updates, but some update messages

may already be on their way from IQFeed before streaming actually stops. These extra update messages are not accumulated

in the Buffer, but the latest of these messages will be reflected in LatestData field.

118 Note that IQFeed’s limitations on live 'secs' interval bars are stricter than the limitations on historical interval bars (§5.4):

http://forums.dtn.com/index.cfm?page=topic&topicID=5529

http://forums.dtn.com/index.cfm?page=topic&topicID=5529

105 IQML User Guide

and NumOfEvents, we may receive only historic bars without any live streaming bars.

Historic and streaming data bars can be distinguished based on their BarType field.

Note: the initial set of historic bars also includes the latest (incomplete) bar. For

example, if we query at 21:34, we get the complete historic (BH) intervalbars for

21:20, 21:25, 21:30 and also the current (incomplete) bar for 21:35. A minute later, at

exactly 21:35:00, IQFeed sends the complete BC bar for 21:35. This BC bar is added

at the end of the buffer, so we will see two 21:35 bars in the buffer.

By default, IQFeed only sends historic BH bars followed by streaming BC bars. If the

MaxUpdateDuration>0, IQFeed also sends BU bar update messages when the specified

number of seconds have passed since the last trade or BC bar message. For example, if

IntervalSize=60 and MaxUpdateDuration=15, the following scenario may occur:
119

9:30:03 - A trade occurs - no message is sent by IQFeed (15-sec timer is reset to 0)

9:30:06 - A trade occurs - no message is sent by IQFeed (15-sec timer is reset to 0)

9:30:21 - No trade or BC message for 15 seconds, so IQFeed sends an update (BU) message

9:30:57 - A trade occurs - no message is sent by IQFeed (15-sec timer is reset to 0)

9:31:12 - No trade or BC message for 15 seconds, so IQFeed sends a new update (BU) message

9:31:15 - A trade occurs - this is the first trade outside the 9:30 minute, so IQFeed sends a bar

complete (BC) message for the 9:30 bar. (15-sec timer is reset to 0)

9:31:29 - A trade occurs - no message is sent by IQFeed (15-sec timer is reset to 0)

9:31:40 - A trade occurs - no message is sent by IQFeed (15-sec timer is reset to 0)

9:31:53 - A trade occurs - no message is sent by IQFeed (15-sec timer is reset to 0)

9:32:03 - A trade occurs - IQFeed sends a bar complete (BC) message for the 9:31 bar; only

10 seconds have passed since the last trade, so no BU message is sent by IQFeed before the BC.

Note: IQFeed only sends BC bar complete messages when the first trade outside the

bar occurs. This may occur a long time after the bar has ended. Use the

MaxUpdateDuration parameter to receive more timely BU bar update messages.

BU update bars are appended to the buffer like other bar messages, so we may see bars

with the same Timestamp. These bars do not necessarily have the same data, since they

were sampled at different times (per their respective EventDatenum, EventTimestamp).

The most updated data is always the last bar for each unique Timestamp. For example:
>> IQML('intervalbars', 'Symbol','@VX#', 'NumOfEvents',inf, 'MaxItems',9, ...

 'IntervalSize',60, 'IntervalType','secs', 'MaxUpdateDuration',15);

... % wait a while...

>> data = IQML('intervalbars', 'Symbol','@VX#', 'NumOfEvents',-1);

>> struct2table(data.Buffer)

ans =

 9×12 table

 Symbol BarType Timestamp Open …

 _______ ____________________________________ _____________________ _____ …

 '@VX#' 'Complete interval bar from history' '2020-04-21 03:51:00' 39.45 …

 '@VX#' 'Complete interval bar from history' '2020-04-21 03:52:00' 39.45 …

 '@VX#' 'Complete interval bar from history' '2020-04-21 03:53:00' 39.35 …

 '@VX#' 'Complete interval bar from stream' '2020-04-21 03:53:00' 39.35 …

 '@VX#' 'Updated interval bar' '2020-04-21 03:54:00' 39.45 …

 '@VX#' 'Complete interval bar from stream' '2020-04-21 03:54:00' 39.45 …

 '@VX#' 'Updated interval bar' '2020-04-21 03:55:00' 39.45 …

 '@VX#' 'Updated interval bar' '2020-04-21 03:55:00' 39.45 …

 '@VX#' 'Complete interval bar from stream' '2020-04-21 03:55:00' 39.45 …

119 http://forums.iqfeed.net/index.cfm?page=topic&topicID=4341. IQFeed’s term “update interval” was renamed

MaxUpdateDuration in IQML in order to avoid confusion with the interval bars. Note: the described scenario depends on

IQFeed’s implementation of the “update interval” mechanism – this implementation is not in IQML’s control.

http://forums.iqfeed.net/index.cfm?page=topic&topicID=4341

106 IQML User Guide

Once the data is retrieved, you can direct IQML to clear (empty) the internal Buffer,

by setting ClearBuffer to true or 1. The latest buffer will be returned, and the internal

Buffer (but no other field) will be immediately emptied awaiting new interval bars:120
data = IQML('intervalbars', 'symbol','IBM', 'NumOfEvents',-1, ...

 'ClearBuffer',true);

To stop collecting interval bars, simply resend a request with NumOfEvents=0:

IQML('intervalbars', 'symbol','IBM', 'NumOfEvents',0);

You can specify multiple symbols for streaming at the same time, in a single IQML

command, by specifying a colon-delimited or cell-array list of symbols. For example:

IQML('intervalbars', 'symbols',{'IBM','GOOG','AAPL'}, 'numOfEvents',6);

IQML('intervalbars', 'symbols','IBM:GOOG:AAPL', 'numOfEvents',6); % equivalent

As with streaming quotes (§6.1), to get the latest data for all streamed symbols, omit

the Symbol parameter or set it to empty ['']. This returns all streams (both active/not).

In the following example, we get a struct array of size 5, one struct for each symbol

for which that we have requested intervalbars during this Matlab session:

 >> data = IQML('intervalbars', 'numOfEvents',-1); % no symbol: get ALL streams
data =

 1×5 struct array with fields:

 Symbol

 Command

 isActive

 ...

Similarly, to cancel all active streams in a single command, omit Symbol (or set it to ''):

>> IQML('intervalbars', 'numOfEvents',0); % no symbol: stop ALL streams

When debugging streaming, it is sometimes useful to assign the streamed data to a

base Matlab workspace variable, which can be monitored live using Matlab’s Variable

Explorer or directly checked/used within a Matlab script, without a need to call

IQML('intervalbars',…,'numOfEvents',-1) to constantly refetch the latest data. This data

mirroring can be done by setting the AssignTo parameter to any valid Matlab variable

name or assignment target, for example: 'myData' or 'streamed.VX' or 'data{3}'.

>> IQML('intervalbars', ..., 'AssignTo','myData');

% streaming data in background is mirrored in base workspace variable myData:

>> myData

myData =

 struct with fields:

 Symbol: '@VX#'

 Command: 'BW,@VX#,60,20200421 000000,7,100,,,B,s,,5'

 isActive: 1

 EventsToProcess: Inf

 EventsProcessed: 129

 LatestEventDatenum: 737902.831878183

 LatestEventTimestamp: '20200421 19:57:54'

 DataType: 'intervalbars'

 ProcessType: 'stream'

 AssignTo: 'myData'

 errorMsg: ''

 MaxDaysToProcess: 7

 BufferSize: 100

 Buffer: [100×1 struct]

 LatestData: [1×1 struct]

120 During and around the time of the buffer clear, some streaming data may be lost, so it is advised not to clear to often…

107 IQML User Guide

The following parameters affect interval bars data queries:

Parameter Data type Default Description

Symbol or

Symbols121

colon or

comma-

delimited

string, or

cell-array

of strings

(none)

Limits the request to the specified
symbol(s). Examples:

 '@VX#'

 'IBM:AAPL:GOOG'

 'IBM,AAPL,GOOG'

 {'IBM', 'AAPL', 'GOOG'}

This parameter must be set to valid
symbol name(s) when NumOfEvents>0

NumOfEvents integer
Max

Items

One of:

 inf – continuous endless streaming
interval bars for specified symbol(s)

 N>1 – stream only N interval bars

 1 – get only a single interval bar

 0 – stop streaming interval bars

 -1 – return latest interval bars data
while continuing to stream new bars

MaxItems integer 100
Returns up to the specified number of bars

(if available). This is the max Buffer size.

MaxDays integer 1 Max number of trading days to retrieve

IntervalType string 'secs'

Sets the type of interval size. One of the

following values:

 's' or 'secs' – time [seconds] (default)

 'v' or 'volume' – traded volume

 't' or 'ticks' – number of ticks

IntervalSize integer 60
Size of bars in IntervalType units. Must be

≥1 for secs, ≥2 for ticks, ≥100 for volume.

BeginFilterTime string '00:00:00'

Only return bars that begin after this time

of day (US Eastern time-zone). Format:

'hhmm', 'hh:mm', 'hhmmss' or 'hh:mm:ss'.

EndFilterTime string '23:59:59'

Only return bars that end before this time

of day (US Eastern time-zone). Format:

'hhmm', 'hh:mm', 'hhmmss' or 'hh:mm:ss'.

BeginDateTime

integer or

string or

datetime
object

''

(empty

string)

meaning

today at

00:00:00

Only return bars that begin after this

date/time (US Eastern time-zone).

Format: Matlab datenum, or 'yyyymmdd

hhmmss', or 'yyyy-mm-dd hh:mm:ss' etc.

Note: there is no corresponding

EndDateTime parameter for streaming

intervalbars (only for historic bars: §5.4).

121 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

108 IQML User Guide

Parameter Data type Default Description

MaxUpdateDuration integer 0
Max number of seconds to wait after a

trade before receiving a bar update message

Timeout number 5.0
Max number of seconds to wait (0-9000)

for data in blocking mode (0 means infinite)

ClearBuffer
logical

(true/false)
false

If true or 1, the internal cyclic quotes buffer

is cleared after data is returned to the caller

AssignTo string

''

(empty

string)

Contains the assignment target (typically

a variable name) in the base Matlab

workspace, useful for stream debugging.

OverflowMode integer []

If set, overflow handling for the query’s

IQFeed data port is updated as follows:

 0 – no overflow handling (all

messages will be processed)

 1 – drop new messages when

backlog is too large

 2 – drop old messages (slower)

MaxEventsBacklog integer 100

Size of messages backlog, per IQFeed

data port, above which overflow handling

is done (if OverflowMode is 1 or 2).

109 IQML User Guide

6.4 Market depth (Level 2)

The streaming market depth mechanism also has two distinct parts, just like

streaming level 1 quotes (§6.1):

1. Request IQFeed to start sending a stream of market depth quotes for a

specified security. This is done by using the 'marketdepth' action.

2. At any later time(s), you can access the current market depth data using either

of the following alternatives:

a. Use 'marketdepth' action and NumOfEvents of -1 (minus one). This will

return the latest streamed data, without stopping the background streaming.

b. If you set the AssignTo variable in the original request, you can directly

access the streamed data in the specified base workspace variable.

For example, let’s request market depth quotes for a continuous E-mini contract:
IQML('marketdepth', 'Symbol','@ES#')

This causes IQFeed to start sending market depth updates to IQML in the background,

up to the specified NumOfEvents, without affecting normal Matlab processing. This

means you can continue to work with Matlab, process data, display information etc.

Note that each incoming quote message updates the data for a single market depth

row. The market depth row cannot be specified nor predicted by the user, and the

order of messages is unrelated to the market depth row, for example, an update for

row #3 can follow an update of row #5.

Market depth data will only stream in the background in non-blocking mode. If you assign

the IQML command results to a variable, the request is treated as blocking and IQML

will wait for all the events to accumulate (or Timeout to occur), as described in §4.1:
IQML('marketdepth', 'Symbol','@ES#', 'NumOfEvents',600); % streaming, non-blocking

data = IQML('marketdepth', 'Symbol','@ES#', 'NumOfEvents',600); % blocking

NumOfEvents is an optional input parameter and can be any number >1 for streaming.

To collect market depth data endlessly, set NumOfEvents to the value inf. Note that

in Matlab, inf is a number (not a string), so do not enclose it in quotes ('inf').

The quotes are collected into an internal data structure in IQML. A different structure

is maintained for each symbol.

Subsequent requests to retrieve the latest accumulated interval bars buffer data,

without stopping the background streaming, should use NumOfEvents = -1 (minus

one). These requests return a Matlab data struct similar to the following:
>> data = IQML('marketdepth', 'Symbol','@ES#', 'NumOfEvents',-1)

data =

 Symbol: '@ES#'

 Command: 'w@ES#'

 EventsToProcess: 600

 EventsProcessed: 437

 LatestEventDatenum: 737195.518211377

 LatestEventTimestamp: '20180515 12:26:13'

 AssignTo: ''

 errorMsg: ''

 IncludeEmptyQuotes: 0

 LatestData: [1×10 struct]

110 IQML User Guide

In the returned data struct, we can see the following fields:

 Symbol – the requested Symbol.

 Command – the command sent to IQFeed, including the requested Symbol.

 EventsToProcess – total number of streaming interval bars requested for the

security (using the NumOfEvents parameter).

 EventsProcessed – number of streaming market depth data quotes received for

this security. When EventsProcessed >= EventsToProcess, streaming market

depth data for this security is turned off.

 LatestEventDatenum – Matlab numeric datenum representation of the

LatestEventTimestamp (local timezone).

 LatestEventTimestamp – timestamp (string format) when this market depth

quote event was received by IQML (local timezone).

 AssignTo – the name of the assigned variable in the base Matlab workspace

(=AssignTo parameter, see below). In normal cases, this field is empty ('').

 errorMsg – contains the error message in case streaming cannot be processed

(for example: 'Symbol not found'). In normal cases, this field is empty ('').

 IncludeEmptyQuotes – value of the specified IncludeEmptyQuotes parameter

(default value: false). If true or 1, then empty quotes (having no valid Bid or

Ask) will be reported and be counted as a valid “event”; otherwise they will not.

 LatestData – latest data received by IQFeed for each market depth row.

To retrieve the market depth data at the nth market depth row, simply read the fields of

the LatestData at the nth location, for example:
>> data.LatestData(4)

ans =

 Symbol: '@ES#'

 ID: 'MD04'

 Bid: 2725.5

 Ask: 2727.25

 BidSize: 65

 AskSize: 148

 BidTime: '05:25:59.761191'

 Date: '2018-05-15'

 AskTime: '05:25:59.760278'

 BidInfoValid: 1

 AskInfoValid: 1

 Condition: 52

 Condition_Description: 'regular'

 ID_Description: 'Order book row #4'

BidInfoValid and AskInfoValid values are logical (true/false) values, which appear

as 1 or 0, respectively, in the struct display above. The ID field indicates the

corresponding order-book row (for futures) or market-maker name (for equities).

Different market depth quotes are sent independently from the IQFeed server with a

unique timestamp, in a non-ordered manner. Note that data.LatestEventDatenum and

data.LatestEventTimestamp are specified in the local time-zone.

Note: unlike streaming quotes (§6.1), regional updates (§6.2), and interval bars (§6.3),

the streaming market depth mechanism does not store an internal buffer of quote

updates, so there is no Buffer field and previous updates are not stored. Only the latest

snapshot of the order book (in the LatestData field) is updated.

111 IQML User Guide

To stop collecting market depth quotes for a security, simply send the request again,

this time with NumOfEvents=0.

IQML('marketdepth', 'Symbol','@ES#', 'NumOfEvents',0);

You can specify multiple symbols for streaming at the same time, in a single IQML

command, by specifying a colon-delimited or cell-array list of symbols. For example:

IQML('marketdepth', 'symbols',{'IBM','GOOG','AAPL'});

IQML('marketdepth', 'symbols','IBM:GOOG:AAPL'); % equivalent

As with the blocking request (§4.4), you’ll receive an error message when requesting

market depth info from an exchange for which you have no Level 2 data subscription:

>> data = IQML('marketdepth', 'Symbol','IBM', ...) %not subscribed to NYSE L2

Error using IQML

Symbol 'IBM' was not found!

As with streaming quotes (§6.1), to get the latest data for all streamed symbols, omit

the Symbol parameter or set it to empty ['']. This returns all streams (both active/not):

 >> data = IQML('marketdepth', 'numOfEvents',-1); % no symbol: get ALL streams
data =

 1×5 struct array with fields:

 Symbol

 Command

 isActive

 EventsToProcess

 ...

Similarly, to cancel all active streams in a single command, omit Symbol (or set it to ''):

>> IQML('marketdepth', 'numOfEvents',0); % no symbol: ALL streams are stopped

When debugging streaming, it is sometimes useful to assign the streamed data to a

base Matlab workspace variable, which can be monitored live using Matlab’s Variable

Explorer or directly checked/used within a Matlab script, without a need to call

IQML('marketdepth',…,'numOfEvents',-1) to constantly refetch the latest data. This data

mirroring can be done by setting the AssignTo parameter to any valid Matlab variable

name or assignment target, for example: 'myData' or 'streamed.VX' or 'data{3}'.

>> IQML('marketdepth', ..., 'AssignTo','myData');

% streaming data in background is mirrored in base workspace variable myData:

>> myData

myData =

 struct with fields:

 Symbol: '@ES#'

 Command: 'w@ES#'

 EventsToProcess: 600

 EventsProcessed: 437

 LatestEventDatenum: 737195.518211377

 LatestEventTimestamp: '20180515 12:26:13'

 AssignTo: 'myData'

 errorMsg: ''

 IncludeEmptyQuotes: 0

 LatestData: [1×10 struct]

112 IQML User Guide

The following parameters affect market depth data queries (see §4.4 for details):

Parameter Data type Default Description

Symbol or

Symbols 122

colon or

comma-

delimited

string, or

cell-array

of strings

(none)

Limits the request to the specified symbol(s).

Examples:

 '@ES#'

 'IBM:AAPL:GOOG'

 'IBM,AAPL,GOOG'

 {'IBM', 'AAPL', 'GOOG'}

This parameter must be set to valid symbol
name(s) when NumOfEvents>0

NumOfEvents integer 10

One of:

 inf – continuous endless streaming

Level 2 data for specified symbol(s)

 N>1 – only process N incoming quotes

 1 – get only a single quote

 0 – stop streaming market depth data

 -1 – return the latest Level 2 data while

continuing to stream new data updates

MaxLevels integer 5 Max number of data levels (rows) to return

IncludeEmpty

Quotes

logical

(true/false)
false

If set to true or 1, empty Level 2 quotes (with

neither a valid Bid nor valid Ask) will also be

returned. By default (false), they will not be.

Detailed
logical

(true/false)
false

If set to true or 1, each price level’s components

will be reported: trade order IDs for futures;

market makers for equities. This parameter is

ignored in IQFeed client/protocol 6.1 or older.

ClearBuffer
logical

(true/false)
false

If true or 1, the internal cyclic quotes buffer is

cleared after the data is returned to the caller.

AssignTo string

''

(empty

string)

Contains the assignment target (typically a

variable name) in the base Matlab workspace,

useful for stream debugging.

Note: Market Depth (Level 2) data is only available in the Professional IQML license.

122 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

113 IQML User Guide

7 News

News headlines and stories can be retrieved via the 'news' action. Several data-types

are available, which can be set using the DataType parameter.

Note: News data is only available in the Professional IQML license.

7.1 Configuration

To retrieve the news configuration for your account, set DataType to 'config':
>> data = IQML('news', 'DataType','config')

data =

 Category: 'All News'

 Majors: [1×7 struct]

>> {data.Majors.Source}

ans =

 1×7 cell array

 {'DTN'} {'CPR'} {'CBW'} {'RTT'} {'CPZ'} {'CIW'} {'BEN'}

>> {data.Majors.Description}

ans =

 1×7 cell array

 {'DTN News'} {'PR Newswire'} {'Business Wire'} {'Real-Time Trader'}

 {'GlobeNewswire Inc'} {'Marketwire'} {'Benzinga Pro'}

This shows that we are connected to 7 major news sources. We can drill-down for

details about these news sources:
>> data.Majors(1)

ans =

 Source: 'DTN'

 Description: 'DTN News'

 AuthenticationCode: '1D'

 IconID: 10

 Minors: [1×4 struct]

>> data.Majors(1).Minors(1)

ans =

 Source: 'DT5'

 Description: 'Treasuries, Most Actives, Gainers, Losers'

 AuthenticationCode: '1D'

>> data.Majors(1).Minors(2)

ans =

 Source: 'RTL'

 Description: 'Derivatives - Selected Futures and Options'

 AuthenticationCode: '2Ab'

 IconID: 10

Note that some news sources have no “Minor” news-sources:
>> data.Majors(2)

ans =

 Source: 'CPR'

 Description: 'PR Newswire'

 AuthenticationCode: '1X'

 IconID: 5

 Minors: [1×0 struct]

>> data.Majors(7)

ans =

 Source: 'BEN'

 Description: 'Benzinga Pro'

 AuthenticationCode: '1a'

 IconID: 10

 Minors: [1×0 struct]

News configuration queries do not have any user-settable parameters.

114 IQML User Guide

7.2 Story headlines

To retrieve the latest news headlines (in blocking mode), set DataType to 'headlines':

>> data = IQML('news', 'DataType','headlines')

data =

 1000×1 struct array with fields:

 Source

 ID

 Symbols

 Timestamp

 Datenum

 Text

 Story

 URL

>> data(1)

ans =

 Source: 'CPR'

 ID: 21988707473

 Symbols: {}

 Timestamp: '2018-03-05 06:45:53'

 Datenum: 737124.281863426

 Text: 'The Surface Disinfectants Market is Expected to Grow at a CAGR

 of 8.3% to a USD '

 Story: ''

 URL: ''

>> data(2)

ans =

 Source: 'BEN'

 ID: 21988707468

 Symbols: {'BZFDA' 'CVRS'}

 Timestamp: '2018-03-05 06:45:53'

 Datenum: 737124.281863426

 Text: 'Corindus Receives FDA Clearance for First Automated Robotic

 Movemen...'

 Story: ''

 URL: ''

>> data(3)

ans =

 Source: 'RTB'

 ID: 21988701358

 Symbols: {'BSX'}

 Timestamp: '2018-03-05 06:42:33'

 Datenum: 737124.279548611

 Text: 'Boston Scientific Corp Q4 adjusted earnings Miss Estimates'

 Story: ''

 URL: ''

As can be seen, some stories are specific to particular symbols (BZFDA and CVRS in

story #21988707468, BSX in #21988701358), while others are not (#21988707473).

Also note that the news stories’ Timestamp is specified in US Eastern time-zone.123

When you retrieve news headlines, you might run into a timeout problem: by default,

IQFeed send the latest 1000 news headlines and only some of them might be received

by IQML before the built-in Timeout (default: 5 secs) forces IQML to return the data

to the user (remember, this is blocking mode, where a timeout applies):

123 The Timestamp field was reported in either yyyymmddHHMMSS or 'yyyymmdd HHMMSS' format (depending on the

specific news headline) in IQML versions 2.50 or earlier. Starting in IQML version 2.51, the Timestamp field is standardized

to 'yyyy-mm-dd HH:MM:SS' format, with an additional numeric Datenum field.

115 IQML User Guide

>> data = IQML('news', 'DataType','headlines')

Warning: IQML timeout: only partial data is returned. Perhaps the Timeout

parameter should be set to a value larger than 5 or the NumOfEvents parameter

to a value smaller than Inf

data =

 738×1 struct array with fields:

 Source

 ID

 Symbols

 Timestamp

 Datenum

 Text

 Story

 URL

As suggested by the message, you can set the Timeout parameter to a high value in

order to allow IQML more time to gather the data before returning the results:124
>> data = IQML('news', 'DataType','headlines', 'Timeout',10)

data =

 1000×1 struct array with fields:

 Source

 ID

 ...

You can filter the headlines to a specific set of symbols by specifying Symbols as a

colon-delimited or cell-array list of symbols.125 For example, to filter only headlines

that relate to symbols BSX, BSX/AAPL, and BSX/AAPL/GOOG, respectively:
>> data = IQML('news', 'DataType','headlines', 'Symbols','BSX')

data =

 60×1 struct array with fields:

 ...

>> data = IQML('news', 'DataType','headlines', 'Symbols',{'BSX','AAPL'})

data =

 677×1 struct array with fields:

 ...

>> data = IQML('news', 'DataType','headlines', 'Symbols','BSX:AAPL:GOOG')

data =

 841×1 struct array with fields:

 ...

Note: Queries with a non-empty Symbols filter are much faster than symbol-less

queries (IQFeed takes an extra 1-3 secs to process symbol-less queries).

You can also limit the search to specific news sources, by specifying a colon-

separated or cell-array list of sources in the Sources parameter. For example:
>> data = IQML('news', 'DataType','headlines', 'Symbols','BSX:GOOG:AAPL', ...

 'Sources','DTN:CPR:BEN')

data =

 745×1 struct array with fields:

 ...

In this example, we see that when we limit our search to DTN (DTN News), CPR (PR

Newswire), and BEN (Benzinga Pro), we only get 745 headlines, compared to 841

headlines from all the news sources. The news source names are the ones reported by

the Majors.Source field, in the news configuration query (see §7.1).

124

 The Timeout parameter is automatically set to a minimal value of 60 [secs] when GetStory parameter is requested (see below)

125 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

116 IQML User Guide

In addition to limiting the search to a certain news source, you can also limit it to

certain meta-tags that are assigned by some news sources, using the Symbols

parameter. For example, to limit the search to “Benzinga Ratings”:

>> data = IQML('news', 'DataType','headlines', 'Symbols','BZRatings');

You can limit the reported headlines to only a specific date, using the Date parameter:

>> data = IQML('news', 'DataType','headlines', 'Date',20180304, ...

 'Symbols',{'BSX','AAPL'})

data =

 14×1 struct array with fields:

 ID

 ...

Date can be specified in various formats: as a Matlab datetime object, a numeric Matlab

datenum (737089), a numeric yyyymmdd value (20180129), or a string ('2018/01/29',

'2018-01-29' or '20180129'). Note: IQFeed only stores headlines of the past 180 days.126

You can also limit the maximal number of reported headlines using the MaxItems

parameter. This will report the latest MaxItems news headlines (fewer headlines may

actually be reported, depending on their availability):127

>> data = IQML('news', 'DataType','headlines', 'MaxItems',50)

data =

 50×1 struct array with fields:

 Source

 ID

 ...

For performance reasons, it is always better to limit the query at the source (using the

various filter parameters Symbols, Sources, Date and MaxItems), rather than

filtering the messages after they are received. Using filter parameters reduces the

IQFeed server response time,128 network download time, and IQML processing time.

By default, only the headline text is returned. To also fetch the full news-story text

that is associated with each headline, set GetStory to true:129

>> data = IQML('news', 'DataType','headlines', 'GetStory',true);

>> data(1)

ans = Source: 'CBW'

 ID: 22017456356

 Symbols: {}

 Timestamp: '20180524 092926'

 Text: 'Global Barium Nitrate Market - Emergence of Environment-

Friendly Ox...'

 Story: '09:28 Thursday, May 24, 2018. (RTTNews.com) - Babcock & Wilcox

Enterprises, Inc. (BW) confirmed that it had received a non-binding indication

of interest from Steel Partners to acquire B&W in a transaction in which B&W...

For comments and feedback: contact editorial@rttnews.com ↵Copyright(c) 2018
RTTNews.com All Rights Reserved'

 URL: 'editorial@rttnews.com'

126 https://help.dtniq.com/support-faqs

127 IQFeed ignores MaxItems>4000, returning only 4000 headlines: http://forums.dtn.com/index.cfm?page=topic&topicID=5702
128 For example, as noted above, IQFeed takes an extra 1-3 secs to process symbol-less news queries.

129 See §7.3 for additional information on the story-text queries and the reported data

https://help.dtniq.com/support-faqs
http://forums.dtn.com/index.cfm?page=topic&topicID=5702

117 IQML User Guide

Each news story takes 0.3-0.5 secs to download, so querying the story text for multiple

headlines can take a long time. For example, such a query might take a full minute for

100 headlines. If you have Matlab’s Parallel Computing Toolbox and the Professional

IQML license, you can parallelize this query by setting UseParallel to true:

>> tic

>> data = IQML('news', 'DataType','headlines', 'MaxItems',100, 'GetStory',1);

>> toc

Elapsed time is 56.311768 seconds.

>> parpool('local',4) % start 4 workers in parallel pool (optional)

>> tic

>> data = IQML('news', 'DataType','headlines', 'MaxItems',100, 'GetStory',1,...

 'UseParallel',1);

>> toc

Elapsed time is 15.799185 seconds.

News headlines queries with GetStory are composed of an initial headlines query,

followed by multiple news-story queries (§7.3) for each of the reported headline IDs.

Such queries with GetStory have an automatic minimal Timeout value of 60 [secs].

The Timeout parameter has a practical effect only on the initial headlines query, as

well as the subsequent story text queries (individually). The total query time does not

have a time-out and can take much longer than the specified Timeout. A Timeout of

60 (the default/min value for such queries) allows fetching up to ~10-20k headlines in

theory (depending on network/computer speed and MaxItems/Date parameter values),

but only up to 4k headlines are returned in practice (IQFeed’s undocumented limit).

The news-story queries for these 4k headlines could take an extra 20-40 minutes

(depending on network/computer speed), unless you parallelize the query. This would

not be cut short by Timeout, since Timeout affects each news-story query seperately.

You can only stop the query by typing Ctrl-C in Matlab’s console (Command Window).

118 IQML User Guide

The following parameters affect (filter) news headlines queries:

Parameter Data type Default Description

Symbol or

Symbols 130

colon or

comma-

delimited

string or

cell-array

of strings

''

(empty string),

meaning all

Limits the query to the specified symbols
and meta-tags only (or to all symbols, if
empty). Examples:

 'IBM'

 'IBM:AAPL:GOOG'

 'IBM,AAPL,GOOG'

 {'IBM', 'AAPL', 'GOOG'}

 'BZRatings:BZTradingIdeas'

Sources

colon or

comma-

delimited

string or

cell-array

of strings

''

(empty string),

meaning all

Limits query to the specified news sources
only (or to all sources, if empty). Examples:

 'DTN'

 'DTN:CPR:BEN'

 'DTN,CPR,BEN'

 {'DTN', 'CPR', 'BEN'}

Date

integer or

string or
datetime

object

[]

meaning all

Date at which the news headline was
published (or all dates, if empty). Examples:

 737089 (Matlab datenum format)
 datetime('Jan 29, 2018')
 20180129 (yyyymmdd format)
 '20180129'
 '2018/01/29'
 '2018-01-29'

MaxItems
integer

(1-4000)131
1000

Maximal # of headlines to be reported by
IQFeed. Note that a lower number of head-
lines may be reported, depending on their
availability, based on the other filters.

GetStory
logical

(true/false)
false

If false (default), only store the incoming
headline messages.

If true or 1, automatically fetch and store
the full story text for each incoming headline.
Parallelizable using UseParallel (see below).

Timeout number 5.0

Max # of seconds to wait for incoming data
(0-9000 where 0 means infinite). If GetStory
was requested Timeout is set to minimum 60.

UseParallel
logical

(true/false)
false

If set to true or 1, and if Parallel Computing
Toolbox is installed, then querying story
headlines using GetStory=true is done in
parallel (see §3.6; Pro IQML license only).

MaxWorke

rs
integer

(the current

pool size)

Max number of parallel workers to use (up
to the current pool size) when UseParallel=1

130 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

131 IQFeed ignores MaxItems>4000, returning only 4000 headlines: http://forums.dtn.com/index.cfm?page=topic&topicID=5702

http://forums.dtn.com/index.cfm?page=topic&topicID=5702

119 IQML User Guide

7.3 Story text

To read a particular story in full (blocking mode), specify DataType = 'story' and ID

(numeric ID, as provided in the story-headlines query, see §7.2). Different news

sources provide their news stories in different formats, for example:
>> data = IQML('news', 'DataType','story', 'ID',21988707468)

data =

 ID: 21988707468

 Symbols: {'BZFDA' 'CVRS'}

 Text: 'Corindus Receives FDA Clearance for First Automated Robotic

 Movement in technIQ Series for CorPath GRX Platform.'

 URL: ''

>> data = IQML('news', 'DataType','story', 'ID',21988701358)

data =

 ID: 21988701358

 Symbols: {'BSX'}

 Text: '06:42 Monday, March 05, 2018. (RTTNews.com) - Boston Scientific

 Corp (BSX) released earnings for fourth quarter that declined

 from the same period last year... % full text redacted here

 Read the original article on RTTNews

 (http://alpha.rttnews.com/9583/boston-scientific-corp-q4-

 adjusted-earnings-miss-estimates.aspx) For comments and

 feedback: contact editorial@rttnews.com. Copyright(c) 2018

 RTTNews.com All Rights Reserved.'

 URL: 'http://alpha.rttnews.com/9583/boston-scientific-corp-q4-

 adjusted-earnings-miss-estimates.aspx'

In many cases, the news story is not specifically related to any particular symbol:
>> data = IQML('news', 'DataType','story', 'ID',21991159700)

data =

 ID: 21991159700

 Symbols: {}

 Text: 'Global Nanocatalysts Strategic Business Report 2018: Market

 Trends, Growth Drivers & Issues 2016-2024 -

 ResearchAndMarkets.com. Mar. 12, 2018. Business Editors. DUBLIN-

 -(BUSINESS WIRE)--Mar. 12, 2018--The Nanocatalysts – Global

 Strategic Business Report... % full text redacted here

 View source version on businesswire.com:

 http://www.businesswire.com/news/home/20180312005490/en/ ...

 For GMT Office Hours Call +353-1-416-8900. Related Topics:

 Nanotechnology, Nanomaterials'

 URL: 'http://www.businesswire.com/news/home/20180312005490/en/'

As can be seen in the examples here, the URL field is automatically extracted from the

story Text, when such a URL is reported (many stories do not report a URL). When a

webpage URL is not detected but an email address is, the URL field will report it:
>> data = IQML('news', 'DataType','story', 'ID',22386314395)

data =

 ID: 22386314395

 Symbols: {'CMRE-PB' 'CMRE-PC' 'CMRE-PD' 'CMRE-PE' 'CMRE'}

 Text: 'March 01, 2021↵ MONACO, March 01, 2021 (GLOBE NEWSWIRE) --
Costamare Inc. (the Company or our) (NYSE: CMRE) announced today that its

Annual Report on Form 20-F for the fiscal year ended December 31, 2020 (the

Annual Report) has been filed with the U.S. Securities and Exchange Commission

and can be accessed on the Companys website, www.costamare.com, in the

Investors section under Annual Reports... % full text redacted here

Company Contacts:↵ Gregory Zikos - Chief Financial Officer Konstantinos
Tsakalidis - Business Development↵ Costamare Inc., Monaco Tel: (+377) 93 25
09 40 Email: ir@costamare.com'

 URL: 'ir@costamare.com'

120 IQML User Guide

In some cases, the story may be assigned one or more meta-symbol tags. For

example, the following story is tagged for “Benzinga Ratings”:

>> data = IQML('news', 'DataType','story', 'ID',21991162633)

data =

 ID: 21991162633

 Symbols: {'BZRatings' 'MNTX'}

 Text: 'Manitex International Sees Q4 Sales $64.40M vs $64.45M Est.

 Manitex International (NASDAQ: MNTX) sees Q4 sales of $64.40M

 vs $64.45M estimate.'

 URL: ''

Note that separate paragraphs in the news story text are separated by a newline

(char(10)) in the reported data.Text field. This enables display of the story text in a

human-readable format, when you output the text to the Matlab console or GUI.

If the requested ID is invalid or does not exist, the returned data will be empty (no

error is reported):

>> IQML('news', 'DataType','story', 'ID',123456) % non-existing headline ID

ans =

 []

Aside from ID, the news story-text query does not have any user-settable parameters.

You can specify multiple IDs in a single IQML query command, by specifying an

array of values. For example:

>> data = IQML('news', 'DataType','story', 'ID',[22018991229,22018991585])

data =

 2×1 struct array with fields:

 ID

 Symbols

 Text

 URL

>> data(1)

ans =

 ID: 22018991229

 Symbols: {}

 Text: 'May 29, 2018 ↵Dublin, May 29, 2018 (GLOBE NEWSWIRE) -- The
European Financing in Cleantech Innovation report...

 URL: ''

>> data(2)

ans =

 ID: 22018991585

 Symbols: {'BZEarnings' 'MOMO'}

 Text: 'Momo Inc. Earlier Reported Q1 EPS $0.69 Beat $0.50 Estimate,

Sales $435.129M Beat $396.17M Estimate ↵Momo Inc. ...
 URL: ''

121 IQML User Guide

7.4 Story count

It is sometimes useful to know the number of distinct news stories, from all news sources

(even those to which you are not subscribed), that relate to different symbols, indicating

level of news interest in those symbols. Set DataType to 'number' and the Symbols,

Sources and/or dates, to receive a Matlab struct with a numeric count for each symbol:
>> data = IQML('news', 'DataType','number', 'Symbols','BSX')

data =

 BSX: 14

>> data = IQML('news', 'DataType','number', 'Symbols','BSX:HP:AAPL:GOOG')

data =

 AAPL: 7

 BSX: 14

 GOOG: 2

 HP: 0

In this example, we see that BSX has a higher news-count today than AAPL or GOOG.

Symbols having no news items will appear at the bottom of the struct with a count of 0.

You can limit the search to specific news sources, by specifying a colon-separated or

cell-array list of sources in the Sources parameter. For example:
>> data = IQML('news', 'DataType','number', 'Symbols','BSX:GOOG:AAPL',...

 'Sources','DTN:CPR:BEN')

data =

 AAPL: 2

 BSX: 3

In this example, we see that when we limit our search to DTN (DTN News), CPR (PR

Newswire), and BEN (Benzinga Pro), AAPL and BSX have fewer news items, and

GOOG has none. The news source names are the ones reported by the Majors.Source

field, in the news configuration query (see §7.1).

You can also filter the search to only look at news items published at specific dates,

by specifying the BeginDate, EndDate and/or Date parameters. Dates can be specified

in several formats: as a Matlab datetime object, Matlab numeric datenum (737089),

numeric yyyymmdd (20180129), or string ('2018/01/29', '2018-01-29', '20180129'):
>> data = IQML('news', 'DataType','number', 'Symbols','BSX:GOOG:AAPL',...
 'BeginDate',20180301)

data =

 AAPL: 45

 BSX: 19

 GOOG: 15

>> data = IQML('news', 'DataType','number', 'Symbols','BSX:GOOG:AAPL',...
 'BeginDate',20180301, 'EndDate',20180303)

data =

 AAPL: 37

 BSX: 3

 GOOG: 13

>> data = IQML('news', 'DataType','number', 'Symbols','BSX:GOOG:AAPL',...
 'EndDate',20180305)

data =

 AAPL: 2038

 BSX: 191

 GOOG: 996

>> data = IQML('news', 'DataType','number', 'Symbols','BSX:GOOG:AAPL',...
 'Date',20180301)

data =

 AAPL: 16

 BSX: 1

 GOOG: 3

122 IQML User Guide

IQML returns a Matlab struct, so the reported symbols need to be valid field names,

and non-alphanumeric characters are automatically converted. For example:

>> data = IQML('news', 'DataType','number', 'Symbols','BOL.ST:BOL@SS:0QLL.L')

data =

 x0QLL_L: 3

 BOL_ST: 1

 BOLxSS: 1

The following parameters affect (filter) news story-count queries:

Parameter Data type Default Description

Symbol or

Symbols 132

colon or

comma-

delimited

string or

cell-array

of strings

''

(empty string),

meaning all

Limits query to specified symbols, meta-tags

only (or to all symbols, if empty). Examples:

 'IBM'

 'IBM:AAPL:GOOG'

 {'IBM', 'AAPL', 'GOOG'}

 'BZRatings,BZTradingIdeas'

Sources

colon or

comma-

delimited

string or

cell-array

of strings

''

(empty string),

meaning all

Limits the query to specified news sources

only (or to all sources, if empty). Examples:

 'DTN'

 'DTN:CPR:BEN'

 'DTN,CPR,BEN'

 {'DTN', 'CPR', 'BEN'}

Date

integer or

string or
datetime

object

[]

meaning today

Specific date at which the news items were

published. Examples:

 737089 (Matlab datenum format)

 datetime('Jan 29, 2018')

 20180129 (yyyymmdd format)

 '20180129'

 '2018/01/29'

 '2018-01-29'

Note: Date overrides BeginDate, EndDate

BeginDate

integer or

string or
datetime

object

'1900/01/01'

(i.e., from as

early as data is

available)

Earliest date at which the news items were

published. Examples: see Date above.

EndDate

integer or

string or
datetime

object

'2099/12/31'

(i.e., until now)

Latest date at which the news items were

published. Examples: see Date above.

132 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

123 IQML User Guide

7.5 Streaming news headlines

The streaming news mechanism has two parts, just like streaming ticks (§6.1):

1. Request IQFeed to start sending a stream of news headlines. This is done by

using the 'news' action and setting a NumOfEvents parameter to a positive >1

value. You can limit the headlines to certain news source(s) using the Sources

parameter, and/or to certain symbol(s) using the Symbols parameter.

2. Later, whenever you wish to process the latest news headline(s), simply use

the 'news' action and NumOfEvents of -1 (minus one). This will return the

latest information (a data struct), without stopping the background streaming.

For example, let’s request 100 streaming headlines for Facebook and Apple:

IQML('news', 'Symbols','FB:AAPL', 'NumOfEvents',100)

This causes IQFeed to start sending news headlines to IQML in the background, up to

the specified NumOfEvents, without affecting normal Matlab processing. This

means that you can continue to work with Matlab, process and display information etc.

Headlines will only stream in the background in non-blocking mode. If you assign the

IQML command results to a variable, the request is treated as blocking and IQML will

wait for all the events to accumulate (or Timeout to occur), as described in §7.2:

IQML('news', 'NumOfEvents',100); % streaming, non-blocking

data = IQML('news', 'NumOfEvents',100); % blocking

NumOfEvents can be any number higher than 1 for streaming to work (a value of 1

is the standard snapshot news-headline request described in §7.2). To collect

streaming headlines endlessly, set NumOfEvents to the value inf. Note that in

Matlab, inf is a number (not a string), so do not enclose it in quotes ('inf').

The headlines are collected into an internal data buffer in IQML. Unlike streaming

quotes, all headlines, for all symbols, are collected in a single buffer. The buffer size

can be controlled using the MaxItems parameter, which has a default value of inf133.

This means that by default all the streaming headlines that affect the specified

symbols will be stored in the buffer and become accessible for later processing.134

If you set a higher value for MaxItems, then up to the specified number of latest

news headline items will be stored. For example, to store the latest 50 headlines:

IQML('news', 'NumOfEvents',100, 'MaxItems',50)

Note that using a large MaxItems increases memory usage, which could have an

adverse effect if you set a very large buffer size (many thousands) and/or streaming

for a large number of different securities.135

133 Note that this too is different from the streaming quotes mechanism, where the default MaxItems value is 1. Note that

MaxItems is a numeric parameter like NumOfEvents, so don’t enclose the parameter value within string quotes (‘’)
134 This might have a memory and performance implication if you leave streaming news on for a long time, for a large number of

symbols. See the discussion of memory and performance implications further below.

135 Each news headline item uses 1-2KB of Matlab memory. During trading hours, there could be 10-20 headlines per minute for
all symbols (i.e., 1K headlines, or 1-2MB per hour, unless you limit Symbols to certain symbols). Limiting Symbols to certain

symbols and/or setting MaxItems to some finite value, ensures that memory usage and performance impact remain low.

124 IQML User Guide

Subsequent requests to retrieve the latest accumulated headlines buffer data, without

stopping the background streaming, should use NumOfEvents = -1 (minus one).

These requests return a Matlab data struct similar to the following:
>> data = IQML('news', 'NumOfEvents',-1)

data =

 Command: 'S,NEWSON'

 isActive: 1

 EventsToProcess: 100

 EventsProcessed: 13

 LatestEventDatenum: 737146.726041343

 LatestEventTimestamp: '20180327 17:25:29'

 DataType: 'news'

 ProcessType: 'stream'

 Sources: {}

 Symbols: {}

 BufferSize: 50

 Buffer: [13×1 struct]

 LatestData: [1×1 struct]

 GetStory: 0

In the returned data struct, we can see the following fields:

 Command – the command sent to IQFeed.136

 isActive – a flag indicating whether headlines are currently being streamed.

When NumOfEvents ticks have been received, this flag is set to false (0).

 EventsToProcess – total number of streaming headlines requested (using the

NumOfEvents parameter).

 EventsProcessed – number of streaming headlines received. When

EventsProcessed >= EventsToProcess, streaming headlines are turned off and

isActive is set to false (0). Note that it is possible that EventsProcessed >

EventsToProcess, since it takes a while for the streaming cancellation request

to reach IQFeed and during this time a few additional items may have arrived.

 LatestEventDatenum – Matlab numeric datenum representation of the

LatestEventTimestamp.

 LatestEventTimestamp – local timestamp (string format) when this headline

was received by IQML.

 DataType – always equal to 'news' for streaming headlines.

 ProcessType – always equal to 'stream' for streaming headlines.

 Sources – cell array of acceptable news sources, set by the Sources parameter.

Headline events from all other sources are ignored. When Sources is empty,

no headline is ignored based on its source.

 Symbols – cell array of acceptable symbols, set by the Symbols parameter.

Headline events that affect all other symbols are ignored. When Symbols is

empty, no headline is ignored based on its related symbol(s).

 BufferSize – size of the data buffer (=MaxItems parameter, see below).

 Buffer – buffer of size BufferSize, accumulating the latest headline updates.

 LatestData – latest headline event received from IQFeed.

 GetStory – a flag indicating if story text was requested (GetStory parameter)

136 Note that this is not specific to symbols/sources: filtering based on symbol/source is done on the incoming headline messages.

125 IQML User Guide

To get the headline data, read the fields of the returned data struct, for example:

>> data.LatestData

ans =

 Source: 'BEN'

 ID: 21996096022

 Symbols: {'BZRatings' 'FB'}

 Timestamp: '20180326 083326'
 Datenum: 737145.356550926

 Text: 'Baird Maintains Outperform on Facebook Lowers Price Target to $210'

 Story: ''

 URL: ''

Each headline has an associated timestamp, since different headlines are sent

separately and independently from IQFeed server.

By default, GetStory is set to false, resulting in empty data.LatestData.Story. To

automatically retrieve the full story text associated with each streamed headline, set

GetStory to true (see §7.2). In any case, it is always possible to retrieve individual

story texts using their headline ID (see §7.3).

Note: while data.LatestEventDatenum and data.LatestEventTimestamp are specified

in the local time-zone, data.LatestData.Timestamp is specified in the server’s time-zone.

Note that data.LatestData is typically the same as data.Buffer(end), regardless of

the values of MaxItems or NumOfEvents.137

To stop collecting streaming headlines for a security, simply send the request again,

this time with NumOfEvents=0.

You can specify one or more symbols for streaming, by specifying a colon-delimited

or cell-array list of symbols. If Symbols is specified, then any headline that does not

relate to one or more of the specified Symbols will be ignored (skipped). For example:

IQML('news', 'symbols',{'IBM','GOOG','AAPL'}, 'numOfEvents',6);

IQML('news', 'symbols','IBM:GOOG:AAPL', 'numOfEvents',6); % equivalent

You can also specify meta-tags assigned by some news sources. For example, to limit

streaming headlines to “Benzinga Ratings” and anything related to Facebook or Apple:

IQML('news', 'Symbols','BZRatings:FB:AAPL', 'numOfEvents',6);

Note: if you omit the Symbols parameter in your IQML command, no filtering of

headlines based on affected symbols is performed, and all headlines will be collected.

Similarly, you can specify one or more news sources, by specifying a colon-delimited

or cell-array list of sources. If Sources is specified, then any headline that does not

originate from one of the specified Sources will be ignored and will not be recorded:

IQML('news', 'sources',{'DTN','CPR','BEN'}, 'numOfEvents',6);

IQML('news', 'sources','DTN:CPR:BEN', 'numOfEvents',6); % equivalent

137 When NumOfEvents events have been received, IQFeed is instructed to stop streaming updates, but one or more update

messages may already be on their way from IQFeed before streaming actually stops. These extra update messages are not

accumulated in the Buffer, but the latest of these messages will be reflected in LatestData field.

126 IQML User Guide

As before, if you omit the Sources parameter in your IQML command, no filtering of

headlines based on their source will be performed, and all headlines will be collected.

Here is a summary of the IQML parameters that affect streaming news headlines:

Parameter Data type Default Description

Symbol or

Symbols 138

colon or

comma-

delimited

string or

cell-array

of strings

''

(empty

string),

meaning

all

Limits the query to the specified symbols and
meta-tags only (or all symbols, if empty), e.g.:

 'IBM'

 'IBM:AAPL:GOOG'

 'IBM,AAPL,GOOG'

 {'IBM', 'AAPL', 'GOOG'}

 'BZRatings:BZTradingIdeas'

Sources

colon or

comma-

delimited

string or

cell-array

of strings

''

(empty

string),

meaning

all

Limits the query to the specified news sources
only (or to all sources, if empty). Examples:

 'DTN'

 'DTN:CPR:BEN'

 'DTN,CPR,BEN'

 {'DTN', 'CPR', 'BEN'}

NumOfEvents integer Inf

One of:
 inf – continuous endless streaming

headlines for the specified security
 N>1 – stream only N headlines
 1 – get only a single headline (default)
 0 – stop streaming headlines
 -1 – return the latest accumulated

headlines data while continuing to
stream new headlines data

MaxItems integer Inf

Number of streaming headlines stored in a

cyclic buffer. Once this number of headlines

has been received, the oldest headline is

discarded whenever a new headline arrives.

DataType string 'headline' Ignored – only headlines can be streamed

GetStory
logical

(true/false)
false

If false (default), only store the incoming

headline messages.

If true or 1, automatically fetch and store the

full story text for each incoming headline.

OverflowMod

e integer []

If set, the overflow handling for the query’s
IQFeed data port is updated as follows:
 0 – no overflow handling (all messages

will be processed)
 1 – drop new messages when backlog fills
 2 – drop old messages (slower)

MaxEventsBa

cklog integer 100
Size of messages backlog, per IQFeed data

port, above which overflow handling is done

138 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

127 IQML User Guide

8 Lookup of symbols and codes

A list of symbols and lookup codes that match a specified set of criteria can be

retrieved using the 'lookup' and 'chain' actions. Various different lookups can be

requested, which differ by the DataType parameter.

8.1 Symbols lookup

To retrieve a list of symbols that match certain criteria, set the action to 'lookup',

DataType to 'symbols' and add one or more filtering criteria: Name, Description,

Market, SecType, SIC, and/or NAICS:
>> data = IQML('lookup', 'DataType','symbols', 'Name','IBM')

data =

 1086×1 struct array with fields:

 Symbol

 Description

 Market_ID

 Market_Name

 Sec_Type_ID

 Sec_Type

>> data(1)

ans =

 Symbol: 'IBM'

 Description: 'INTERNATIONAL BUSINESS MACHINE'

 Market_ID: 7

 Market_Name: 'New York Stock Exchange (NYSE)'

 Sec_Type_ID: 1

 Sec_Type: 'Equity'

>> data(2)

ans =

 Symbol: 'IBMG'

 Description: 'ISHARES IBONDS SEP 2018 MUNI BOND'

 Market_ID: 11

 Market_Name: 'NYSE Archipelago (NYSE_ARCA)'

 Sec_Type_ID: 1

 Sec_Type: 'Equity'

>> data(9)

ans =

 Symbol: 'IBM1804E120'

 Description: 'IBM MAY 2018 C 120.00'

 Market_ID: 14

 Market_Name: 'OPRA System'

 Sec_Type_ID: 2

 Sec_Type: 'Index/Equity Option'

>> data(end)

ans =

 Symbol: 'IBZ18-IBM19'

 Description: '30 DAY INTERBANK CASH RATE DEC 18/JUN 19'

 Market_ID: 64

 Market_Name: 'ASX24 Commodities Exchange (ASXCM)'

 Sec_Type_ID: 10

 Sec_Type: 'Future Spread'

IQFeed returns a list of symbols whose symbol name contains (not necessarily begins

with) the term 'IBM', from different markets (exchanges) and different security types.

Note that the Name and Description filtering criteria are case-insensitive (so 'IBM',

'Ibm' and 'ibm' would all result in the same list of symbols), and also that they match

their string value anywhere within the corresponding asset field.

128 IQML User Guide

You can narrow-down the results by entering more-specific parameter values (e.g.

'IBM180' rather than 'IBM'), or by specifying additional filtering parameters. For

example, to filter the IBM list just to assets that include ‘business’ in their Description:

>> data = IQML('lookup', 'DataType','symbols', 'name','ibm', ...

 'Description','business')

data =

 8×1 struct array with fields:

 Symbol

 Description

 Market_ID

 Market_Name

 Sec_Type_ID

 Sec_Type

>> data = struct2table(data)

data =

 8×6 table

Unlike the Name and Description (which match strings), the SIC and NAICS

parameters are numeric and match the beginning of the corresponding SIC/NAICS

sector/industry code. For example, the following query returns all assets that have

'inc' in their Description and belong to any sector whose SIC code begins with 83:139
>> data = IQML('lookup', 'DataType','symbols', 'Description','inc', 'SIC',83)

data =

 6×1 struct array with fields:

 Symbol

 Description

 Market_ID

 Market_Name

 Sec_Type_ID

 Sec_Type

 SIC_ID

 SIC_Desc

>> data(1)

ans =

 Symbol: 'HQGE'

 Description: 'HQ GLOBAL ED INC'

 Market_ID: 3

 Market_Name: 'Nasdaq other OTC'

 Sec_Type_ID: 1

 Sec_Type: 'Equity'

 SIC_ID: 8331

 SIC_Desc: 'JOB TRAINING AND VOCATIONAL REHABILITATION SERVICES'

>> disp({data.Symbol; data.Description; data.SIC_ID; data.SIC_Desc}')

 'HQGE' 'HQ GLOBAL ED INC' [8331] 'JOB TRAINING AND ...'

 'KVIL' 'KIDVILLE INC' [8351] 'CHILD DAY CARE SERVICES'

 'DRWN' 'A CLEAN SLATE INC.' [8361] 'RESIDENTIAL CARE'

 'NVOS' 'NOVO INTEGRATED SCIENCES INC...' [8361] 'RESIDENTIAL CARE'

 'SPRV' 'SUPURVA HEALTHCARE GROUP INC...' [8361] 'RESIDENTIAL CARE'

139 In this example, the matching SIC codes were 8331 (HQGE), 8351 (KVIL), 8361 (DRWN, NVOS, SPRV). IQFeed has a bug

(as of October 2019): no data is returned if SIC or NAICS < 10 (http://forums.iqfeed.net/index.cfm?page=topic&topicID=5653).

http://forums.iqfeed.net/index.cfm?page=topic&topicID=5653

129 IQML User Guide

In this example, to retrieve just the 3 symbols in the Residential Care industry, set the

SIC value to the industry’s specific SIC code (8361), rather than its sector code (83).

When you specify a SIC or NAICS filtering criteria, the result contains two

additional fields (either SIC_ID and SIC_Desc, or NAICS_ID and NAICS_Desc,

respectively), in addition to the standard fields (Symbol, Description, Market_ID,

Market_Name, Sec_Type_ID and Sec_Type).140

Note that it is possible that not all the requested symbols will be received before

IQML’s timeout (default value: 5 secs) returns the results:141

>> data = IQML('lookup', 'DataType','symbols', 'Name','GOOG')

Warning: IQML timeout: only partial data is returned. Perhaps the Timeout

parameter should be set to a value larger than 5

data =

 3848×1 struct array with fields:

 Symbol

 Description

 Market_ID

 Market_Name

 Sec_Type_ID

 Sec_Type

To control the maximal duration that IQML will wait for the data, set the Timeout

parameter. For example, to wait up to 30 secs to collect the complete list of symbols:

>> data = IQML('lookup', 'DataType','symbols', 'Name','GOOG', 'timeout',30)

data =

 11562×1 struct array with fields:

 ...

In addition to Timeout, for long queries it is advisable to set the Progress parameter

to 'console', in order to display a periodic progress update message in the console

every 1000 data points (every ~1-2 secs), as well as at the end of the query:

>> data = IQML('lookup', 'DataType','symbols', 'Name','GOOG', 'timeout',-1,...

 'progress','console');

1000 lookup symbols processed. Latest: GOOG2112N1460 ...

2000 lookup symbols processed. Latest: GOOG2116G1520 ...

3000 lookup symbols processed. Latest: GOOG2119B900 ...

4000 lookup symbols processed. Latest: GOOG2122M1822.5 ...

...

11562 lookup symbols processed

Naturally, it is quite possible that no symbol is found that matches the requested

criteria. In such a case, the result will be empty (and cannot be displayed using

Matlab’s struct2table() or struct2cell() functions):

>> data = IQML('lookup', 'DataType','symbols', 'Description','inc', 'NAICS',83)

data =

 []

>> struct2cell(data)

Undefined function 'struct2cell' for input arguments of type 'double'.

140 The description of the various numeric codes for Market_ID, Sec_Type_ID, SIC and NAICS can be fetched separately – see

§8.3-§8.6 for details
141 IQML can process ~1000 symbols per second; coupled with the network and server-processing latencies we can expect ~4000

symbols to accumulate before the default timeout of 5 seconds kicks in.

130 IQML User Guide

An error message will result if you try to specify both SIC and NAICS filtering

criteria – only one (or none) of them is permitted in a lookup query:
>> data = IQML('lookup', 'DataType','symbols', 'NAICS',1234, 'SIC',83)

You can specify either SIC or NAICS parameter, but not both of them, in a

symbol lookup query

An error message will also result if you do not specify at least one of the filtering

criteria Name, Description, Market, SecType, SIC, NAICS:
>> data = IQML('lookup', 'DataType','symbols')

At least one of Name, Description, Market, SecType, SIC or NAICS parameters

must be specified in a symbol lookup query

You can filter the results based on one or more markets, and/or security types, using

the Market and SecType parameters (see §8.3, §8.4 for valid values). For example:
>> struct2table(IQML('lookup', 'datatype','symbols', 'name','GOOG', 'SecType','Equity'))

ans =

 2×6 table

 Symbol Description Market_ID Market_Name Sec_Type_ID Sec_Type

 _______ ______________________ _________ ________________ ___________ ________

 'GOOG' 'ALPHABET INC CLASS C' 21 'Nasdaq Global Select Market (NGSM)' 1 'Equity'

 'GOOGL' 'ALPHABET INC CLASS A' 21 'Nasdaq Global Select Market (NGSM)' 1 'Equity'

>> data = IQML('lookup', 'datatype','symbols', 'name','GOOG', 'Market','NGSM');

Multiple Markets and/or SecTypes142 can be specified using a cell array. For

example, to get the list of all active (non-expired) GOOG equities and options:143
>> data = IQML('lookup', 'datatype','symbols', 'name','GOOG', ...

 'SecTypes',{'Equity','IEOption'}, 'Timeout',20)

data =

 8056×1 struct array with fields:

 Symbol

 Description

 Market_ID

 Market_Name

 Sec_Type_ID

 Sec_Type

You can specify both Market(s) and SecType(s) to get an even more granular

filtering. For example, to lookup only future options traded on CBOT:
>> data = IQML('lookup', 'datatype','symbols', 'name',symbol, ...

 'SecTypes','FOption', 'Markets','CBOT');

Similarly, to lookup VIX (volatility) futures and future-spreads (but not combined

future volume OI symbols such as @VX1.OI.Z) on the CBOE Futures Exchange (CFE):
>> data = IQML('lookup', 'datatype','symbols', 'name','vx', ...

 'SecTypes',{'Future','Spread'}, 'Markets','CFE');

If you specify one or more invalid Market(s) or SecType(s), you will get an error.

For example, a typical error is to specify a SecType of 'Option' instead of 'IEOption':
>> d = IQML('lookup','datatype','symbols','name','GOOG','SecTypes',{'Equity','Option'})

Invalid SecType(s) "OPTION". Allowed values: ARGUS, ARGUSFC, BONDS, CALC,

COMBINED_FOPTION, COMBINED_FUTURE, COMM3, EQUITY, FAST_RACKS, FOPTION,

FOPTION_IV, FOREX, FORWARD, FUTURE, ICSPREAD, IEOPTION, INDEX, ISO, JACOBSEN,

MKTRPT, MKTSTATS, MONEY, MUTUAL, NP_CAPACITY, NP_FLOW, NP_POWER,

PETROCHEMWIRE, PRECMTL, RACKS, RFSPOT, SNL_ELEC, SNL_NG, SPOT, SPREAD,

STRATSPREAD, STRIP, SWAPS, TREASURIES

142 Note that you can use either Market or Markets as the parameter name, and similarly, either SecType or SecTypes.

143 IQFeed only returns the symbols of active (non-expired) options/futures. See §8.2 for details about expired contracts.

131 IQML User Guide

When you specify Market(s) names (as opposed to IDs), note that IQML will match

the specified names as broadly as possible, with any exchange whose name or

description contain the specified values.144 For example, 'NASDAQ' will match not

only symbols that list directly on NASDAQ, but also symbols on Nasdaq Global

Market (NGM), Nasdaq Global Select Market (NGSM), Nasdaq OMX Futures

(NFX), Nasdaq other OTC, Nasdaq OTC Bulletin Board (OTCBB), etc. To receive

only symbols that list directly on NASDAQ (but not its affiliate markets), specify the

market ID (NASDAQ=5), instead of its name. See §8.3 for valid market ID values.

Instead of Market name(s) or SecType name(s), you can specify their corresponding

numeric codes,145 as a scalar integer value or as a numeric array of integers:

>> data = IQML('lookup','datatype','symbols','name','GOOG','SecTypes',1);

>> data = IQML('lookup','datatype','symbols','name','GOOG','SecTypes',[1,2]);

>> data = IQML('lookup','datatype','symbols','name','GOOG','Markets',21);

>> data = IQML('lookup','datatype','symbols','name','GOOG',’Markets',[21,14]);

In addition IQML’s symbols lookup functionality, users can search DTN’s database

online, at https://ws1.dtn.com/IQ/Search. A guide to the symbology used for various

security types by different exchanges is available at https://ws1.dtn.com/IQ/Guide.

144 Technically speaking, IQML searches for the specified Market name case-insensitively in both the market names (acronyms)

and in their description (see §8.3 for a list of available names/descriptions). For example:

 'OTC' will match the following exchanges: OTC (Nasdaq Other OTC), OTCBB (Nasdaq OTC Bulletin Board),

PK_IQXPREM (Pink Sheets – OTCQX – International PremierQX Tier), PK_QXPRIME (Pink Sheets – OTCQX –
PrimeQX Tier), PK_BBONLY (Pink Sheets – OTCBB Only Tier) and several others.

 'New' will match NYSE (New York Stock Exchange), NYMEX (New York Mercentile Exchange), NYISO (New York
Independent System Operator), NEISO (New England Independent System Operator) and a few others.

 'London' will match LSE (London Stock Exchange), LME (London Metals Exchange), LSEI (London Stock Exchange

International), and LPPM (London Platinum and Palladium Market).

 'amex' will match NYSE_AMEX (NYSE AMEX Options Exchange) and PK_NYSE_AMEX (Pink Sheets – NYSE

AMEX Listed).

 'commod' will match more than 20 exchanges, including COMEX (Commodities Exchange Center), ASXCM (ASX24

Commodities Exchange), ENCOM (EuroNext Commodities), KBCB (KCBOT-CBOT Intercommodity Spreads), DCE
(Dalian Commodity Exchange), ZCE (Zengchou Commodity Exchange), and MCX (Multi Commodity Exchange of India).

145 See §8.3 and §8.4 for the list of numeric codes that correspond to each market and security type

https://ws1.dtn.com/IQ/Search
https://ws1.dtn.com/IQ/Guide

132 IQML User Guide

Here is a summary of the IQML parameters that affect symbols lookup:

Parameter Data type Default Description

Name string

''

(empty

string)

Limits the query to assets that contain the

specified string in their symbol name (case

insensitive, anywhere within the symbol name)

Description string

''

(empty

string)

Limits the query to assets that contain the

specified string in their description (case

insensitive, anywhere within the description)

Market or

Markets 146

integer,

numeric

array, string,

or cell-array

of strings

[]

(empty)

Limits the query to assets that belong to the

specified market code(s) (scalar integer or

numeric array), or market name(s) (case-

insensitive string or cell-array of strings).

See §8.3 for details on valid values.

SecType or

SecTypes 147

integer,

numeric

array, string,

or cell-array

of strings

[]

(empty)

Limits the query to assets that have the

specified security type code(s) (scalar integer

or numeric array), or security type name(s)

(case-insensitive string or cell-array of strings).

See §8.4 for details on valid values.

SIC integer
[]

(empty)

Limits the query to assets that belong to the

specified SIC sector/industry

(matches the beginning of the SIC number)

See §8.5 for details on valid values.

NAICS integer
[]

(empty)

Limits the query to assets that belong to the

specified NAICS sector/industry

(matches the beginning of the NAICS number)

See §8.6 for details on valid values.

Timeout number 5.0
Max # of seconds to wait for incoming data

(0-9000, where 0 means infinite)

Progress string

''

(empty

string)

When Progress is set to 'console', the data

download progress is displayed in the console

146 In IQML, the Market and Markets parameters are synonymous – you can use either of them, in any capitalization

147 In IQML, the SecType and SecTypes parameters are synonymous – you can use either of them, in any capitalization

133 IQML User Guide

8.2 Options/futures chain

To retrieve a list of symbols that belong to a certain options/futures chain and match

certain criteria, set the action to 'chain'; DataType to one of 'options' (default),

'futures', 'foptions' (future options), or 'spreads'; Symbol to the underlying contract’s

symbol; and then add optional filtering criteria. For example:148

>> symbols = IQML('chain', 'Symbol','GOOG')' % options chain for GOOG

symbols =

 1×1454 cell array

 Columns 1 through 4

 'GOOG1803H1000' 'GOOG1803H1010' 'GOOG1803H1020' 'GOOG1803H1030'

 Columns 5 through 8

 'GOOG1803H1040' 'GOOG1803H1050' 'GOOG1803H1055' 'GOOG1803H1060'

 Columns 9 through 12

 'GOOG1803H1065' 'GOOG1803H1070' 'GOOG1803H1075' 'GOOG1803H1077.5'

 ...

Depending on DataType, several filtering parameters can be specified: All chain queries

support the Symbol, Months, and NearMonths parameters. Options-related queries

(DataType='options' or 'foptions') also support a Side parameter. Index/equity

options query (DataType='options') also supports IncludeBinary, MinStrike,

MaxStrike, NumInMoney, NumOutOfMoney parameters. All chain queries except

'options' also support the Years parameter. Here’s an example filtered chain query:

% Report GOOG options having strike price between $1000-$1010 in next 4 months

>> symbols = IQML('chain', 'symbol','GOOG', 'NearMonths',4, ...

 'MinStrike',1000, 'MaxStrike',1010)'

symbols =

 1×58 cell array

 Columns 1 through 4

 'GOOG1803H1000' 'GOOG1803H1010' 'GOOG1810H1000' 'GOOG1810H1005'

 Columns 5 through 8

 'GOOG1810H1010' 'GOOG1813G1000' 'GOOG1813G1002.5' 'GOOG1813G1005'

 Columns 9 through 12

 'GOOG1813G1007.5' 'GOOG1813G1010' 'GOOG1817H1000' 'GOOG1817H1005'

 ...

The following table lists the valid combinations of filtering parameters per DataType:

↓parameter \ DataType: → options future spread foption

Symbol ok ok ok ok

Side ok N/A N/A ok

Months ok ok ok ok

NearMonths ok ok ok ok

Years N/A ok ok ok

IncludeBinary ok N/A N/A N/A

MinStrike ok N/A N/A N/A

MaxStrike ok N/A N/A N/A

NumInMoney ok N/A N/A N/A

NumOutOfMoney ok N/A N/A N/A

148

 Option contract names in IQFeed use a variant of the OPRA OSI format. See a symbology guide at https://ws1.dtn.com/IQ/Guide,

or an older version at https://iqfeed.net/symbolguide/index.cfm?symbolguide=guide. Also see the related discussion here:
http://forums.dtn.com/index.cfm?page=topic&topicID=6968. Note: names might change due to corporate actions (splits etc.),

for example: BBD1918A15 vs. BBD11918A15.45 (http://forums.iqfeed.net/index.cfm?page=topic&topicID=5495).

https://ws1.dtn.com/IQ/Guide
https://iqfeed.net/symbolguide/index.cfm?symbolguide=guide
http://forums.dtn.com/index.cfm?page=topic&topicID=6968
http://forums.iqfeed.net/index.cfm?page=topic&topicID=5495

134 IQML User Guide

Note that if you filter by MinStrike and/or MaxStrike, you cannot also filter by

NumInMoney/ NumOutOfMoney (and vice versa):
>> IQML('chain', 'symbol','FB','NumInMoney',2,'NumOutOfMoney',2,'MinStrike',90)

You cannot specify both a strike range and number of contracts in/out of money

in 'chain' query - choose only one set

Similarly, you can only specify one of the Months, NearMonths parameters, not both:
>> IQML('chain', 'symbol','FB', 'Months',2:6, 'NearMonths',3)

Either the Months or the NearMonths parameter can be specified, but not both,

in a 'chain' query

If no symbols match the specified criteria, or if you do not have the necessary market

permissions (subscription), then the IQML query will return an empty cell array:
>> symbols = IQML('chain', 'datatype','spreads','symbol','C','years',2010:2019)

symbols =

 0×0 empty cell array

Note: IQFeed only returns active (non-expired) contracts. IQFeed offers download-

able static text files, which contain a [very long] list of securities that are no longer

traded (expired contacts149 and delisted equities150). These files are not actively

maintained by DTN IQFeed, so it is better to use the API functionality via IQML.

With IQFeed client 6.1 or newer, you can also fetch this data using IQML (see §5.6).

If you set WhatToShow to 'quotes', you’ll receive an array of structs that contain the

corresponding latest (top-of-market) quotes data for the corresponding symbols:
>> data = IQML('chain', 'symbol','GOOG', 'NearMonths',4, ...

 'MinStrike',1000, 'MaxStrike',1010, 'WhatToShow','quotes')

data =

 58×1 struct array with fields:

 Symbol

 ...

>> data(1)

ans =

 struct with fields:

 Symbol: 'GOOG1803H1000'

 Most_Recent_Trade: 120

 Most_Recent_Trade_Size: 1

 Most_Recent_Trade_Time: '15:57:12.930497'

 Total_Volume: 0

 Bid: 140.5

 Bid_Size: 3

 ...

 Close: 120

 Message_Contents: 'Cbacv'

 Message_Description: ...

 Most_Recent_Trade_Conditions: 1

 Trade_Conditions_Description: 'Normal Trade'

 Most_Recent_Market_Name: 'MIAX PEARL Options exchange'

>> symbols = {data.Symbol}

symbols =

 1×58 cell array

 Columns 1 through 4

 'GOOG1803H1000' 'GOOG1803H1010' 'GOOG1810H1000' 'GOOG1810H1005'

 Columns 5 through 8

 'GOOG1810H1010' 'GOOG1813G1000' 'GOOG1813G1002.5' 'GOOG1813G1005'

 ...

149 http://www.iqfeed.net/downloads/beta/IEOPTION.zip; see http://forums.iqfeed.net/index.cfm?page=topic&topicID=3326.

150 http://www.iqfeed.net/downloads/beta/EQUITY.zip; see http://forums.iqfeed.net/index.cfm?page=topic&topicID=5822.

http://www.iqfeed.net/downloads/beta/IEOPTION.zip
http://forums.iqfeed.net/index.cfm?page=topic&topicID=3326
http://www.iqfeed.net/downloads/beta/EQUITY.zip
http://forums.iqfeed.net/index.cfm?page=topic&topicID=5822

135 IQML User Guide

Note: to receive quotes data for chain options, you must have a corresponding DTN

data subscription, otherwise IQFeed (and IQML) will report an error for all contracts:
IQFeed error: Symbol 'GOOG2221A3000' is invalid/unavailable!

IQFeed error: Symbol 'GOOG2228A3000' is invalid/unavailable!

IQFeed error: Symbol 'GOOG2131X3000' is invalid/unavailable!

IQFeed error: Symbol 'GOOG2207M3000' is invalid/unavailable!

...

Note: if you request quotes for multiple chain symbols, especially if you set UseParallel

to true, you might reach your IQFeed account’s symbols-limit (MaxSymbols; see §9.3).

In such cases, IQFeed-generated error messages will be displayed on the Matlab console:

Level1 symbol limit reached - symbol 'GOOG2019R600' not serviced!

You can request IQFeed to report a user-specified set of quotes data fields and/or

change the reported fields order, using the optional Fields parameter (see §4.1). If

you don’t specify Fields, the returned data is subject to the Fields parameter that was

set in the most recent quotes or chain query.

Also note that some of these structs (especially for out-of-money contracts) may contain

empty/invalid data, since their corresponding contract was never traded. For example:
>> data(7)

ans =

 struct with fields:

 Symbol: 'GOOG1813G1002.5'

 Most_Recent_Trade: []

 Most_Recent_Trade_Size: []

 Most_Recent_Trade_Time: []

 Most_Recent_Trade_Market_Center: []

 Total_Volume: 0

 Bid: 133.4

 Bid_Size: 2

 Ask: 140.2

 Ask_Size: 1

 Open: []

 High: []

 Low: []

 Close: []

 Message_Contents: 'bav'

 Message_Description: 'A bid update occurred; An ask update

occurred; A volume update occurred'

 Most_Recent_Trade_Conditions: 1

 Trade_Conditions_Description: 'Normal Trade'

 Most_Recent_Market_Name: ''

For this reason, you should be careful when concatenating the struct array’s data into

numeric arrays. In this example, only 40 of the 58 contracts had a Close price, so

concatenating into a numeric array results in an array that only has 40 data items:
>> [data.Close]

ans =

 Columns 1 through 8

 120 130.7 140.67 131.99 150.1 138.8 139.5 99.47

 Columns 9 through 16

 103.28 130.9 179.5 137.5 190.17 89.3 145 3.84

 Columns 17 through 24

 6 7.5 5.3 7.14 0.3 0.3 1.1 1.32

 Columns 25 through 32

 1.05 5.56 9.9 6.35 0.67 0.75 1.23 10

 Columns 33 through 40

 15.43 16.33 27.21 32.3 33.4 6.49 2.5 3.37

136 IQML User Guide

…instead, it is better in most cases to use cell arrays, where we can see empty cells:

>> {data.Close}

ans =

 1×58 cell array

 Columns 1 through 8

 [120] [] [130.7] [] [] [140.67] [] []

 Columns 9 through 16

 [] [] [131.99] [150.1] [138.8] [139.5] [] [99.47]

 Columns 17 through 24

 [] [103.28] [130.9] [179.5] [137.5] [190.17] [] [89.3]

 Columns 25 through 33

 ...

Similarly, set WhatToShow='fundamental' to get the fundamental data for all

symbols in the requested chain. For example:

>> data = IQML('chain', 'symbol','GOOG', 'NearMonths',4, ...

 'MinStrike',1000, 'MaxStrike',1010, ...

 'WhatToShow','fundamental')

data =

 58×1 struct array with fields:

 Symbol

 Exchange_ID

 PE

 Average_Volume

 ...

>> data(1)

ans =

 struct with fields:

 Symbol: 'GOOG1803H1000'

 Exchange_ID: 'E'

 PE: []

 Average_Volume: []

 x52_Week_High: 120

 x52_Week_Low: 120

 Calendar_Year_High: []

 Calendar_Year_Low: []

 ...

 Fiscal_Year_End: []

 Company_Name: 'GOOG AUG 2018 C 1000.00'

 ...

 Expiration_Date: '08/03/2018'

 Strike_Price: 1000

 NAICS: []

 Exchange_Root: []

 Option_Premium_Multiplier: 100

 Option_Multiple_Deliverable: 0

 Price_Format_Description: 'Two decimal places'

 Exchange_Description: 'Euronext Index Derivatives (ENID)'

 Listed_Market_Description: 'OPRA System'

 Security_Type_Description: 'Index/Equity Option'

 SIC_Description: ''

 NAICS_Description: ''

>> [data.Strike_Price]

ans =

 Columns 1 through 8

 1000 1010 1000 1005 1010 1000 1002.5 1005

 Columns 9 through 16

 1007.5 1010 1000 1005 1010 1000 1002.5 1005

 Columns 17 through 24

 1007.5 1010 1000 1005 1010 1000 1005 1010

 ...

137 IQML User Guide

Note: using WhatToShow iterates over all the reported chain symbols, requesting the

quotes/fundamental data for each symbol separately. If the number of symbols is large,

this could take a very long time, even if you parallelize the queries using UseParallel.

As an alternative in such cases, consider using a market summary query for the exchange

on which the chain’s contracts are traded (see §4.6). Once you get the summary report,

you can then extract the relevant market data for the contracts that were reported by

the chain command.151 A summary report may take several minutes to download

since it reports all the contracts of a certain type on that exchange, but this could still

be faster than the symbols iteration used by a chain query with WhatToShow.

The decision whether to use the chain query with WhatToShow, or a combination of

a simple chain query and market summary query, depends on the number of chain

contracts and other factors. Advice: try a unified chain query first, and use the market

summary alternative only in case the unified chain query takes too long.

Here is a summary of the IQML parameters that affect chain symbols lookup:

Parameter Data type Default Description

Symbol string
''

must be set!

Symbol name of the underlying contract.
This is a mandatory parameter – it must be set.
Note: Multiple symbols are NOT supported.

DataType string 'options'

One of:
 'options' (default) – on index/equity
 'future'
 'spread' – future calendar spreads
 'foptions' – options on future

Side string

'cp'

(meaning

both calls

and puts)

One of:
 'cp' (default) – both calls and puts
 'c' – calls only
 'p' – puts only

Only relevant if DataType='options'/'foptions'

WhatToShow string 'symbols'

One of:
 'symbols' (default) – list of symbols in chain
 'quotes' – return the latest quotes data
 'fundamental' – return fundamental data

Months various
[] meaning

all

One of:
 Numeric month value(s) between 1-12

(e.g.: 4, 2:5, [1,4,7])
 English month name (e.g. 'August', 'Apr')
 English month names in cell array (e.g.

{'Apr', 'July', 'September', 'Dec'})
 Financial month codes from the list

FGHJKMNQUVXZ (e.g. 'JKMN')
Cannot be specified together with NearMonths

NearMonths
integer

(0-99)
[]

Number of nearby contract months to report.152

Cannot be specified together with Months.

151 http://forums.dtn.com/index.cfm?page=topic&topicID=5872
152 IQFeed officially supports only 0-4, but in practice higher values are accepted, reporting contracts that expire farther out in

the future (for example, 2.5 years for SPX). Note: this is undocumented IQFeed behavior, so specifying a value of 5 or higher

may possibly not work properly (or at all) in certain cases. See http://forums.iqfeed.net/index.cfm?page=topic&topicID=5508

http://forums.dtn.com/index.cfm?page=topic&topicID=5872
http://forums.iqfeed.net/index.cfm?page=topic&topicID=5508

138 IQML User Guide

Years
integer

scalar/array
[] meaning

current year

1+ years e.g. 2013:2019, default: current year.
Only relevant when DataType ≠ 'options'.

IncludeBinary logical false or 0
If true, binary/weekly options153 are reported,
otherwise (default) they are not. This parameter
is only relevant when DataType='options'.

MinStrike number []
Only report options having a higher strike price;
only relevant when DataType='options'.

MaxStrike number []
Only report options having a lower strike price;
only relevant when DataType='options'.

NumInMoney integer []
Only report this number of options in the
money; only relevant if DataType='options'.

NumOutOf

Money
integer []

Only report this number of options out of
money; only relevant if DataType='options'.

UseParallel
logical

(true/false)
false

If set to true or 1, then querying chain quotes
will be done in parallel if possible (see §3.6).

MaxWorkers integer
(the current

pool size)

Max number of parallel workers to use (up to
the current pool size) when UseParallel=1

Fields

colon or

comma-

separated

string, or

cell-array

of strings

'Symbol,

Most Recent

Trade, Most

Recent Trade

Size, Most

Recent Trade

Time, Most

Recent Trade

Market

Center, Total

Volume, Bid,

Bid Size, Ask,

Ask Size,

Open, High,

Low, Close,

Message

Contents,

Most Recent

Trade

Conditions'

Sets the list of data fields reported by IQFeed

for each quote. IQFeed’s default set has 16

fields; 50+ additional fields can be specified

(a detailed list of fields is provided in §4.1).

If Fields is set to an empty value ({} or ''),

the list of current, available fields is returned.

If Fields is not empty, subsequent quotes and

chain queries will return the specified fields,

in the specified order. The Symbol field is

always returned first, even if not specified.

Examples:

 'Bid:Ask:Last:Ask Size'

 'Bid, Ask, Last, Ask Size'

 {'Bid', 'Ask', 'Last', 'Ask Size'}

 'All' (indicates all available fields)

Note: Options/futures chain lookup is only available in the Professional IQML license.

153 Weekly options are only excluded with IQFeed client 6.1 or newer; binary options are excluded with all clients.

139 IQML User Guide

8.3 Markets lookup

To retrieve a list of markets (exchanges), use 'lookup' action with 'markets' DataType:

>> data = IQML('lookup', 'DataType','markets')

data =

 185×1 struct array with fields:

 id

 name

 description

 groupId

 groupName

>> data(1)

ans =

 id: 1

 name: 'NGM'

 description: 'Nasdaq Global Market'

 groupId: 5

 groupName: 'NASDAQ'

...

You can convert the data into a [perhaps] more readable form using Matlab’s builtin

struct2cell() and struct2table() functions, or the OutputFormat parameter (§3.5):

>> struct2cell(data)'

ans =

 185×5 cell array

 [1] 'NGM' 'Nasdaq Global Market' [5] 'NASDAQ'

 [2] 'NCM' 'National Capital Market' [5] 'NASDAQ'

 [3] 'OTC' 'Nasdaq other OTC' [5] 'NASDAQ'

 [4] 'OTCBB' 'Nasdaq OTC Bulletin Board' [5] 'NASDAQ'

 [5] 'NASDAQ' 'Nasdaq' [5] 'NASDAQ'

 [6] 'NYSE_AMERICAN' 'NYSE American (Equities and Bonds)' [6] 'NYSE_AMERICAN'

 [7] 'NYSE' 'New York Stock Exchange' [7] 'NYSE'

 ...

>> struct2table(data)

ans =

 185×5 table

 id name description groupId groupName

 __ _______________ ____________________________________ _______ _____________

 1 'NGM' 'Nasdaq Global Market' 5 'NASDAQ'

 2 'NCM' 'National Capital Market' 5 'NASDAQ'

 3 'OTC' 'Nasdaq other OTC' 5 'NASDAQ'

 4 'OTCBB' 'Nasdaq OTC Bulletin Board' 5 'NASDAQ'

 5 'NASDAQ' 'Nasdaq' 5 'NASDAQ'

 6 'NYSE_AMERICAN' 'NYSE American (Equities and Bonds)' 6 'NYSE_AMERICAN'

 7 'NYSE' 'New York Stock Exchange' 7 'NYSE'

You can narrow-down the results by specifying ID, Name and/or Description filtering

parameters. For example, to list only markets whose Description contains ‘Nasdaq’:

>> data = IQML('lookup', 'DataType','markets', 'Description','Nasdaq')

data =

 10×1 struct array with fields:

 id

 name

 description

 groupId

 groupName

140 IQML User Guide

>> disp(struct2cell(data)')

 [1] 'NGM' 'Nasdaq Global Market' [5] 'NASDAQ'

 [3] 'OTC' 'Nasdaq other OTC' [5] 'NASDAQ'

 [4] 'OTCBB' 'Nasdaq OTC Bulletin Board' [5] 'NASDAQ'

 [5] 'NASDAQ' 'Nasdaq' [5] 'NASDAQ'

 [15] 'NASD_ADF' 'Nasdaq Alternate Display facility' [5] 'NASDAQ'

 [19] 'NTRF' 'Nasdaq Trade Reporting Facility' [5] 'NASDAQ'

 [21] 'NGSM' 'Nasdaq Global Select Market' [5] 'NASDAQ'

 [105] 'PK_NASDAQ' 'Pink Sheets - NASDAQ Listed' [90] 'PK_SHEETS'

 [134] 'N2EX' 'NASDAQ OMX-Nord Pool' [134] 'N2EX'

 [139] 'NFX' 'NASDAQ OMX Futures' [139] 'NFX'

Naturally, it is quite possible that no markets exist that match the requested criteria. In

such a case, the result will be empty (and cannot be displayed using Matlab’s

struct2table() or struct2cell() functions):

>> data = IQML('lookup', 'DataType','markets', 'Name','xyz')

data =

 []

>> struct2cell(data)

Undefined function 'struct2cell' for input arguments of type 'double'.

For performance reasons, and since lookup data is fairly static (although it changes

from time to time), it is usually fetched from the IQFeed servers only during IQML

startup. All subsequent lookup queries will return pre-fetched (cached) data, filtered

as needed based on your query criteria. To force IQML to fetch the latest lookup data

from IQFeed instead of the cached data, set the ForceRefresh parameter to true (or 1).

Note: IQFeed does not currently offer additional information about the listed markets,

such as their time-zone, operating times, and duration for delayed quotes.154 A table

of time-zones and delay amounts (but not operating times) for markets in DTN’s

ProphetX service is posted on http://pxweb.dtn.com/PXWebDoc/pages/Markets.aspx.

These markets generally overlap IQFeed’s markets, but the market names are

somewhat different (for example, Singapore’s International Monetary Exchange is

named 'SIME' in ProphetX, vs. 'SGX' in IQFeed). It is unclear to what extent ProphetX’s

market information is up-to-date or relevant to IQFeed, so be careful when using it.

Here is a summary of the IQML parameters that affect markets lookup:

Parameter Data type Default Description

ID

integer or

numeric

array

[]

(empty)
Limits the query to the specified ID(s).

Name string

''

(empty

string)

Limits the query to markets that contain the

specified string in their name or groupName

(case insensitive, anywhere within the name)

Description string

''

(empty

string)

Limits the query to markets that contain the

specified string in their description (case

insensitive, anywhere within the description)

ForceRefresh
logical

(true/false)
false

If set to true or 1, then the data will be fetched
from the IQFeed servers, not pre-cached data.

154 http://forums.dtn.com/index.cfm?page=topic&topicID=5740

http://pxweb.dtn.com/PXWebDoc/pages/Markets.aspx
http://forums.dtn.com/index.cfm?page=topic&topicID=5740

141 IQML User Guide

8.4 Security types lookup

To retrieve a list of security types, set action to 'lookup' and DataType to 'sectypes':

>> data = IQML('lookup', 'DataType','sectypes')

data =

 40×1 struct array with fields:

 id

 name

>> data(1)

ans =

 id: 1

 name: 'EQUITY'

 description: 'Equity'

>> data(2)

ans =

 id: 2

 name: 'IEOPTION'

 description: 'Index/Equity Option'

You can convert the data into a [perhaps] more readable form using Matlab’s builtin

struct2cell() and struct2table() functions, or the OutputFormat parameter (§3.5):

>> disp(struct2cell(data)')

 [1] 'EQUITY' 'Equity'

 [2] 'IEOPTION' 'Index/Equity Option'

 [3] 'MUTUAL' 'Mutual Fund'

 [4] 'MONEY' 'Money Market Fund'

 [5] 'BONDS' 'Bond'

 [6] 'INDEX' 'Index'

 [7] 'MKTSTATS' 'Market Statistic'

 [8] 'FUTURE' 'Future'

 [9] 'FOPTION' 'Future Option'

 [10] 'SPREAD' 'Future Spread'

 [11] 'SPOT' 'Spot'

 [12] 'FORWARD' 'Forward'

 ...

>> disp(struct2table(data))

 id name description

 __ __________________ __

 1 'EQUITY' 'Equity'

 2 'IEOPTION' 'Index/Equity Option'

 3 'MUTUAL' 'Mutual Fund'

 4 'MONEY' 'Money Market Fund'

 5 'BONDS' 'Bond'

 6 'INDEX' 'Index'

 ...

>> data = IQML('lookup', 'DataType','sectypes', 'OutputFormat','table')

data =

 40×3 table

 id name description

 __ __________________ __

 1 'EQUITY' 'Equity'

 2 'IEOPTION' 'Index/Equity Option'

 3 'MUTUAL' 'Mutual Fund'

 4 'MONEY' 'Money Market Fund'

 5 'BONDS' 'Bond'

 6 'INDEX' 'Index'

 ...

142 IQML User Guide

You can narrow-down the results by specifying ID, Name and/or Description filtering

parameters. For example, to list only secTypes whose Description contains ‘Option’:

>> struct2table(IQML('lookup', 'DataType','sectypes', 'Description','option'))

ans =

 4×3 table

 id name description

 __ __________________ ____________________________

 2 'IEOPTION' 'Index/Equity Option'

 9 'FOPTION' 'Future Option'

 36 'COMBINED_FOPTION' 'Combined FOption Volume OI'

 39 'FOPTION_IV' 'FOption Implied Volatility'

Naturally, it is quite possible that no security types exist that match the requested

criteria. In such a case, the result will be empty (and cannot be displayed using

Matlab’s struct2table() or struct2cell() functions):

>> data = IQML('lookup', 'DataType','sectypes', 'Name','xyz')

data =

 []

>> struct2cell(data)

Undefined function 'struct2cell' for input arguments of type 'double'.

For performance reasons, and since lookup data is fairly static (although it changes

from time to time), it is usually fetched from the IQFeed servers only during IQML

startup. All subsequent lookup queries will return pre-fetched (cached) data, filtered

as needed based on your query criteria. To force IQML to fetch the latest lookup data

from IQFeed instead of the cached data, set the ForceRefresh parameter to true (or 1).

Here is a summary of the IQML parameters that affect security types lookup:

Parameter Data type Default Description

ID

integer or

numeric

array

[]

(empty)
Limits the query to the specified ID(s).

Name string

''

(empty

string)

Limits the query to secTypes that contain the

specified string in their name

(case insensitive, anywhere within the name)

Description string

''

(empty

string)

Limits the query to secTypes that contain the

specified string in their description (case

insensitive, anywhere within the description)

ForceRefresh
logical

(true/false)
false

If set to true or 1, then the data will be fetched
from the IQFeed servers, not pre-cached data.

143 IQML User Guide

8.5 SIC codes lookup

To retrieve a list of SIC sectors/industries, set action to 'lookup' and DataType to 'SIC':

>> data = IQML('lookup', 'DataType','SIC')

data =

 1005×1 struct array with fields:

 id

 description

>> data(1)

ans =

 id: 111

 description: 'WHEAT'

>> data(2)

ans =

 id: 112

 description: 'RICE'

You can convert the data into a [perhaps] more readable form using Matlab’s builtin

struct2cell() and struct2table() functions, or the OutputFormat parameter (§3.5):

>> disp(struct2cell(data)')

 [111] 'WHEAT'

 [112] 'RICE'

 [115] 'CORN'

 [116] 'SOYBEANS'

 [119] 'CASH GRAINS, NOT ELSEWHERE CLASSIFIED'

 [131] 'COTTON'

 [132] 'TOBACCO'

 ...

>> disp(struct2table(data))

 id description

 ___ ___

 111 'WHEAT'

 112 'RICE'

 115 'CORN'

 116 'SOYBEANS'

 119 'CASH GRAINS, NOT ELSEWHERE CLASSIFIED'

 131 'COTTON'

 132 'TOBACCO'

 ...

>> data = IQML('lookup', 'DataType','SIC', 'OutputFormat','table')

data =

 1005×2 table

 id description

 ___ ___

 111 'WHEAT'

 112 'RICE'

 115 'CORN'

 116 'SOYBEANS'

 119 'CASH GRAINS, NOT ELSEWHERE CLASSIFIED'

 131 'COTTON'

 132 'TOBACCO'

 ...

144 IQML User Guide

You can narrow-down the results by specifying ID or Description filtering parameters.

For example, to list only the SIC codes whose Description contains ‘Oil’:

>> struct2table(IQML('lookup', 'DataType','SIC', 'Description','oil'))

ans =

 22×2 table

 id description

 ____ ___

 251 'BROILER, FRYER, AND ROASTER CHICKENS'

 711 'SOIL PREPARATION SERVICES'

 1381 'DRILLING OIL AND GAS WELLS'

 1382 'OIL AND GAS FIELD EXPLORATION SERVICES'

 1389 'OIL AND GAS FIELD SERVICES, NOT ELSEWHERE CLASSIFIED'

 2074 'COTTONSEED OIL MILLS'

 2075 'SOYBEAN OIL MILLS'

 2076 'VEGETABLE OIL MILLS, EXCEPT CORN, COTTONSEED, AND SOYBEAN'

 2077 'ANIMAL AND MARINE FATS AND OILS'

 2079 'SHORTENING, TABLE OILS, MARGARINE, AND OTHER EDIBLE FATS AND OILS'

 2673 'PLASTICS, FOIL, AND COATED PAPER BAGS'

 ...

Naturally, it is quite possible that no security types exist that match the requested

criteria. In such a case, the result will be empty (and cannot be displayed using

Matlab’s struct2table() or struct2cell() functions):
>> data = IQML('lookup', 'DataType','SIC', 'Description','xyz')

data =

 []

>> struct2cell(data)

Undefined function 'struct2cell' for input arguments of type 'double'.

For performance reasons, and since lookup data is fairly static (although it changes

from time to time), it is usually fetched from the IQFeed servers only during IQML

startup. All subsequent lookup queries will return pre-fetched (cached) data, filtered

as needed based on your query criteria. To force IQML to fetch the latest lookup data

from IQFeed instead of the cached data, set the ForceRefresh parameter to true (or 1).

Note: IQFeed has a confirmed internal bug as of October 2019: some ~150 SIC codes

are not reported, although they have corresponding symbols and are reported by the

symbols lookup query (§8.1).155 Symbols having such SIC codes will have an empty

SIC_Description field in the fundamental data query (§4.2) and empty SIC_Desc field in

the symbols lookup query (§8.1).

Here is a summary of the IQML parameters that affect SIC codes lookup:

Parameter Data type Default Description

ID

integer or

numeric

array

[]

(empty)
Limits the query to the specified ID(s).

Description string

''

(empty

string)

Limits the query to SIC entries that contain the

specified string in their description (case

insensitive, anywhere within the description)

ForceRefresh
logical

(true/false)
false

If set to true or 1, then the data will be fetched
from the IQFeed servers, not pre-cached data.

155 http://forums.iqfeed.net/index.cfm?page=topic&topicID=5653

http://forums.iqfeed.net/index.cfm?page=topic&topicID=5653

145 IQML User Guide

8.6 NAICS codes lookup

To retrieve a list of NAICS sectors/industries, set the action to 'lookup' and DataType

to 'NAICS':

>> data = IQML('lookup', 'DataType','NAICS')

data =

 1175×1 struct array with fields:

 id

 description

>> data(1)

ans =

 id: 111110

 description: 'Soybean Farming'

>> data(2)

ans =

 id: 111120

 description: 'Oilseed (except Soybean) Farming'

You can convert the data into a [perhaps] more readable form using Matlab’s builtin

struct2cell() and struct2table() functions, or the OutputFormat parameter (§3.5):

>> disp(struct2cell(data)')

 [111110] 'Soybean Farming'

 [111120] 'Oilseed (except Soybean) Farming'

 [111130] 'Dry Pea and Bean Farming'

 [111140] 'Wheat Farming'

 [111150] 'Corn Farming'

 [111160] 'Rice Farming'

 [111191] 'Oilseed and Grain Combination Farming'

 [111199] 'All Other Grain Farming'

 [111211] 'Potato Farming'

 ...

>> disp(struct2table(data))

 id description

 ______ ___

 111110 'Soybean Farming'

 111120 'Oilseed (except Soybean) Farming'

 111130 'Dry Pea and Bean Farming'

 111140 'Wheat Farming'

 111150 'Corn Farming'

 111160 'Rice Farming'

 111191 'Oilseed and Grain Combination Farming'

 111199 'All Other Grain Farming'

 111211 'Potato Farming'

 ...

>> data = IQML('lookup', 'DataType','NAICS', 'OutputFormat','table')

data =

 1175×2 table

 id description

 ___ ___

 111110 'Soybean Farming'

 111120 'Oilseed (except Soybean) Farming'

 111130 'Dry Pea and Bean Farming'

 111140 'Wheat Farming'

 111150 'Corn Farming'

 111160 'Rice Farming'

 111191 'Oilseed and Grain Combination Farming'

 111199 'All Other Grain Farming'

 111211 'Potato Farming'

 ...

146 IQML User Guide

You can narrow-down the results by specifying the ID or Description filtering

parameter. For example, to list only NAICS codes whose Description contains ‘Oil’:

>> struct2table(IQML('lookup', 'DataType','NAICS', 'Description','oil'))

ans =

 20×2 table

 id description

 ______ __

 111120 'Oilseed (except Soybean) Farming'

 111191 'Oilseed and Grain Combination Farming'

 112320 'Broilers and Other Meat Type Chicken Production'

 115112 'Soil Preparation, Planting, and Cultivating'

 213111 'Drilling Oil and Gas Wells'

 213112 'Support Activities for Oil and Gas Operations'

 237120 'Oil and Gas Pipeline and Related Structures Construction'

 311223 'Other Oilseed Processing'

 311225 'Fats and Oils Refining and Blending'

 ...

Naturally, it is quite possible that no security types exist that match the requested

criteria. In such a case, the result will be empty (and cannot be displayed using

Matlab’s struct2table() or struct2cell() functions):

>> data = IQML('lookup', 'DataType','NAICS', 'Description','xyz')

data =

 []

>> struct2cell(data)

Undefined function 'struct2cell' for input arguments of type 'double'.

For performance reasons, and since lookup data is fairly static (although it changes

from time to time), it is usually fetched from the IQFeed servers only during IQML

startup. All subsequent lookup queries will return pre-fetched (cached) data, filtered

as needed based on your query criteria. To force IQML to fetch the latest lookup data

from IQFeed instead of the cached data, set the ForceRefresh parameter to true (or 1).

Note: IQFeed has a confirmed internal bug as of October 2019: some ~150 SIC codes

are not reported, although they have corresponding symbols and are reported by the

symbols lookup query (§8.1).156
 A similar bug also applies to NAICS.

Here is a summary of the IQML parameters that affect NAICS codes lookup:

Parameter Data type Default Description

ID

integer or

numeric

array

[]

(empty)
Limits the query to the specified ID(s).

Description string

''

(empty

string)

Limits the query to NAICS entries that contain

the specified string in their description (case

insensitive, anywhere within the description)

ForceRefresh
logical

(true/false)
false

If set to true or 1, then the data will be fetched
from the IQFeed servers, not pre-cached data.

156 http://forums.iqfeed.net/index.cfm?page=topic&topicID=5653

http://forums.iqfeed.net/index.cfm?page=topic&topicID=5653

147 IQML User Guide

8.7 Trade condition codes lookup

To retrieve a list of trade condition codes, set the action to 'lookup' and DataType to

'conditions':
>> data = IQML('lookup', 'DataType','conditions')

data =

 155×1 struct array with fields:

 id

 name

 description

>> data(1)

ans =

 id: 1

 name: 'REGULAR'

 description: 'Normal Trade'

>> data(2)

ans =

 id: 2

 name: 'ACQ'

 description: 'Acquisition'

You can convert the data into a [perhaps] more readable form using Matlab’s builtin

struct2cell() and struct2table() functions, or the OutputFormat parameter (§3.5):
>> disp(struct2cell(data)')

 [1] 'REGULAR' 'Normal Trade'

 [2] 'ACQ' 'Acquisition'

 [3] 'CASHM' 'Cash Only Market'

 [4] 'BUNCHED' 'Bunched Trade'

 [5] 'AVGPRI' 'Average Price Trade'

 [6] 'CASH' 'Cash Trade (same day clearing)'

 ...

>> disp(struct2table(data))

 id name description

 __ _____________ ________________________________

 1 'REGULAR' 'Normal Trade'

 2 'ACQ' 'Acquisition'

 3 'CASHM' 'Cash Only Market'

 4 'BUNCHED' 'Bunched Trade'

 5 'AVGPRI' 'Average Price Trade'

 6 'CASH' 'Cash Trade (same day clearing)'

 ...

>> data = IQML('lookup', 'DataType','conditions', 'OutputFormat','table')

data =

 155×3 table

 id name description

 __ _____________ ________________________________

 1 'REGULAR' 'Normal Trade'

 2 'ACQ' 'Acquisition'

 3 'CASHM' 'Cash Only Market'

 4 'BUNCHED' 'Bunched Trade'

 5 'AVGPRI' 'Average Price Trade'

 6 'CASH' 'Cash Trade (same day clearing)'

 ...

You can narrow-down the results by specifying ID, Name and/or Description filtering

parameters. For example, to list only conditions whose Description contains ‘Option’:
>> struct2table(IQML('lookup', 'DataType','conditions', 'Description','option'))

ans =

 7×3 table

 id name description

 __ ______________ ___

148 IQML User Guide

 39 'SPRD' 'Spread - Trade in Two Options in the Same Class

 (a buy and a sell in the same class)'

 40 'STDL' 'Straddle - Trade in Two Options in the Same Class

 (a buy and a sell in a put and a call)'

 43 'BWRT' 'Option Portion of a Buy/Write'

 44 'CMBO' 'Combo - Trade in Two Options in the Same Options

 Class (a buy and a sell in the same class)'

 68 'STKOPT_TRADE' 'Stock-Option Trade'

 82 'OPTION_EX' 'Option Exercise'

 96 'OPT_ADDON' 'Short Option Add-On'

Naturally, it is quite possible that no security types exist that match the requested

criteria. In such a case, the result will be empty (and cannot be displayed using

Matlab’s struct2table() or struct2cell() functions):
>> data = IQML('lookup', 'DataType','conditions', 'Name','xyz')

data =

 []

>> struct2cell(data)

Undefined function 'struct2cell' for input arguments of type 'double'.

Note that the trade condition codes are typically reported by IQFeed as a string of one

or more 2-digit hexadecimal values.157 For example (see §4.1):
>> data = IQML('quotes', 'Symbol','GOOG')

data =

 ...

 Most_Recent_Trade_Conditions: '3D87'

 Trade_Conditions_Description: 'Intramaket Sweep; Odd lot trade'

In this example, the reported last trade had 2 trade conditions: hexadecimal 3D (=61,

meaning 'Intramaket Sweep')158 and hexadecimal 87 (=135, meaning 'Odd lot trade').

For performance reasons, and since lookup data is fairly static (although it changes

from time to time), it is usually fetched from the IQFeed servers only during IQML

startup. All subsequent lookup queries will return pre-fetched (cached) data, filtered

as needed based on your query criteria. To force IQML to fetch the latest lookup data

from IQFeed instead of the cached data, set the ForceRefresh parameter to true (or 1).

Here is a summary of the IQML parameters that affect trade conditions lookup:

Parameter Data type Default Description

ID

integer or

numeric

array

[]

(empty)
Limits the query to the specified ID(s).

Name string

''

(empty

string)

Limits the query to trade conditions that

contain the specified string in their name

(case insensitive, anywhere within the name)

Description string

''

(empty

string)

Limits the query to trade conditions that

contain the specified string in their description

(case insensitive, anywhere in the description)

ForceRefresh
logical

(true/false)
false

If set to true or 1, then the data will be fetched
from the IQFeed servers, not pre-cached data.

157 Trade condition codes 15 or lower are reported with a leading 0, e.g. 05 or 0E. The availability of the codes’ translation in the

Trade_Conditions_Description field depends on MsgParsingLevel=2 (which is the default value; see §3.2).

158 The missing “r” in “Intramarket” is a typo in IQFeed’s data

149 IQML User Guide

9 Connection, administration and other special commands

9.1 Connecting & disconnecting from IQFeed

When using IQML, there is no need to worry about connecting or disconnecting from

IQFeed – IQML handles these activities automatically, without requiring user

intervention. The user only needs to ensure that IQFeed is active and logged-in when

the IQML command is invoked in Matlab.

IQML does not require any special configuration when connecting to IQFeed. It uses

whatever setting was previously set in the DTN IQConnect client application. You

might be prompted to enter a username/password, if IQConnect was not set up to

automatically connect using saved login/password information:

In addition to entering the login credentials in the client window, you can also specify

them programmatically. This could be useful when you have several IQFeed accounts

and wish to switch between them programmatically, or if you use IQFeed’s non-

Windows client installer on MacOs (which prevents user-entry in the login window):

>> IQML('time', 'Username','123456-1', 'Password','OpenSesame')

Note that the Username and Password parameters must be specified together, and

that they are only meaningful in the first IQML command that starts the connection. If

the Username and Password parameters are specified after a connection to IQFeed

has been established, they will be ignored for the current connection, but stored in

IQFeed’s registry for subsequent connections (see §9.5).

If you enter an invalid set of Username/Password, an error message will be thrown.

A different error will be thrown if IQML fails to connect to IQFeed within 10 seconds.

150 IQML User Guide

IQML can connect to a running IQFeed client, that was already started by another

process on the current computer (e.g. charting app or another Matlab process that runs

IQML), even without Username and Password in the initial IQML connection. IQML

will bypass login, connecting directly to the client process.

Once IQML connects to IQFeed, it remains connected via IQFeed’s client (IQConnect)

as long as the user does not exit the client application, or connects to IQFeed from

another computer (this automatically closes the client on the previous computer, since

exchange regulations do not allow using IQFeed on multiple computers concurrently).

IQML typically uses the latest API features supported by your installed IQFeed client.

For example, if you use client version 6.0.1.1, IQML will use IQFeed communication

protocol 6.0, and you will not have access to features of protocol 6.1.159 If you install a

newer IQFeed client, IQML will automatically detect this and use a newer protocol,

as determined by the new client version. For debugging purposes, you can override

Protocol to a version older than your installed client. For example, with a 6.0.1.1

client, you can set Protocol to 5.2 or 6.0, but not to 6.1 or newer:

>> IQML(..., 'Protocol',6.1)

Warning: Your IQFeed client (version 6.0.1.1) does not support Protocol 6.1 -

using Protocol 6.0 instead

(Type "warning off IQML:UnsupportedProtocol" to suppress this warning.)

You will be able to retrieve information in Matlab as soon as IQML connects to the

IQFeed client and [if necessary] the client finishes the login process and synchronizes

with the IQFeed servers. This process typically takes a few short seconds.

The following parameters affect the initial connection to IQFeed:

Parameter Data type Default Description

Username string (none) Used to launch and login into IQConnect

Password string (none) Used to launch and login into IQConnect

Protocol number

installed

client’s

version

IQFeed API protocol that should be used. You can

set any protocol value supported by your IQConnect

client version. For example, client 6.0.1.1 supports

protocols 5.2 and 6.0 (this client’s default), but not 6.1.

By default, IQML uses the following TCP ports to connect to IQFeed’s client:

 5009 – Level1Port – used for Level 1 queries/msgs (quotes, fundamentals)

 9100 – LookupPort – used for historical, news and lookup queries/messages

 9200 – Level2Port – used for Level II (market-depth) queries/messages

 9300 – AdminPort – used for administrative queries/messages (stats etc.)

 9400 – DerivativePort – used for interval-bars queries/messages

 60020 – LoginPort – used for login authentication

If any of these ports are already used by any other process at the time that IQFeed’s

client application (IQConnect) starts, it will not be able to communicate with IQML via

159 For example, historic market summary data and scanning (§5.6)

151 IQML User Guide

these ports.160 IQML tries to automatically detect such port conflicts, for example:

>> data = IQML('history', 'Symbol','IBM')

Error using IQML

Port #9100 is already used by process #12345 (SomeProcess.exe) and cannot be

used by IQFeed. Run IQML('registry') to set a different value for LookupPort.

You can resolve such port conflicts using any of the following methods:

1. Stop/uninstall the other process (SomeProcess.exe in this example)

2. Modify the other process’s settings to use different ports, so that they will not

conflict with IQFeed (this is rarely possible, but is preferable when possible)

3. Modify IQFeed’s registry settings to use a different port, which is not used by

any other process (see §9.5). If you choose this option, you will need to fix the

port again whenever you re-install the IQFeed client (for example, whenever

you update the client to a newer version), because the client’s installation

process resets the port values back to their default values.

After you resolve the problem using one of these alternatives, restart IQFeed’s

IQConnect client and then retry the IQML command. An IQConnect restart is necessary

since IQConnect reads the registry values and sets the ports only when it starts.

You can close a live connection to IQFeed using the 'disconnect' action:

>> IQML('disconnect')

This command disconnects IQML from the IQFeed client (IQConnect). If IQML was

the only application that was connected to the client, then the client will silently exit

after several seconds, unless a new IQFeed connection is established during this time.

If IQConnect is not active, the 'disconnect' action is silently ignored (no error).

There is no need for a corresponding 'connect' action, because IQFeed connection is

automatically (re-)established whenever this is required by a new IQML command.

IQML and IQConnect automatically try to recover from connection losses during

normal operation. You may see in the Matlab console one or more IQConnect error

messages such as the following, which indicate such a connection loss:

20180410 20:03:06.371 Level1 server disconnected!

 or:
20180410 20:03:57.934 Unable to connect to L2IP server. Error Code: 10051

Error Msg: A socket operation was attempted to an unreachable network.

 or:
20180410 20:03:57.934 Unable to connect to L2IP server. Error Code: 10065

Error Msg: A socket operation was attempted to an unreachable host.

 or:
20180410 20:03:57.934 Unable to connect to L2IP server. Error Code: 10053

Error Msg: An established connection was aborted by the software in your host

machine.

 or:
20180410 20:03:57.934 Unable to connect to L2IP server. Error Code: 10060

Error Msg: A connection attempt failed because the connected party did not

properly respond after a period of time

160 For example, Logitech GHub (via its LgHubUpdater.exe program) typically uses port 9100, IQFeed’s default Lookup port:

https://forums.dtn.com/index.cfm?page=topic&topicID=7036, http://forums.dtn.com/index.cfm?page=topic&topicID=5843

https://forums.dtn.com/index.cfm?page=topic&topicID=7036
http://forums.dtn.com/index.cfm?page=topic&topicID=5843

152 IQML User Guide

You can safely ignore such messages in most cases, since IQConnect will

automatically re-establish connection with IQFeed’s servers as soon as they become

accessible again, and show an appropriate informational message in Matlab’s console:

20180410 20:04:16.497 Level1 server is connected

You can actively disconnect and then connect to IQFeed using the 'reconnect' action:

>> IQML('reconnect')

The 'reconnect' action accepts an optional input parameter of Timeout (default value: 8

[secs]), which controls the pause duration between disconnecting IQML from IQFeed

and sending a termination signal to the IQConnect process, and reconnecting to

IQFeed again. The default pause of 8 secs allows IQConnect enough time (in most

cases) to properly terminate before IQML reconnects – this ensures a clean “restart”

of the IQFeed connection, with no leftovers from the previous connection session. If

you are not concerned about this aspect, and wish to restart IQML’s connections

without necessarily resarting IQConnect, use a lower Timeout.161 For example:

>> IQML('reconnect', 'timeout',0) % reconnect immediately after disconnecting

Note that after reconnecting to IQFeed, you will need to request any and all streaming

data again (see §6), since IQFeed resets data streaming after a client disconnect.

Also note that in the few seconds following an initial connection (or re-connection) to

IQFeed, some queries may return empty data. In such cases, you should try to refetch

the data after a short pause (see §3.4 for details).

161 IQConnect remains alive a few seconds after receiving a termination signal. If a reconnection request or any IQML query is

received during these few seconds, IQConnect will not terminate and will service the incoming requests. The default pause of
8 seconds was chosen by experimentation that showed that in most cases this is sufficient time to ensure that IQConnect

terminates. When Timeout is set to 0, no termination signal is sent to IQConnect and IQML reconnects immediately; When

Timeout is set to any value between 0-8, the resulting pause will be smaller than the default (i.e., faster reconnection), but it is
not assured that IQConnect has properly terminated by then, and this might potentially result in a bad reconnection. You can

experiment with various Timeout value to see what works best for your specific computer setup.

153 IQML User Guide

9.2 Server time

You can request the latest IQFeed server time using the 'time' action:

>> data = IQML('time')

data =

 latestEventDatenum: 737114.660205451

 latestEventTimeStamp: '20180223 15:50:41'

 latestServerDatenum: 737114.368518519

 latestServerTimestamp: '20180223 08:50:40'

The returned data struct includes the following data fields:

 latestEventDatenum – a Matlab numeric datenum value that corresponds to

the local time in which the very latest message has arrived from IQFeed.

 latestEventTimeStamp – a human-readable format of latestEventDatenum

 latestServerDatenum – a Matlab numeric datenum value that corresponds to

the latest server time that was received from IQFeed.

 latestServerTimeStamp – a human-readable format of latestServerDatenum

Note that the server time may be off by up to a full second from the current time,

depending on when the last timestamp message was received from IQFeed. IQFeed

sends server time messages once every second, so latestServerDatenum lags by 0.5

secs behind the current time on average.

Similarly, latestEventDatenum reports the time at which the last message was

received from IQFeed. This message could be a timestamp message, or any other data

message. For this reason, the lag here is typically much lower than the lag of

latestServerDatenum.

The 'time' action has no settable properties.

154 IQML User Guide

9.3 Client stats

You can retrieve the updated IQFeed connection traffic stats using the 'stats' action:

>> data = IQML('stats')

data =

 Timestamp: '20210203 12:57:30.653'

 Datenum: 738190.539938113

 ServerIP: '66.112.148.226'

 ServerPort: 60002

 MaxSymbols: 1300

 NumOfStreamingSymbols: 15

 NumOfAvailableSymbols: 1285

 NumOfClientsConnected: 3

 SecondsSinceLastUpdate: 1

 NumOfReconnections: 0

 NumOfAttemptedReconnections: 0

 StartTime: 'Mar 07 11:03AM'

 MarketTime: 'Mar 07 04:34AM'

 ConnectionStatus: 'Connected'

 IQFeedVersion: '6.0.0.5'

 LoginID: '123456-1'

 TotalKBsRecv: 42.98

 KBsRecvLastSecond: 0.02

 AvgKBsPerSecRecv: 0.02

 TotalKBsSent: 361.62

 KBsSentLastSecond: 0.22

 AvgKBsPerSecSent: 0.19

 TotalMsgsRcv: 9530

 Exchanges: {1×16 cell}

 ServerVersion: '6.1.0.20'

 ProtocolInUse: 6.1

 ServiceType: 'real_time'

 IQFeedAccountExpiryDate: ''

The returned data struct includes the following data fields:162

 Timestamp – The timestamp of fetching the stats data

 Datenum – The numeric Matlab datenum value of the Timestamp

 ServerIP – IP address of the least loaded IQFeed Quote Server

 ServerPort – Port number for least loaded IQFeed Quote Server

 MaxSymbols – The maximum # of symbols that can be streamed simultaneously

 NumOfStreamingSymbols – # of symbols that are currently being streamed

 NumOfAvailableSymbols – # of symbols that are available for streaming

 NumOfClientsConnected – # of clients that are currently connected

 SecondsSinceLastUpdate – # of seconds since last update from the Quote Server

 NumOfReconnections – # of times that IQFeed successfully reconnected

162 http://iqfeed.net/dev/api/docs/AdminSystemMessages.cfm

http://iqfeed.net/dev/api/docs/AdminSystemMessages.cfm

155 IQML User Guide

 NumOfAttemptedReconnections – # of times IQFeed failed to reconnect

 StartTime – Time of latest connection/reconnection to IQFeed (local timezone)

 MarketTime – Current time of the market (market’s time-zone)

 ConnectionStatus – Represents whether IQFeed is connected or not

 IQFeedVersion – Represents the version of IQFeed that is running

 LoginID – The Login ID that is currently logged into IQFeed

 TotalKBsRecv – Total # of Kilobytes received by IQFeed from IQML (i.e.,

IQML commands/requests to IQFeed). Found in the “Internet Bandwidth”

section of the IQConnection Manager. Formula: total bytes received / 1024

 KBsRecvLastSecond – Found in the “Internet Bandwidth” section of the

IQConnection Manager. Formula: bytes received in the past second / 1024

 AvgKBsPerSecRecv – Found in the “Internet Bandwidth” section of the

IQConnection Manager. Formula: total KB's received / total seconds

 TotalKBsSent – Total # of Kilobytes sent from IQFeed to IQML (i.e., IQFeed

messages to IQML). Found in the “Local Bandwidth” section of the

IQConnection Manager. Formula: total bytes sent / 1024

 KBsSentLastSecond – Found in the “Local Bandwidth” section of the

IQConnection Manager. Formula: bytes sent in the past second / 1024

 AvgKBsPerSecSent – Found in the “Local Bandwidth” section of the

IQConnection Manager. Formula: total KB's sent / total seconds.

 TotalMsgsRcv – Total number of messages received from IQFeed

 Exchanges – A cell-array list of exchanges and news subscriptions for which

this IQFeed account is subscribed. Delayed data has 'DL-' prefix. For example:

{'DL-FTSE', 'EUREXNDX', 'DL-NYMEX', 'CBOENDX', 'BLOOMBERG',

'FOREX_PREMIUM', 'RT_TRADER', 'DTNNEWS', 'BENZINGA', 'INDEX'}

 ServerVersion – The server-recommended version of IQFeed. This version is

typically the same or higher than your locally-installed IQFeedVersion, except

in cases when you run a beta version of IQFeed.

 ProtocolInUse – The protocol version that IQML uses to communicate with

IQFeed (see §9.1 for details)

 ServiceType – Type of data provided for this account (delayed or real-time)

 IQFeedAccountExpiryDate – The IQFeed account expiry date: empty string for

regular IQFeed users; YYYYMMDD format for DTN trial users.

156 IQML User Guide

The 'stats' action has a single settable property: AddPortStats (default=0). If you set

this property to 1 or true, then additional stats will be returned, with extra

information on the connected data channels/ports (see the highlighted fields below):

>> data = IQML('stats', 'AddPortStats',1)

data =

 Timestamp: '20210203 12:57:30.653'

 Datenum: 738190.539938113

 ServerIP: '66.112.148.224'

 ServerPort: 60005

 MaxSymbols: 1300

 NumOfStreamingSymbols: 15

 NumOfAvailableSymbols: 1285

 NumOfClientsConnected: 4

 SecondsSinceLastUpdate: 0

 NumOfReconnections: 0

 NumOfAttemptedReconnections: 0

 StartTime: 'Apr 01 8:21PM'

 MarketTime: 'Apr 01 02:12PM'

 ConnectionStatus: 'Connected'

 IQFeedVersion: '6.0.0.5'

 LoginID: '464720-1'

 TotalKBsRecv: 69.44

 KBsRecvLastSecond: 0.04

 AvgKBsPerSecRecv: 0.02

 TotalKBsSent: 1470.32

 KBsSentLastSecond: 0.47

 AvgKBsPerSecSent: 0.48

 TotalMsgsRcv: 9530

 Exchanges: {1×16 cell}

 ServerVersion: '6.1.0.20'

 ProtocolInUse: 6.1

 ServiceType: 'real_time'

 IQFeedAccountExpiryDate: ''

 Level2: [1×1 struct]

 Level2SymbolsWatched: 2

 Lookup: [1×1 struct]

 RegionalSymbolsWatched: 2

 Admin: [1×1 struct]

 Level1: [1×1 struct]

 Level1SymbolsWatched: 0

>> data.Level1

ans =

 ConnectTime: '20180401 202111'

 KBsReceived: 0.74

 KBsSent: 70.58

 KBsQueued: 0

 EventsReceived: 17836

 EventsNotified: 17836

 EventsProcessed: 15267

 EventsIgnored: 2569

Note that it might take a few seconds for the additional port stats to arrive after the

initial command. If you don’t see the expected results immediately (i.e., if the

returned data-struct does not contain the channel/port sub-structs), simply resubmit

the query after 1-2 secs.

157 IQML User Guide

The returned data structs include the following fields for each data channel (port):163

 ConnectTime – Timestamp when this channel to IQFeed was first opened

 KBsReceived – Total # of Kilobytes sent from IQML to IQFeed via this

channel (requests for data queries etc.).

 KBsSent – Total # of Kilobytes sent from IQFeed to IQML via this channel.

This data transfer is typically much larger than KBsReceived – this is normal

and does not indicate a problem.

 KBsQueued – Total # of Kilobytes waiting in IQConnect to be sent to IQML via

this channel for processing. This value should typically be 0 (zero) – a

consistent non-zero value indicates that the Matlab program is unable to keep

up with the inflow of data from IQFeed, perhaps due to a high load on the

computer, or some heavy processing of the incoming data. If the value

increases over time, Matlab and your computer will eventually freeze and

become non-responsive, requiring a hard reset. See §3.6 for ways to speed-up

the processing time, in order to get KBsQueued back to 0.

 EventsReceived – Total # of messages received from IQFeed via this data port.

 EventsNotified – Total # of messages sent to IQML’s Matlab code to process.

This value will typically be the same as EventsReceived, except in cases of high

streaming data load, when OverflowMode=1 (see §6.1 for details).

 EventsProcessed – Total # of IQFeed messages processed by IQML. This value

will be less than EventsNotified in cases of high load, when OverflowMode=2.

 EventsIgnored – Total # of messages thet were ignored due to overflow protection.

This is the same as EventsReceived - EventsProcessed.

Corresponding information (except the fields on overflow handling) can also be seen

in IQConnect’s Diagnostics Utility, which is included in IQFeed’s client installation:

163 See §9.1 for a description of IQFeed’s data channels (ports)

158 IQML User Guide

9.4 Sending a custom command to IQFeed

You can send any custom command to IQFeed’s API, using the 'command' action.

For example, to send the 'S,TIMESTAMPSOFF' command,164 which stops IQFeed

from sending server timestamp messages every second:

>> IQML('command', 'String','S,TIMESTAMPSOFF')

IQFeed expects that users send commands to its API via specific channels (“ports”).

Each command is typically accepted only by the port for which it is defined. For

example, the 'S,TIMESTAMPSOFF' command is defined for the Level1 port,165

whereas the 'S,CLIENTSTATS OFF' command (which stops the IQFeed server from

streaming client stats messages) is defined for the Admin port.166 When you use

IQML’s standard actions you do not need to worry about which port handles which

command – this is automatically handled by IQML. But when you send a custom

command to IQFeed, you need to specify the port, if it is different from the default

('Level1'). In this specific example:

>> IQML('command', 'String','S,CLIENTSTATS OFF', 'PortName','Admin')

IQFeed is very picky about the spelling of the commands, including spaces and

casing. If the spelling is not exactly right, the command will be rejected by IQFeed,

possibly even without an error message. Unfortunately, IQFeed is not always

consistent in the format of the various commands. For example, the

'S,TIMESTAMPSOFF' command has no space, whereas the 'S,CLIENTSTATS OFF'

command does include a space; also, both of these commands are all-uppercase,

whereas the 'S,SET AUTOCONNECT,On' Admin command spells On/Off with

lowercase letters (and uses a comma instead of a second space).

In some cases, the command that is sent to IQFeed may result in data messages that

will be sent back from IQFeed, which should be received and processed. To do this,

you can set the ProcessFunc property to a custom callback function that will handle

these messages (see §10).

The following properties can be specified in IQML with the 'command' action:

Parameter Data type Default Description

String
string or cell-

array of strings
(none) The IQFeed command string(s).

PortName string 'Level1'

The IQFeed port that will process the

command(s). Must be one of the following:
 'Level1' (default)
 'Level2'
 'Lookup'
 'Admin'

ProcessFunc function handle []
Custom user callback function to process

incoming IQFeed data messages (see §10).

164 http://iqfeed.net/dev/api/docs/Level1viaTCPIP.cfm
165 http://iqfeed.net/dev/api/docs/Level1viaTCPIP.cfm

166 http://iqfeed.net/dev/api/docs/AdminviaTCPIP.cfm

http://iqfeed.net/dev/api/docs/Level1viaTCPIP.cfm
http://iqfeed.net/dev/api/docs/Level1viaTCPIP.cfm
http://iqfeed.net/dev/api/docs/AdminviaTCPIP.cfm

159 IQML User Guide

9.5 Modifying IQFeed’s registry settings

IQFeed stores its settings as keys in the HKEY_CURRENT_USER\Software\DTN\ path

of the Windows registry. Most of the important setting keys that a user might want to

modify are located within HKEY_CURRENT_USER\Software\DTN\IQFeed\Startup\.

These registry keys can be reviewed and modified using Window’s built-in Registry

Editor (regedit.exe) utility. As a convenient method to open the Registry Editor at the

correct path, use the IQML 'registry' action, which has no settable parameters:167

>> IQML('registry')

IQFeed’s key names are generally self-explanatory. In most cases you should leave the

settings unchanged. Some circumstances where you might want to modify certain keys

are discussed in §9.1 and §12.2. Key values can be modified by right-clicking the key

name and selecting “Modify…”:

Be EXTREMELY careful when editing the Windows registry: if you make a mistake

it could disable not only a specific program, but possibly even Windows itself,

rendering the computer useless. Never delete or rename keys, only modify their value.

If you are unsure which registry key to modify and how, ask DTN’s technical support.

167 Note: running Windows Registry Editor requires local computer Administrator priviledges (or elevation).

In Mac/Linux, IQML('registry') will naturally work only when Matlab runs under Parallels/Wine, not in native mode.

160 IQML User Guide

10 Attaching user callbacks to IQFeed messages

10.1 Processing IQFeed messages in IQML

IQFeed uses an asynchronous event-based mechanism for sending information to

clients. This means that we do not simply send a request to IQFeed and wait for the

answer. Instead, we send a request, and when IQFeed is ready it will send us one or

more (or zero) messages in response. Each of these messages evoke an event that

carry data (the message content and the originating IQFeed channel/port-name). By

analyzing the event data we (hopefully) receive the answer that we were waiting for.

Matlab has built-in support for asynchronous events, called callbacks in Matlab

jargon.168 Whereas Matlab callbacks are normally used in conjunction with Graphical

User Interfaces (GUI), they are also used with IQML, which automatically converts

all the IQFeed events into a Matlab callback invocation.

The callback that processes incoming IQFeed messages is constantly being “fired”

(i.e., invoked) by asynchronous messages from IQFeed, ranging from client stats and

time messages (once per second, for each of IQFeed’s 3 channels/ports), to system

messages (e.g. connection losses and reconnections), to error messages and responses

to market queries. Some of the events are triggered by user actions (market or

portfolio queries, for example), while others are triggered by IQFeed (e.g., client stats

once a second).

In addition to the regular IQML callback that processes all incoming IQFeed message

events, you can assign your own custom Matlab function that will be triggered

whenever a certain IQFeed message arrives. In all cases, the parameter controlling

this callback in IQML is called ProcessFunc.

There are two types of callbacks that you can use in IQML:

 Generic callback – this is a catch-all callback function that is triggered upon

any IQFeed message event. Within this callback, you would need to write

some code to distinguish between the different event types in order to process

the events’ data. A skeleton for this is given below.

 Specific callback – this is a callback function that is only triggered when the

specific event type is received from IQFeed. Since the event type is known,

you can process its event data more easily than in the generic callback case.

You can specify a different specific callback for each of the event types that

you wish to process, as well as a default callback that will be used for any

other event that was not assigned a specific callback.

When you specify any callback function to IQML, the command/action does not need

to be related to the callback. For example:

data = IQML('time', 'ProcessFunc',@IQML_Callback);

where IQML_Callback() is a Matlab function created by you that accepts two input

arguments, which are automatically populated in run-time:

168 http://www.mathworks.com/help/matlab/creating_guis/writing-code-for-callbacks.html

http://www.mathworks.com/help/matlab/creating_guis/writing-code-for-callbacks.html

161 IQML User Guide

 iqObject – this is currently an empty array. Future versions of IQML may

place an actual object in this argument.

 eventData – a Matlab struct that contains the event’s data in separate fields.

This struct includes the following fields:

o Timestamp – local time in Matlab numeric datenum format.

o MessagePort – the name of the IQFeed port that sent the message:

'Level1', 'Level2', 'Lookup' or 'Admin'.

o MessageType – the event type, which corresponds to the custom fields

that can be set in the ProcessFunc parameter for specific callbacks.

o MessageHeader – the first part of the message text string, that identified

the message type. This is typically used to set the MessageType field.

o MessageString – the message text string as received from IQFeed.

o MessageParts – processed parts of MessageString, as a cell-array.

An example of defining a Matlab callback function is:
function IQML_Callback(iqObject, eventData)

 % do callback processing here using the info in eventData

end

You can pass external data to your callback functions using the callback cell-array

format.169 For example, to pass two extra data values:
callbackDefinition = {@IQML_Callback, 123, 'abc'};

IQML('time', 'ProcessFunc',callbackDefinition);

function IQML_Callback(iqObject,eventData,extra1,extra2)

 % do callback processing here using the info in eventData, extra1, extra2

end

Here are examples of the eventData for two different IQFeed messages – a timestamp

message (sent from IQFeed once every second on the Level1 and Level2 ports), and a

connection stats message (sent from IQFeed once a second on the Admin port):
 Timestamp: 737128.675475417

 MessagePort: 'Level1'

 MessageType: 'Time'

 MessageHeader: 'T'

 MessageString: 'T,20180309 09:12:39'

 MessageParts: {'T' '20180309 09:12:39'}

 Timestamp: 737128.675479248

 MessagePort: 'Admin'

 MessageType: 'System'

 MessageHeader: 'S'

 MessageString: 'S,STATS,66.112.148.225,60002,1300,0,4,0,0,0,Mar 09

 3:10PM,Mar 09 09:12AM,Connected,5.2.7.0,464720-

 1,86.43,0.04,0.02,759.37,0.20,0.20'

 MessageParts: {1×20 cell}

All IQFeed messages typically begin with a single character followed by ‘,’, which

we call the MessageHeader, that identifies the MessageType. In the examples above, the

MessageHeader of the first message is 'T' (indicating a Time message), and in the

second message it is 'S' (indicating a System message).170

169 http://www.mathworks.com/help/matlab/creating_guis/writing-code-for-callbacks.html#brqow8p

170 An exception to this rule may happen if you send custom commands to IQFeed using the mechanism in §7.4. In such case, it is

possible that MessageHeader will not be a recognized or even a single character. It will have a MessageType of 'Other'.

http://www.mathworks.com/help/matlab/creating_guis/writing-code-for-callbacks.html#brqow8p

162 IQML User Guide

All the callbacks examples so far have set a generic callback that is used for all

incoming IQFeed messages. As noted above, you can also set specific callbacks for

specific messages. For example:
% Alternative #1: using the struct() function:

>> callbacks = struct('Time','disp TIME!', ...

 'System',@(h,e)disp(e.MessageString));

% Alternative #2: using direct field assignments:

>> callbacks.Time = 'disp TIME!';

>> callbacks.System = @(h,e)disp(e.MessageString);

>> IQML('time','processFunc',callbacks);

TIME!

TIME!

S,STATS,66.112.156.228,60002,1300,0,4,0,0,1,Mar 11 12:36PM,Mar 11

07:14AM,Connected,5.2.7.0,464720-1,51.51,0.04,0.02,516.30,0.23,0.23

TIME!

TIME!

S,STATS,66.112.156.228,60002,1300,0,4,0,0,1,Mar 11 12:36PM,Mar 11

07:14AM,Connected,5.2.7.0,464720-1,51.54,0.04,0.02,516.48,0.23,0.23

TIME!

In this example, we have set two separate custom callbacks for two different IQFeed

messages: the periodic timestamp messages and the periodic system update messages.

In addition to specific callbacks for specific message types, you can also set a

“Default” callback that will be invoked for each incoming IQFeed message that does

not have a specific callback assigned to it.

The following message types can be trapped, corresponding to the eventData’s

MessageType field (e.MessageType):

MessageType
Message

Header
Description

See

section

Fundamental F Fundamental asset data §4.2

Quote_summary P Quote summary message §4.1

Quote_update Q Quote update (tick) message §6.1

Market_depth Z Level2 market-depth update message §4.4, §6.4

Market_maker M Market maker information §4.4, §6.4

History H Historical data (one msg per bar/tick) §5

Regional R Regional update message §6.2

News N News data (one message per item) §7

End_of_data !ENDMSG!
Indicates end of the data with multiple
data items (e.g., history or news) §5, §7

Lookup s Lookup information message §8.1

Chain : Options/Futures chain §8.2

Time T Timestamp message (once a second) §9.2

System S System message (stats, once a sec) §9.3

Symbol_not_found_error n Indicates a symbol-not-found error §3.4

General_error E All other IQFeed-generated errors

Other All other IQFeed messages

Default
Any IQFeed message that does not
have a specific callback assigned to it

163 IQML User Guide

You can set individual callbacks to any of these MessageType values, by using the

MessageType value as a field-name in the ProcessFunc parameter. For example, to

process quote-update (tick) messages in a dedicated callback function:
>> callbacks.Quote_update = @IQML_Quote_Update_Callback;

>> IQML('time','ProcessFunc',callbacks);

Here is a more elaborate example, were we set different callbacks for different

message types, along with a default callback for all other message types:
% Alternative #1: using the struct() function:

>> callbacks = struct('Time','disp TIME!', ...

 'System',[], ... % ignore System messages

 'Quote_update',@IQML_Quote_Update_Callback, ...

 'Default',@IQML_Default_Callback);

% Alternative #2: using direct field assignments:

>> callbacks.Time = 'disp TIME!';

>> callbacks.System = []; % ignore System messages

>> callbacks.Quote_update = @IQML_Quote_Update_Callback;

>> callbacks.Default = @IQML_Default_Callback);

>> IQML('time','processFunc',callbacks);

When you specify any callback function to IQML, you only need to set it once, in any

IQML command. Unlike most IQML parameters, which are not remembered across

IQML commands and need to be re-specified, callbacks do not need to be re-

specified. They are remembered from the moment they are first set, until such time as

Matlab exits or the callback parameter is changed.

Note that it is not an error to re-specify the callbacks in each IQML command, it is

simply useless and makes the code less readable.

If an error occurs during the evaluation of your specified callback function, an error

message will be displayed in the Matlab console. In blocking mode (data=IQML(…)) a

Matlab exception will then be thrown, which can be trapped in the calling code using a

try-catch block (see §3.4 item 1); in non-blocking mode no exception will be thrown:
>> IQML('quotes','symbol','IBM','processFunc',struct('Quote_Summary',@myFunc))

20200330 11:02:55.510 error in user-defined callback (myFunc) for IQFeed

Quote_Summary message: Invalid argument in myFunc line 123

To reset all callbacks (i.e., remove any callback invocation), simply set the

ProcessFunc parameter value to [] (empty square brackets):
IQML('time', 'ProcessFunc',[]);

You can also set individual message callbacks to an empty value, in order to ignore

just these specific messages but not the other messages:
>> callbacks.Time = 'disp TIME!';

>> callbacks.System = []; % ignore System messages

>> callbacks.Default = @IQML_Default_Callback);

>> IQML('time','ProcessFunc',callbacks);

Matlab callbacks are invoked even if you issue a custom IQFeed command (see §9.4).

This can be very useful: you can send a request to IQFeed, and then process the

results in a Matlab callback function. However, note that in such a case, it is possible

that the returned message will contain a MessageHeader that will not be a recognized.

Such messages will be assigned a MessageType of 'Other'.

164 IQML User Guide

10.2 Run-time performance implications

It is very important to ensure that any callback function that you assign in IQML

completes in the fastest possible time. This is important for programming in general,

but it is especially important for IQML callbacks, which are invoked (executed) every

time that a new message arrives from IQFeed, numerous times each second.

As explained in §3.6, IQML’s standard callback processing has an overhead of 1-2

milliseconds per IQFeed message. This means that without any user-specified

callbacks, and without any other Matlab or other code running, IQML can typically

process up to 500-1000 IQFeed messages per second.

When you add your own user-defined callbacks, their processing time is added to

IQML’s. For example, if your callback takes an average of just 3 msecs to process

(which is quite fast), the total average message processing time will be 4-5 msecs.

This will lower IQML’s effective processing rate from 500-1000 messages/sec to just

200-250 messages/sec. The more callbacks and alerts that you define, and the longer

each of them takes to process, the lower IQML’s message processing rate will be.

The following specific tips may assist you to reduce the callback performance impact:

1. Ensure that you have enough physical memory to avoid memory swapping to

disk. This is probably the single most important tip to improve performance

2. Avoid setting user callbacks and alerts, or at least disable them when not needed.

3. Avoid setting a Default callback or a general ProcessFunc, but rather specific

callbacks only for the messages that you need (e.g. for News or Regional).

4. Limit the streaming data to just those events and symbols that are of interest to

you. For example, if you are only interested in the GOOG symbol, and set a

Quote_update callback, this callback will also be processed for streaming

quotes for other symbols, so it’s better to stop streaming those other symbols.

5. Minimize disk access: disk I/O is much slower than memory access. Save data

to memory and flush it to disk at the end of the trading day, or once in a while

(e.g. every 5 minutes), but not in each callback.

6. If you need to access disk files, use SSD (solid-state disk) rather than a

spinning hard-disk.

7. If you need to load data from disk, do it once and preserve the data in memory

using Matlab persistent or global variables, to be reused in callback calls.

8. Instead of re-computing values that are based on static data in each callback

call, compute once and cache results in Matlab persistent or global variables.

9. Use Matlab’s built-in Profiler tool171 to check your callback code for run-time

performance hotspots that can be optimized to run faster.

10. Read the textbook “Accelerating MATLAB Performance”,172 authored by

IQML’s creator (see §15.2), for numerous tips on improving Matlab run-time.

171 https://mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html

172 https://undocumentedmatlab.com/books/matlab-performance

https://mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html
https://undocumentedmatlab.com/books/matlab-performance

165 IQML User Guide

10.3 Usage example – using callbacks to parse options/futures chains

In this example, we request IQFeed to send the list of symbols in an options/futures

chain, then parse the incoming results to retrieve the symbols in the chain (see §8.2).

We first send the relevant command to IQFeed using IQML’s custom command

functionality (§9.4), specifying a custom callback function for the 'Chain'

MessageType:173

% Equity options chain for GOOG:

processFunc.Chain = @IQML_Chain_Callback;

>> IQML('command', 'String','CEO,GOOG,p,,1', 'PortName','lookup', ...

 'debug',1, 'ProcessFunc',processFunc)

 => 20180405 13:13:00.063 (lookup) CEO,GOOG,p,,1

 <= 20180405 13:13:00.574 (lookup) :,GOOG1806P1000,GOOG1806P1002.5,GOOG1806P1

005,GOOG1806P1007.5,GOOG1806P1010,GOOG1806P1012.5,GOOG1806P1015,GOOG1806P1017

.5,GOOG1806P1020,GOOG1806P1022.5,GOOG1806P1025,GOOG1806P1027.5,GOOG1806P1030,

GOOG1806P1032.5,GOOG1806P1035,GOOG1806P1037.5,GOOG1806P1040,GOOG1806P1042.5,G

OOG1806P1045,GOOG1806P1047.5,GOOG1806P1050,…,

 <= 20180405 13:13:00.578 (lookup) !ENDMSG!

% Future options chain for C:

>> IQML('command', 'String','CFO,C,p,,9,1', 'PortName','lookup', ...

 'debug',1, 'ProcessFunc',processFunc)

 => 20180405 13:31:48.677 (lookup) CFO,C,p,,9,1

 <= 20180405 13:31:49.149 (lookup) :,CH19P2000,CH19P2100,CH19P2200,CH19P2300,CH19

P2400,CH19P2500,CH19P2600,CH19P2700,CH19P2800,CH19P2900,CH19P3000,CH19P3100,CH19P

3200,CH19P3300,CH19P3400,CH19P3500,CH19P3600,CH19P3700,CH19P3800,CH19P3900,CH19P4

000,CH19P4100,CH19P4200,CH19P4300,CH19P4400,CH19P4500,CH19P4600,CH19P4700,CH19P48

00,CH19P4900,CH19P5000,CH19P5100,CH19P5200,CH19P5300,CH19P5400,CH19P5500,CH19P560

0,CH19P5700,CH19P5800,CH19P5900,CH19P6000,CH19P6100,CH19P6200,CH19P6300,CH19P6400

 <= 20180405 13:31:49.158 (lookup) !ENDMSG!

The custom callback function may look something like this:

function IQML_Chain_Callback(iqObject,eventData)

 symbols = eventData.MessageParts(2:end); %discard the ':' message header

 % now do something useful with the reported symbols...

end

173 Note that we have set Debug=1 in this example purely to illustrate the incoming IQFeed message format; it would not be

used in a typical run-time program.

166 IQML User Guide

10.4 Usage example – using callbacks for realtime quotes GUI updates

In this example, we wish to update a real-time ticker window with the latest

streaming quotes data. The idea is to create a minimalistic window and update its title

with the symbol name and latest trade price, whenever a new tick arrives.

The code relies on the format of IQFeed’s Quote_update (Q) message, which by default

is a 16-element cell array: {Symbol, Most_Recent_Trade, Most_Recent_Trade_Size,

Most_Recent_Trade_Time, Most_Recent_Trade_Market_Center, Total_Volume, Bid, Bid_Size, Ask,

Ask_Size, Open, High, Low, Close, Message_Contents, Most_Recent_Trade_Conditions}:
>> processFunc = struct('Quote_Update', @Quote_Update_Callback);

>> IQML('quotes', 'symbol','@VX#', 'numofevents',100, ...

 'ProcessFunc',processFunc, 'debug',1)

 => 20180411 12:03:40.131 (Level1) w@VX#

 <= 20180411 12:03:40.391 (Level1) F,@VX#,20,,,28.05,12.85,,,,,,,,,,,,,,,,,,CBOE …

 <= 20180411 12:03:40.409 (Level1) P,@VX#,20.61,,04:52:29.711000,32,5668,20.60,50,

 20.65,87,20.20,20.70,20.15,20.18,Cbasohlcv,4D

 <= 20180411 12:03:44.887 (Level1) Q,@VX#,20.61,,04:52:29.711000,32,5668,20.60,50,

 20.65,86,20.20,20.70,20.15,20.18,a,4D

In our case, we are only interested in the 1st (Symbol) and 2nd (Most_Recent_Trade)

elements of the 'Q' update messages:
eventData =

 Timestamp: 737161.502602859

 MessagePort: 'Level1'

 MessageType: 'Quote_Buffer'

 MessageHeader: 'Q'

 MessageString: 'Q,@VX#,20.61,,04:52:29.711000,32,5668,20.60,50,20.65,86,

 20.20,20.70,20.15,20.18,a,4D'

 MessageParts: {'@VX#' 20.61 [] '04:52:29.711000' 32 5668 20.6 50

 20.65 86 20.2 20.7 20.15 20.18 'a' '4D'}

The corresponding callback function will be:
function Quote_Update_Callback(iqObject, eventData)

 % Symbol is 1st data element of IQFeed 'Q' messages
 symbol = eventData.MessageParts{1};

 % Last trade price is 2nd data element of the IQFeed 'Q' messages

 latestTrade = eventData.MessageParts{2};

 % Get the handle for this symbol's ticker window

 hFig = findall(0, 'Tag',symbol, '-depth',1);

 if isempty(hFig)

 % Ticker window not found, so create it

 hFig = figure('Tag',symbol, 'Position',[300,300,250,1], ...

 'Resize','off', 'NumberTitle','off', ...

 'Menu','none', 'Toolbar','none',);

 end

 % Update the ticker window's title

 hFig.Name = sprintf('%s: %.2f', symbol, latestTrade);

end

And the resulting ticker window will look like this:

As noted in §6.1, tick events may be sent at a very high rate from the IQFeed server.

So instead of updating the GUI with each tick, you may want to use a periodic Matlab

timer having a Period of 0.5 [secs], that will invoke a timer callback, which will call

IQML(…,'NumOfEvents',-1) to fetch the latest data and update the GUI.

167 IQML User Guide

10.5 Usage example – using callbacks for realtime order-book GUI updates

In this example, we wish to update a real-time GUI display of the order-book (at least

the top few rows of the book).

Note: Market Depth (Level 2) data is only available in the Professional IQML license.

As noted in §6.4, market-depth events may be sent at a very high rate from the

IQFeed server, and so it is not feasible or useful to update the Matlab GUI for each

update. Instead, we update the GUI with the latest data at a steady rate of 2 Hz (twice

a second). This can be achieved in two different ways: one alternative is to set-up a

periodic timer that will run our GUI-update callback every 0.5 secs, which will call

IQML(…,'NumOfEvents',-1) to fetch the latest data and update the GUI.

Another alternative, shown here below (also downloadable174), is to attach a user

callback function to Level 2 market-depth messages, updating an internal data struct,

but only updating the GUI if 0.5 secs or more have passed since the last GUI update:

% IQML_MktDepth - sample Market-Depth usage function

function IQML_MktDepth(symbol)

 % Initialize data

 numRows = 10;

 depthData = cell(numRows,8);

 lastUpdateTime = -1;

 GUI_refresh_period = 0.5 * 1/24/60/60; % =0.5 secs

 % Prepare the GUI

 hFig = figure('Name','IQML market-depth example', ...

 'NumberTitle','off','CloseReq',@figClosedCallback,...

 'Menubar','none', 'Toolbar','none', ...

 'Resize','off', 'Pos',[100,200,660,260]);

 color = get(hFig,'Color');

 headers = {'Ask valid','Ask time','Ask size','Ask price', ...

 'Bid price','Bid size','Bid time','Bid valid'};

 formats = {'logical','char','numeric','long', ...

 'long','numeric','char','logical'};

 hTable = uitable('Parent',hFig, 'Pos',[10,40,635,203], ...

 'Data',depthData, 'ColumnName',headers, ...

 'ColumnFormat',formats, ...

 'ColumnWidth',{60,100,80,80,80,80,100,60});

 hButton = uicontrol('Parent',hFig, 'Pos',[50,10,60,20], ...

 'String','Start', 'Callback',@buttonCallback);

 hLabel1 = uicontrol('Parent',hFig, 'Pos',[120,10,100,17], ...

 'Style','text', 'String','Last updated:', ...

 'Horizontal','right', 'Background',color);

 hLabelTime = uicontrol('Parent',hFig, 'Pos',[225,10,100,17], ...

 'Style','text', 'String','(not yet)', ...

 'Horizontal','left', 'Background',color);

 % Send the market-depth request to IQFeed using IQML

 contractParams = {'symbol',symbol}; % symbol='@ES#'

 callbacks = struct('Market_depth',@mktDepthCallbackFcn);

 IQML('marketdepth', contractParams{:}, 'processFunc',callbacks);

174 https://UndocumentedMatlab.com/files/IQML/IQML_MktDepth.m

https://undocumentedmatlab.com/files/IQML/IQML_MktDepth.m

168 IQML User Guide

 % Figure close callback function - stop market-depth streaming

 function figClosedCallback(hFig, ~)

 % Delete figure window and stop any pending data streaming

 delete(hFig);

 IQML('marketdepth', contractParams{:}, 'numofevents',0);

 end % figClosedCallback

 % Start/stop button callback function

 function buttonCallback(hButton, ~)

 currentString = get(hButton,'String');

 if strcmp(currentString,'Start')

 set(hButton,'String','Stop');

 else

 set(hButton,'String','Start');

 end

 end % buttonCallback

 % Callback functions to handle IQFeed Market Depth update events

 function mktDepthCallbackFcn(~, eventData)

 % Ensure that it's the correct MktDepth event

 allMsgParts = strsplit(eventData.MessageString,',');

 allMsgParts(strcmpi(allMsgParts,'T')) = {true};

 allMsgParts(strcmpi(allMsgParts,'F')) = {false};

 if strcmp(eventData.MessagePort,'Level2') && ...

 strcmp(allMsgParts{2},symbol)

 % These are the field names of the IQFeed messages

 inputParams = {'Intro','Symbol','MMID',...

 'Bid','Ask','BidSize','AskSize',...

 'BidTime','Date','ConditionCode',...

 'AskTime','BidInfoValid',...

 'AskInfoValid','EndOfMsgGroup'};

 % Get the updated data row

 % Note: Java indices start at 0, Matlab starts at 1

 mmid = allMsgParts{strcmpi(inputParams,'MMID')};

 row = sscanf(mmid,'%*c%*c%d');

 % Get the size & price data fields from the event's data

 bidValid = allMsgParts{strcmpi(inputParams,'BidInfoValid')};

 askValid = allMsgParts{strcmpi(inputParams,'AskInfoValid')};

 bidTime = allMsgParts{strcmpi(inputParams,'BidTime')};

 askTime = allMsgParts{strcmpi(inputParams,'AskTime')};

 bidSize = allMsgParts{strcmpi(inputParams,'BidSize')};

 askSize = allMsgParts{strcmpi(inputParams,'AskSize')};

 bidPrice = allMsgParts{strcmpi(inputParams,'Bid')};

 askPrice = allMsgParts{strcmpi(inputParams,'Ask')};

 thisRowsData = {askValid,askTime,askSize,askPrice,...

 bidPrice,bidSize,bidTime,bidValid};

 depthData(row,:) = thisRowsData;

 % Update the GUI if more than 0.5 secs have passed and

 % the <Stop> button was not pressed

 if ~isvalid(hButton), return, end

 isStopped = strcmp(get(hButton,'String'),'Start');

 if now - lastUpdateTime > GUI_refresh_period && ~isStopped

 set(hTable,'Data',depthData);

 set(hLabelTime,'String',datestr(now,'HH:MM:SS'));

 lastUpdateTime = now;

 end

 end

 end % mktDepthCallbackFcn

end % IQML_MktDepth

169 IQML User Guide

170 IQML User Guide

11 Alerts

11.1 General Usage

In cases where certain events in steaming data are of interest to the user, IQML can

generate alerts of these events as they arrive from IQFeed. The user can define the

event data type, the trigger condition, and the type of alert to generate when the

condition is met. For example, users may configure an alert on quotes, such that when

a symbol’s bid price is higher than some threshold, an email will be sent.

Each alert contains 3 components:

 Data type – quote, intervalbar, regional or news

 Trigger – a condition (typically a comparison between a field and a value)

 Action – what IQML should do when the trigger condition is met

Alerts are created using the 'alert' action. Each new alert is assigned a unique

numeric ID. Using this ID, users can query, delete or edit the alert after it was created.

The following parameters affect the alerts. Detailed explanations and usage examples

are listed in the following sections.

Parameter Data type Default Description

Symbol or

Symbols 175

colon or

comma-

delimited

string or

cell-array

of strings

(none)

Limits the alert to the specified symbols

and meta-tags only. Examples:

 'IBM'

 'IBM:AAPL:GOOG'

 'IBM,AAPL,GOOG'

 {'IBM', 'AAPL', 'GOOG'}

Optional parameter for news alerts;
mandatory for quote/intervalbar alerts

Trigger

string

describing

the alert

trigger

(none)

– must be

defined for

new alerts!

A string composed of the data type,

triggering parameter, trigger operator and

triggering value, separated by spaces.

Examples:

 'quote bid >= 102.60'

 'intervalbar close < 80'

 'news text contains IPO'

AlertAction

string,

function

handle, or

callback

cell array

(none)

– must be

defined for

new alerts!

Type of alert to generate. Options: 176

 'display'

 'popup'

 'email' (requires specifying the
EmailRecipients parameter)

 @myCallbackFcn

 {@myFcn, data1, data2, …}

175 In IQML, the Symbol and Symbols parameters are synonymous – you can use either of them, in any capitalization

176 Note the performance implications that are discussed in §3.6 and §10.2

171 IQML User Guide

Parameter Data type Default Description

NumOfEvents integer 1

Maximal # of times to be alerted of the

defined event. NumOfEvents = -1 returns

a list of all existing alerts.

StartStream
logical

(true/false)
false

If false (default), data streaming needs to be

started by the user in a separate command.

If true and relevant data streaming is not

currently active, IQML starts the data

streaming automatically (see §11.2).

AlertID

integer

(scalar or

array)

[]

(empty

array)

Unique ID generated and returned by

IQML when new alert is defined.

AlertID is relevant (and mandatory) only

for querying, editing or deletion of

existing alerts. See §11.3 and §11.4.

GetStory
logical

(true/false)
true

If true (default), the full story text is

fetched and reported with each news alert

via email/callback;

if false, only headline data will be reported.

GetStory is relevant only for news alerts

with AlertAction='email' or callback.

EmailRecipients

comma-

delimited

string or

cell-array

of strings

''

(empty

string)

Email addresses to which email alerts will

be sent. This parameter is relevant (and

mandatory) only for email alerts. Examples:
 'john@doe.com'

 'john@doe.com, jane@doe.com'

 {'john@doe.com', 'jane@doe.com'}

SmtpEmail string
'iqml.alerts@

gmail.com'

SMTP e-mail address from which alert

emails will be sent.

This parameter is relevant only for

specifying a non-default email sender.

SmtpEmail only needs to be set once,

and is used by all future IQML alert events.

SmtpServer string (none)

SMTP server that will send alert emails.

This parameter is relevant only for

specifying a non-default email sender.

SmtpServer only needs to be set once,

and is used by all future IQML alert events.

SmtpPassword string (confidential)

Password of the sender’s e-mail account.

This parameter is relevant only for

specifying a non-default email sender.

SmtpPassword only needs to be set once,

and is used by all future IQML alert events.

Note: Alerts are only available in the Professional IQML license.

172 IQML User Guide

11.2 Alert Configuration

Alerts can be configured by the user using the 'alert' action, using the properties in

the table above. Users can configure the data type, event trigger, maximal number of

alert reports, and the type of alert to generate (email, pop-up message, etc.). For email

alerts, users can also specify the recipients and the sender email account.

The Trigger parameter is the most important input, and is unique to the 'alert'

action. It is a string describing the alert trigger event, so it is very important that it be

composed properly. The Trigger string has 4 elements:

1. Data type ('quote', 'intervalbar', 'news' or 'regional')

2. Trigger field: case-insensitive name of a field in the latestData struct of the

source data specified by the Data type (see §6.1, §6.3). For example: 'bid',

'ask', 'total_volume', 'Most_Recent_Trade', 'intervalVolume', 'text', etc.

3. Trigger operator ('>', '>=', '<', '<=', '=', or 'contains').177

 '>', '<', '>=', '<=' are only relevant for non-news alerts (but not for news)

 '=' and 'contains' are relevant for all alert types (including news)

4. Trigger value: either a scalar number (for a '>', '>=', '<', '<=', or '=' operator) or

a string (for a '=' or 'contains' operator).

For example:

alertId = IQML('alert', 'Symbol','IBM', 'Trigger','quote ask < 145.70', ...);

alertId = IQML('alert', 'Symbol','IBM', 'Trigger','quote Total_Volume >= 10', ...);

alertId = IQML('alert', 'Symbol','IBM', 'Trigger','news text contains IPO', ...);

By default, alerts are only triggered and reported once. This can be changed by setting

the NumOfEvents parameter to an integer value. For example, the following alert

will be reported up to 5 times, and will then be deleted from the list of alerts:

alertId = IQML('alert', 'Symbol','IBM', ..., 'NumOfEvents',5);

IQML does NOT automatically start streaming data when alerts are defined. This

enables users to start and stop streaming data at will, and the alerts will only be

evaluated when streaming data messages arrive from IQFeed.

Note: if you use a Data type of 'quote', then depending on the setting of the Fields

parameter in your latest quotes query (§4.1), the requested alert Trigger field might

not exist in the streaming quotes, causing the alert to become ineffective. IQML does

not automatically update Fields with the requested Trigger field. When such a case is

detected, a warning message will be presented:

Warning: Field 'VWAP' is not currently included in your quotes Fields

parameter, making the requested alert useless

It is sometimes convenient to start streaming immediately when the alert is created.

This can be done by setting the StartStream parameter (default: false). Setting a

value of true starts the streaming for the corresponding data type (e.g., streaming

quotes for a symbol) automatically, unless the streaming is already active.

177 Additional trigger operators may be added in future IQML releases.

173 IQML User Guide

Note that with StartStream=true, the streaming is started automatically, using the

default parameters. If you wish to control the streaming parameters (for example,

NumOfEvents or DataType), leave StartStream in its default false value, and start

the streaming in a separate IQML command.

The AlertAction defines the action to be performed when a triggering event is detected

(i.e., when the trigger condition is met). There are 4 possible AlertAction values:

'popup', 'display', 'email', and callback (note the performance discussion in §3.6, §10.2):

1. 'Popup' announces the triggered event in a pop-up a message-box:

alertId = IQML('alert', 'Symbol','@VX#', 'Trigger','quote bid > 14.75', ...

 'AlertAction','popup');

2. 'Display' announces the event in Matlab’s console (Command Window):

alertId = IQML('alert', 'Symbol','@VX#', 'Trigger','quote bid > 14.75', ...

 'AlertAction','display');

04:50:11.099000 IQML alert: @VX# bid (14.8) > 14.75

Or, as another example of regional update alert:

alertId = IQML('alert', 'Symbol','IBM', 'AlertAction','display', ...

 'Trigger', 'regional regionalbid > 140');

20180524 16:57:13.689 IQML alert: IBM regionalbid (143.75) > 140

3. 'Email' – an email with the alert event’s details will be sent to the specified

EmailRecipients, a mandatory parameter for email alerts. EmailRecipients

must be set as a comma/semi-colon/colon delimited string, or a cell array of

email addresses; it cannot be left empty.

For example, the following alert will send an email to two email recipients:

alertId = IQML('alert', 'Symbol','@VX#', 'Trigger','quote bid > 14.75', ...

 'AlertAction','email', ...

 'EmailRecipients',{'john@a.com','jane@b.com'});

which results in an email similar to this:

From: iqml.alerts@gmail.com

Subject: IQML alert: @VX# bid (14.8) > 14.75

Body:

 Symbol: '@VX#'

 Most_Recent_Trade: 14.82

 Most_Recent_Trade_Size: 10

 Most_Recent_Trade_Time: '08:40:02.926510'

 Most_Recent_Trade_Market_Center: 32

 Total_Volume: 6890

 Bid: 14.8

 ...

mailto:iqml.alerts@gmail.com

174 IQML User Guide

or similarly, in the case of a news alert:
From: iqml.alerts@gmail.com

Subject: IQML alert: United Technologies Plans To Hire 35,000 People, Make

$15 B... (RTB)

Body:

 ID: 22017029634

 Symbols: {'UTX'}

 Text: '09:31 Wednesday, May 23, 2018. (RTTNews) - United Technologies

Plans To Hire 35,000 People, Make $15 Bln Investment In U.S. Over Next 5 Years

For comments and feedback: contact editorial@rttnews.com. Copyright(c) 2018

RTTNews.com. All Rights Reserved'

For news alerts, the full story text is fetched by default. It is possible to skip

fetching the full story by setting GetStory to false. This speeds up processing

by skipping the news-fetch query, and reports only the headline information:

From: iqml.alerts@gmail.com

Subject: IQML alert: United Technologies Plans To Hire 35,000 People, Make

$15 B... (RTB)

Body:

 Source: 'RTB'

 ID: 22017029634

 Symbols: {'UTX'}

 Timestamp: '20180523 093143'

 Text: 'United Technologies Plans To Hire 35,000 People, Make $15 B...'

As noted, EmailRecipients can be specified in various manners. For example,

all the following are equivalent:
 'EmailRecipients','john@a.com,jane@b.com'

 'EmailRecipients','john@a.com;jane@b.com'

 'EmailRecipients',{'john@a.com','jane@b.com'}

Alert emails are sent from an IQML email address (iqml.alerts@gmail.com)

by default. To send the alert emails from another sender (for example, a

corporate email account), specify the SmtpEmail, SmtpServer and

SmtpPassword.178 These parameters are saved in your local machine’s

Matlab settings, and will be used by all future IQML email alerts (even after

you restart the computer), so you only need to set them once. For example:
alertId = IQML('alert', 'Symbol','GOOG', 'Trigger','quote ask < 1090', ...

 'AlertAction','email', 'Recipients','JohnDoe@gmail.com', ...

 'SmtpServer','smtp.gmail.com', ...

 'SmtpEmail','senderEmail@gmail.com', ...

 'SmtpPassword','mypassword123');

On modern smartphones, text (SMS) messages have generally been replaced

with email push notifications. Still, for some users text alerts may be useful.

Some mobile operators enable users to receive text messages by sending them

to a specially-formed email address.179 For example, to send a text message

alert to T-Mobile number 123-456-7890 in the USA, simply email the alert to

1234567890@tmomail.net. To receive alerts via such text messages, you just

need to determine your mobile carrier’s email gateway for SMS messages,

and set EmailRecipients accordingly. Note that carrier charges might apply.

178 The SMTP port is automatically assumed to be 465. If you use Google’s mail server (smtp.gmail.com), the account must

allow access from "less secure apps" (https://myaccount.google.com/lesssecureapps). Note that anti-virus or firewall
software may possibly block the outgoing emails (in such cases you may see a “PKIX path building” error).

179 https://en.wikipedia.org/wiki/SMS_gateway#Email_clients

mailto:iqml.alerts@gmail.com
mailto:editorial@rttnews.com
mailto:iqml.alerts@gmail.com
mailto:iqml.alerts@gmail.com
mailto:1234567890@tmomail.net
https://myaccount.google.com/lesssecureapps
https://en.wikipedia.org/wiki/SMS_gateway#Email_clients

175 IQML User Guide

4. Callback: a personalized callback function for an event can be specified using

a Matlab function handle. For example:

alertId = IQML('alert', 'Symbol','GOOG', 'Trigger','…', 'AlertAction',@myFunc);

The callback function (myFunc in this example) should accept two or more

inputs, as customary for Matlab callbacks:180

function myFunc(alertObject, eventData)

 alertObject – a struct with the alert’s configuration (see §11.3)

 eventData – a struct with the triggered event’s local time (in Matlab

datenum format) and the trigger data.

For example, for quote data alerts, eventData might look like this:

>> eventData =

 triggerTime: 737202.663148947

 triggerData: [1×1 struct]

>> eventData.triggerData

ans =

 Symbol: 'GOOG'

 Most_Recent_Trade: 1083

 Most_Recent_Trade_Size: 30

 Most_Recent_Trade_Time: '08:54:53.159809'

 Most_Recent_Trade_Market_Center: 11

 Total_Volume: 1957

 ...

To specify additional input parameters to your callback function, set

AlertAction to a cell array in which the first cell is the function handle and

the rest are additional inputs. For example:

callback = {@myFunc, data1, data2};

alertId = IQML('alert', 'Symbol','GOOG', 'Trigger','…', 'AlertAction',callback);

function myFunc(alertObject, eventData, data1, data2)

 ... % data processing done here

end

180 https://www.mathworks.com/help/matlab/creating_plots/callback-definition.html;

https://www.mathworks.com/help/matlab/creating_guis/write-callbacks-using-the-programmatic-workflow.html#f16-1001315

https://www.mathworks.com/help/matlab/creating_plots/callback-definition.html
https://www.mathworks.com/help/matlab/creating_guis/write-callbacks-using-the-programmatic-workflow.html#f16-1001315

176 IQML User Guide

11.3 Alerts Query

IQML can be queried for the list of all existing alerts, or just a single specific alert.

Alerts are returned in this case as Matlab structs containing the alerts’ specifications.

Specific alerts may be queried by specifying their unique AlertID (which was

returned by the command that created the alert), and setting NumOfEvents to -1:

>> alertID = IQML('alert', 'Symbol','IBM', 'Trigger','quote bid > 200',…);

>> alert = IQML('alert', 'AlertID',alertID, 'NumOfEvents',-1)

alert =

 struct with fields:

 AlertID: 22120136109

 isActive: 1

 DataType: 'quote'

 Trigger: 'bid > 200'

 TriggerType: 'bid'

 TriggerOp: '>'

 TriggerValue: '200'

 Symbol: {'IBM'}

 AlertAction: 'popup'

 EmailRecipients: {}

 EventsProcessed: 0

 EventsToProcess: 1

 LatestValue: []

The AlertID parameter can be an array of alert IDs, resulting in an array of structs.

To retrieve the list of all the existing alerts, simply set NumOfEvents to -1, without

specifying the AlertID parameter:

>> allAlerts = IQML('alert', 'NumOfEvents',-1)

allAlerts =

 3×1 struct array with fields:

 AlertID

 isActive

 DataType

 Trigger

 TriggerType

 TriggerOp

 TriggerValue

 Symbol

 AlertAction

 EmailRecipients

 EventsProcessed

 EventsToProcess

 LatestValue

11.4 Alert Editing or Deletion

An existing alert can be edited or deleted by specifying its AlertID:

To delete an alert, set NumOfEvents to 0 as follows:

IQML('alert', 'AlertID',alertID, 'NumOfEvents',0);

To update/edit an alert, specify AlertID with one or more of the alert configuration

parameters: Symbols, Trigger, AlertAction, EmailRecipients, NumOfEvents (>1).

IQML('alert', 'AlertID',alertID, 'AlertAction','email', 'EmailRecipients','john@a.com');

As above, the AlertID input can be an array of IDs, affecting multiple alerts at once.

177 IQML User Guide

12 Messages and logging

12.1 IQML messages

To display detailed information on IQML requests and IQFeed messages, set IQML’s

Debug parameter to 1 or true (default=0). IQML will then display in the Matlab console

(Command Window) additional information that may help diagnose problems.

For example, setting Debug to 1 (or true) displays the outgoing commands from

IQML to IQFeed (“=>”), and incoming messages from IQFeed to IQML (“<=”), along

with the message’s local timestamp and port channel:181

>> data = IQML('news' ,'DataType','headlines', 'MaxItems',4, 'debug',1)

 => 20180401 15:14:00.010 (Lookup) NHL,,:,t,5,,

 <= 20180401 15:14:01.082 (Lookup) N,CPR,21998204468,,20180401080059,

Following Is a Test Release

 <= 20180401 15:14:01.086 (Lookup) N,RTI,10134529069,,20180401080029,

Quarterly Corporate Earnings (04/01/18)

 <= 20180401 15:14:01.092 (Lookup) N,CPR,21998201110,,20180401073059,

Following Is a Test Release

 <= 20180401 15:14:01.098 (Lookup) N,CPR,21998197500,,20180401070059,

April 1 Alert: Introducing, Duty Not Free: Pay-as-you-go toilet time

 <= 20180401 15:14:01.107 (Lookup) !ENDMSG!

>> data = IQML('quotes', 'symbol','FB', 'debug',1)

 => 20180401 17:20:29.189 (Level1) wFB

 <= 20180401 17:20:29.450 (Level1)

F,FB,5,29.1,50158000,195.3200,138.8100,195.3200,149.0200,0.0000,,,,,,

,,,,5.49,,2.52,12,,FACEBOOK,FB,47.600,0.63,,48563.0,3760.0,12/31/2017

,,2905001,,,,,,14,4,7375,36.25,1,21,02/01/2018,04/11/2017,02/01/2018,

03/26/2018,176.4600,,,,,519190,,,

 <= 20180401 17:20:29.462 (Level1)

P,FB,160.0500,50000,19:59:56.263577,11,0,160.0500,4600,160.0600,200,,

,,159.7900,Cbacv,8801

 => 20180401 17:20:29.471 (Level1) rFB

In order to log such messages in a text file, you can use IQFeed’s built-in logging

facility, as described below (§12.2).

In certain cases, IQML reports messages as red error messages on the Matlab console.

Such messages can be handled by analyzing IQML’s second (optional) output

argument, which is typically an empty string, except when an error is reported:

>> [data, errorMsg] = IQML('quotes', 'Symbol','IBM', 'Timeout',0.1)

IQML timeout: either IQFeed has no data for this query, or the Timeout

parameter should be set to a value larger than 0.1

data =

 []

errorMsg =

 'IQML timeout: either IQFeed has no data for this query, or the Timeout

parameter should be set to a value larger than 0.1'

Users can control whether such error messages from IQFeed should raise a Matlab

error (exception) in blocking (non-streaming) mode, using the RaiseErrorMsgs

parameter (default: true when the errorMsg output arg is not requested; false otherwise)

>> data = IQML('quotes', 'Symbol','IBM', 'RaiseErrorMsgs',false);

181 Periodic IQFeed timestamp and client-stats messages (once every second) are not displayed, even when Debug is 1 or true.

For a description of the various port channels used by IQFeed, see §9.1

178 IQML User Guide

When RaiseErrorMsgs is true (the default value) and no second output argument is

requested in the IQML query, then run-time errors that occur during IQML’s

processing will raise a Matlab error (exception). In such cases, the error message will

typically include some context information that may assist you in locating the cause:

Error using IQML

The Symbol parameter is mandatory for 'history' requests.

when calling: IQML('history')

called from: C:\Yair\Utils\Matlab\test.m line 3

Error using IQML

IQFeed error: Symbol 'XXXXX' is invalid/unavailable!

when calling: IQML('quotes','Symbol','XXXXX')

called from: C:\Yair\Utils\Matlab\test.m line 5

In addition to IQFeed messages, your program must handle cases of IQML errors. In

most cases, these are due to invalid IQML input parameters (an invalid action or

parameter name, or an invalid parameter value). Errors might also happen due to

network problems, or even an internal bug due to an unhandled edge-case situation.

To trap and handle such programmatic exceptions, wrap your calls to IQML within a

try-catch block, as follows:

try

 data = IQML('action','query', ...);

catch err

 % process the error exception here, based on the contents of err

end

Try-catch blocks have very small performance or memory overhead and are a very

effective way to handle programmatic errors. We recommend that you use them in

your program, not just to wrap IQML calls but also for other processing tasks. I/O sections

in particular (reading/writing files) are prone to errors, so they are prime candidates

for such exception handling. The same applies for code that handles user inputs (we

can never really be too sure what invalid junk a user might enter in there, can we?).

Very common causes of errors when using IQML are relying on default parameter

values, and specifying numeric parameter values within string quotes (e.g., ‘1’ rather

than 1). Users of IQML should take extra precaution in their programs to ensure that

these common mistakes do not occur. See the discussion in §3.4.

Matlab “out of memory” errors might occur when receiving and storing a huge

amount of streaming or historic data. They can be fixed by running IQML on a

computer having more memory, or by reducing the amount of stored data.182

Java memory errors are recognized by the message “java.lang.OutOfMemoryError:

Java heap space”. They can be solved by running Matlab with more allocated Java

heap memory than the default value of 64MB or 128MB (depending on Matlab

release). This value can be increased in Matlab’s preferences, or via a java.opts file.183

182 Also see: http://www.mathworks.com/help/matlab/matlab_prog/resolving-out-of-memory-errors.html
183 https://www.mathworks.com/matlabcentral/answers/92813-how-do-i-increase-the-heap-space-for-the-java-vm-in-matlab-6-0-

r12-and-later-versions

http://www.mathworks.com/help/matlab/matlab_prog/resolving-out-of-memory-errors.html
https://www.mathworks.com/matlabcentral/answers/92813-how-do-i-increase-the-heap-space-for-the-java-vm-in-matlab-6-0-r12-and-later-versions
https://www.mathworks.com/matlabcentral/answers/92813-how-do-i-increase-the-heap-space-for-the-java-vm-in-matlab-6-0-r12-and-later-versions

179 IQML User Guide

12.2 IQFeed logging

IQFeed requests, messages and events (e.g. connections/disconnections), are logged in

IQFeed’s log. This is a text file called “IQConnect.txt” in the \DTN\IQFeed subfolder of

“My Documents”, e.g. C:\Users\<xyz>\Documents\DTN\IQFeed\IQConnectLog.txt

(replace <xyz> with the actual user name in your computer).

Using IQFeed’s Diagnostic Utility, which is installed as part of IQFeed’s client

installation, you can control the log file’s folder path (but not its IQConnectLog.txt

name, which is fixed), as well as the logged details:

Running IQML('log') without any parameters will return a Matlab struct containing the

current log settings (the struct fields are explained below):184
>> data = IQML('log')

data =

 struct with fields:

 logDetails: [1 0 0 0 0]

 logFile: 'C:\Users\Yair\Documents\DTN\IQFeed\IQConnectLog.txt'

In addition to interactively using the Diagnostic Utility to modify the log file path and

logging details, you can also control them programmatically, via IQML’s 'log' action:

We can modify the log file’s folder path using the Path parameter, for example:
IQML('log', 'path','C:\My Programs\Logs\')

Note: Path sets the log file’s folder – not its name. As mentioned above, IQFeed’s log

file name is fixed (IQConnectLog.txt) and cannot be modified, only its folder can be

changed. As a safety measure, IQML will complain if the specified Path does not exist:
>> IQML('log', 'path','C:\No\Such\Folder')

Error using IQML

Bad log path specified: "C:\No\Such\Folder" is not an existing folder

184 Note: the IQML('log') feature uses IQFeed’s Windows registry. In Mac/Linux, IQML('log') will naturally work only when

Matlab runs under Parallels/Wine, not in native mode.

180 IQML User Guide

When setting the log Path, the IQML command will return a Matlab struct with the log’s

old filename (prior folder name and the fixed name IQConnect.txt). You can use this to

restore the original log path after temporarily redirecting logging to a different folder:
data = IQML('log', 'path',newPath);

oldPath = fileparts(data.logFile); % strip out the IQConnectLog.txt file name

... % logging in this section is temporarily redirected to newPath

IQML('log', 'path',oldPath); % restore the original log file's path

Note that changing the log file’s Path does not affect a currently-running IQFeed

session, only subsequent sessions (IQFeed’s IQConnect client reads the log Path

when it launches). If you need to modify the Path while IQFeed is running, you can

temporarily reconnect IQFeed (see §9.1) to ensure that it loads the new Path value.

Be careful when changing log Path. Its default location is set to the user’s MyDocs folder

since by default IQConnect.exe launches under the user’s permission group and all users

have full access rights to files in their user folder. Ensure that your user account has

appropriate permissions in the choosen folder. Also ensure that the folder is not synced

(to OneDrive, Dropbox etc.), which could drastically reduce system performance.

Also keep in mind that there is only one log file for all applications that use IQFeed

on the computer. If your program might run alongside other software that uses IQFeed,

it is recommended that you do not change the logging location from the default.

We can specify the logging details using the Details parameter, which accepts an array

of up to 5 numeric or logical values. These values correspond to Administrative,185

Level 1, Level 2, Lookup,186 and Debug.187 By default, IQFeed logs only Admin

requests and messages, which corresponds to Details=[1,0,0,0,0] or simply 1 (extra

zeros are assumed, so 1 means the same as [1,0,0] or [1,0,0,0,0]). For example, to also

log Level 1 and Lookup messages (but not Level 2 or Debug), set Details to [1,1,0,1]:
>> data = IQML('log', 'details',[1 1 0 1])

data =

 struct with fields:

 logDetails: [1 0 0 0 0]

 logFile: 'C:\Users\Yair\Documents\DTN\IQFeed\IQConnectLog.txt'

In this example, note how IQML returned the previous Details setting, prior to its change.

A subsequent call to IQML('log') will verify that the Details change was indeed made:
>> data = IQML('log')

data =

 struct with fields:

 logDetails: [1 1 0 1 0]

 logFile: 'C:\Users\Yair\Documents\DTN\IQFeed\IQConnectLog.txt'

Note: IQFeed’s log file can become VERY large VERY fast and potentially reduce

system performance if left unattended. It is intended to be used for troubleshooting

purposes only and not on a constant basis, and should be used very carefully. This is

especially true if you log streaming data, large historic data, and/or Debug data.

Also note that the logging level Details are stored in the computer’s registry and

persist across different sessions of Matlab and IQFeed. So after you have set detailed

logging and no longer need it, it is good practice to immediately set Details back to [1].

185 Admin includes connection/disconnection and other non-data requests and messages

186 Lookup includes history requests/data (§5), news (§7), and symbols/chains lookup (§8)
187 IQFeed’s Debug data provides even more granular logging to aid in troubleshooting issues than the other four log types. This

is not related to the Debug parameter that was discussed in §12.1.

181 IQML User Guide

Note that unlike Path (which does not affect a currently-running IQFeed session),

setting the logging Details DOES indeed affect the current session; no restart of the

IQFeed client is required for the new Details setting to take effect.

In addition to setting log Path and Details, we can also use the 'log' action for several

special requests: The CopyTo parameter copies the current log file into a specified

folder/path. We can also specify the filename, since it is just a copy of the live log file.

Note: if the specified target file already exists, it will be overwritten.

>> IQML('log', 'copyTo','C:\My Programs\Logs\log.txt'); % filename=log.txt

>> IQML('log', 'copyTo','C:\My Programs\Logs\'); % filename=IQConnectLog.txt

We can use the DoThis parameter to reset (empty) the live log file, or to display it in an

external editor (the editor displays a log snapshot, it does not automatically refresh):

>> IQML('log', 'doThis','reset'); % reset (empty) the live log file

>> IQML('log', 'doThis','display'); % display live log file in external editor

Note: Both CopyTo and DoThis only affect the log file at the time of the request, not

continuously. In other words, CopyTo copies a snapshot of the live log file as of the

time of request; DoThis 'reset' (or 'clear' or 'empty') does a one-time reset of the log;

and DoThis 'display' (or 'show') displays the current log file snapshot (the editor’s

refresh of this file is not automatic).

As with other IQML actions, we can combine different parameters in a single IQML

command. For example:

IQML('log', 'details',[1 1 0 1], 'path','C:\Programs\Logs\', 'doThis','reset');

Here is a summary of the IQML parameters that affect IQFeed’s internal logging:

Parameter Data type Default Description

Path string

(last-used log

folder path;

initially set to
My Documents\

\DTN\IQFeed)

Path of the folder in which the IQConnect.txt

live log file is to be stored/updated.

Details

numeric

or logical

array

(last-used log

details setting;

initially set to

[1,0,0,0,0]

meaning only

Admin msgs

are logged)

Array of up to 5 numeric/logical values,

corresponding to Admin, Level1, Level2,

Lookup, and Debug requests/messages.

A value of 1 (or true) indicates that requests/

messages belonging to the corresponding

group should be logged; a value of 0 (or false)

indicates that they should not be logged.

CopyTo string
''

(empty string)

Path of folder or file in which a snapshot copy

of the live log file is to be placed, overwriting

existing file if such a file already exists.

DoThis string
''

(empty string)

One of the following string values:

 'display' or 'show' – display the log file

 'reset' or 'clear' – empty the live log file

182 IQML User Guide

13 Frequently-asked questions (FAQ)

1. Can IQML be used with other data-feed providers?

IQML only connects to DTN IQFeed. It can be adapted for other data providers, but

some development is obviously required since other providers have different APIs.

Email us to see if we can help.

2. Does IQML impose limitations on historical data or streaming quotes?

No – IQML does not impose any limitations. However, IQFeed’s servers do impose

limitations on the frequency of the requests (50/sec) and the types/amount of returned

data, depending on your IQFeed subscription. For example, your account may limit

the maximum number of concurrently-streaming (“watched”) symbols, or to certain

exchanges/data-types; IQFeed trial account limits historic data to the past 1 year, etc.

These limitations are imposed by the IQFeed server; IQML supports whatever entitle-

ments your IQFeed account has, it does not limit the information in any manner.

3. Can I see a demo of IQML?

Yes – you are welcome to download a fully-functional trial version of IQML, to try

the product at no risk for 15 days.

4. How does IQML compare to alternative products?

We believe that of all the currently available alternatives for connecting Matlab to

IQFeed, IQML provides by far the best functionality, value and cost-effectiveness.

You are most welcome to test this yourself, using IQML’s free trial. Multiple traders

have reviewed IQML and claim that it is the best Matlab-to-IQFeed connector.188

5. Does IQML come with an IQFeed or market subscription?

No – IQML connects to an existing IQFeed account. You will need to purchase the

IQFeed and market subscriptions separately from DTN.

6. Does IQML send you any information?

No – IQML only communicates with IQFeed. The only communication that is done

with IQML’s server is a verification of the license activation (a single hash-code).

7. Can I be sure IQML does not contain bugs that will affect my trading?

IQML is rigorously tested, but there is no 100% guarantee. Users report that IQML is

generally rock solid, a very stable robust product. No critical bug was reported in years.

8. Is IQML being maintained? supported?

Yes, actively. Features and improvements are added on a regular basis, and we

support the users personally. You can see the list of ongoing improvements in

IQML’s change-log, listed in Appendix B of the IQML User Guide (this document).

You can see the very latest updates in the online version of this guide.189

188 https://UndocumentedMatlab.com/IQML/reviews

189 https://UndocumentedMatlab.com/files/IQML/IQML_User_Guide.pdf

https://undocumentedmatlab.com/IQML/reviews
https://undocumentedmatlab.com/files/IQML/IQML_User_Guide.pdf

183 IQML User Guide

9. I saw a nice new feature in the online User Guide – can I get it?

Once you install IQML, you will be notified in the Matlab console (Command Window)

whenever a new version is available. You can always update your installation to the

latest version, using a variety of means, as explained in §2.4.

10. What happens when the license term is over?

A short time before your license term is over, you will start to see a notification

message in your Matlab console (Command Window) alerting you about this:

*** Your IQML license will expire in 3 days (10-Mar-2018).

*** To extend your license please email info@undocumentedmatlab.com

This message will only appear during the initial connection to IQFeed, so it will not

affect your regular trading session. When the license term is over, IQML will stop

working. You can always renew or extend your license using the payment links on

https://UndocumentedMatlab.com/IQML. If you wish to be independent of such

annual renewals, you can select a discounted multi-year license. See §2.2 for details.

11. Can I transfer my IQML license to another computer?

Yes, simply email us and we will make the activation switch for you. At any one

time, each IQML license will only be activated on a single computer, unless you

purchase a site license. Annual licenses include up to 3 license activations per year at

no extra cost; additional re-activations will incur a handling fee.

12. I have a laptop and desktop – can I use IQML on both?

Yes, but you will need to purchase two separate IQML licenses. IQML’s license is

tied to a specific computer, unless you purchase a site license.

13. Can IQML be compiled and deployed?

Yes, IQML can be compiled using the Matlab Compiler. Each computer running a

compiled IQML requires an IQML license (just like a non-compiled IQML that runs

in Matlab), unless you get a group license (Site, Deployment, or Development). In

other words, for your deployed computers you have a choice of either buying indivi-

dual licenses (separately for each deployed computer), or a group license which does

not require dedicated license activations. If you wish to deploy IQML on a large scale

for multiple end-user computers, contact us to discuss OEM or other alternatives.

14. Is IQML provided in source-code format?

IQML is provided in encrypted binary form, like any other commercial software. A

source-code license is available for purchase, subject to signing a separate non-

disclosure (NDA) agreement. The source-code version has no license fees and is not

tied to any specific computer – you can install it on as many computers as you wish

within your organization. Contact us for details. Also see related question #15 below.

https://undocumentedmatlab.com/IQML

184 IQML User Guide

15. Do you provide an escrow for IQML’s source-code? Is the source code for sale?

Yes. There are two optional levels of escrow service that you can select:

1. At safe-keeping with a Wall-Street lawyer

2. Using NCC Group’s independent escrow service

Escrow services incur a non-negligible annual usage fee, but you may decide that it

may be worth this optional extra expense to ensure your business continuity.

Alternatively, a source-code license is available for purchase, subject to a separate

non-disclosure (NDA) agreement. See related question #14 above.

Alternatively, purchasing a multi-year license will ensure independence of renewals,

and a site license will avoid external activation checks during the license duration.

Contact us for details about any of these optional alternatives for business continuity.

16. Is feature ABC available in IQML?

IQML supports the entire IQFeed API. This means that all the functionality that

IQFeed exposes in its API, is available in IQML using an easy-to-use Matlab wrapper

function. In addition to parametric queries, users can send IQFeed custom API

commands (see §9.4) and then process the raw incoming IQFeed response (see §10).

To check whether a specific feature is available in the IQFeed API (and by extension,

in IQML), please refer to IQML’s User Guide (this document), IQFeed’s online

reference, or contact IQFeed customer service.

17. Can you add feature ABC into IQML for me?

We will be happy to do so, for a reasonable development fee that will be agreed with

you in advance. After the development, this feature will be available to all others who

purchase (or update) the latest version of IQML, at no extra cost. If you have such a

request, contact us by email to get a proposed quote.

18. Can you develop a trading strategy for me?

We will be happy to do so, for a reasonable development fee that will be agreed with

you in advance. Unlike development of IQML features, strategy development will

never be disclosed to others, and will not be integrated in IQML. It will be developed

privately for you, and will be kept secret. See §15 for details about our professional

services. If you have such a request, contact us by email to get a proposed quote.

19. Does IQML include back-testing/charting/data analysis/algo-trading?

No. IQML is only used for communication with the IQFeed server (retrieving data

from IQFeed servers) – it does not include any data analysis, charting or back-testing

functionalities. Matlab is a great platform for data analysis and visualization, so you

can easily develop your own analysis programs in Matlab, using the data from IQML.

We have extensive experience in developing complete backtesting and real-time

trading applications. We will be happy to either develop a new application based on

your specifications, or to integrate IQML into your existing application, under a

separate consulting contract. See §15 for details about our professional services.

20. Is IQML supported on my platform?

IQML works wherever you can run the IQFeed client (IQConnect) application.

No special Matlab toolboxes are required – only the base Matlab and IQML software.

185 IQML User Guide

14 Troubleshooting

Error Description / solution Section

NullPointerException

com.mathworks.jmi.bean.

MatlabBeanInterface.-

addCallback

IQML cannot work properly unless its Java file
(IQML.jar) is added to Matlab’s static Java
classpath. Contact us to solve the problem.

§2.1

IQFeed is not properly

installed

IQFeed is not installed properly on the local
computer so IQML cannot connect to it.

§2.1

IQFeed cannot be

connected or started

or:
Cannot connect to

IQFeed

IQML cannot connect to an active (running)
IQFeed client process, nor start one. Try to start

IQFeed’s client manually and then retry.
§2.1

IQML is not activated

on this computer

Some component of your activated computer
fingerprint has changed. Revert this change, or
contact us to modify the activated fingerprint.

§2.2

Your IQML license will

expire in 4 days

 (15-Jun-2018)

This is an alert on upcoming license expiration.
It is not an error, and does not affect IQML’s
operation. Contact us to extend your license.

§2.2

Your IQML license has

expired on 1-Jun-2018

IQML’s license is limited in duration. When the
license term expires, contact us to renew it.

§2.2

Cannot connect to

undocumentedmatlab.com

to validate your IQML

license

IQML validates its license on the IQML server.
Your internet connection may be down, or the
domain (undocumentedmatlab.com) may be

blocked by your firewall (ask your IT to unblock it)

§2.2

Action 'xyz' is not [yet]

supported

The specified action is not [yet] a valid IQML
action, although it is planned for a future version.

§2.4

Unrecognized IQML action

'xyz'

The specified action is invalid in IQML. Refer to
the User Guide for a list of acceptable actions.

§3.1

Missing parameter value:

all parameters must have a

value

No value was provided for the specified parameter.
IQML parameters must be specified as name-value

pairs that have both name and value.
§3.1

Value for parameter 'abc'

should be a <xyz> data

type

The specified parameter value provided in your
IQML command has an incorrect data type. Refer
to the User Guide for a list of acceptable values.

§3.1

Value for parameter 'abc'

should be a scalar number

The specified parameter value must be a single
scalar value, not a numeric array. Refer to the User

Guide for a list of acceptable values.
§3.1

Warning: 'abc' is not a

valid parameter for the

'xyz' action in IQML

The specified parameter name is not valid for the
specified IQML action and is ignored. Refer to the

User Guide for a list of acceptable parameters.
§3.1

The 'news' action is not

available in your Standard

license of IQML

The specified action is only available in the IQML
Professional license and free trial. Contact us to

upgrade your license to access this feature.
§3.4

Symbol 'XYZ' was not found
Either you have no permission to access this

Symbol, or this symbol is unknown by IQFeed. §3.4

186 IQML User Guide

Error Description / solution Section

(Missing digits in Matlab

Command Window)

Matlab’s display format is possibly set to “short”

instead of “long”.
§3.4

Undefined function

'struct2cell' for input

arguments of type 'double'

An empty result was returned, and this cannot be

converted into a Matlab cell-array.
§3.5

Error using struct2table

(line 26) - S must be a

scalar structure, or a

structure array ...

An empty result was returned, and this cannot be

converted into a Matlab table object.
§3.5

The Symbol parameter must

be specified for an XYZ

query when NumOfEvents>0

Queries that have NumOfEvents>0 must be

specified with a non-empty Symbol/Symbols.
§4, §6

Warning: IQML timeout:

only partial data is

returned. Perhaps the

Timeout parameter should

be set to a value larger

than 5

The query took longer than expected to return all

the data; only partial results have arrived from

IQFeed before the IQML timed-out. To get all

results, set the Timeout parameter to a larger value

or the NumOfEvents parameter to a smaller value.

§4.1,

§4.3,

§5.1,

§7.2,

§8.1

IQML timeout: either

IQFeed has no data for

this query, or the Timeout

parameter should be set

 to a value larger than 5

The query took longer than expected to return any

data from IQFeed before IQML timed-out.

Try to set the Timeout parameter to a larger value.

§12.1

Date parameter value must

be either a string

(YYYYMMDD, YYYY-MM-DD or

YYYY/MM/DD) or datenum

The date/time format of one or more of the query

parameters is incorrect. Refer to the User Guide

for a description of the acceptable formats.
§5

Symbol "XYZ" is not

currently streaming

Start data streaming (by sending a query with

NumOfEvents>0) before querying streamed data
§6

(IQML stops receiving

IQFeed streaming data)

Try to actively disconnect and reconnect to

IQFeed, or to restart the IQConnect application.
§9.1

Unable to connect to L2IP

server. Error Code: 10065

Error Msg: A socket

operation was attempted to

an unreachable host.

(or a similar variant)

IQConnect lost the connection to IQFeed’s servers.

IQConnect will automatically reconnect as soon as

possible, and in most cases you can ignore this

message. You can also try to actively reconnect to

IQFeed, or to check your internet connection.

§9.1

Out of memory

or:
Maximum variable size

allowed by the program is
exceeded

or:
Requested array exceeds

maximum array size

preference

This Matlab error might occur when receiving

huge amounts of streaming/historic data. Different

Matlab releases display different messages having

the same basic idea.

Run IQML on a computer with more memory,

or reduce the amount of stored/processed data.

§12.1

java.lang.OutOfMemory

Error: Java heap space

Set Matlab to use a larger Java heap memory size

than the default value. This can be set in Matlab’s

preferences, or via a java.opts file.
§12.1

187 IQML User Guide

15 Professional services

In addition to IQML being offered as an off-the-shelf software program, advanced

Matlab consulting, training, and program development are being offered. With over

30 years of professional Matlab programming experience, including extensive

finance/trading-related development in the past decade, we offer top-of-class Matlab

consulting, with a particular emphasis on the financial sector.

We have many years of experience integrating quality production-grade Matlab

programs with online brokers (Interactive Brokers (IB), CQG, CFH FIX), data-feed

providers (DTN IQFeed, Bloomberg, Reuters, Trading Physics, End-of-Day Historical

Data), websites (Finviz, Nasdaq), databases (SQL Server, Oracle, MySQL, SQLite),

as well as Excel and raw-format data files. Programs were developed using multiple

Matlab releases, on all platforms that Matlab supports: Windows, MacOS and Linux.

We have completed countless life-cycles of software requirements definition, design,

development, documentation, integration, testing, deployment, handover, maintenance

and support.

Much of our work derives from the financial sector: We developed custom software

for a commodities fund in a Geneva bank; a backtesting and analysis program for a

large bank in Chicago; a currencies trading program for a hedge-fund in Malta; data-

analysis products for financial services firms in New-York; a portfolio risk/exposure

analysis program for an Israeli investment advisor; a charting GUI for a San-

Francisco hedge fund; and semi- and fully-automated algo-trading programs for

multiple clients around the globe.

Development is typically done remotely; onsite consulting/development is also possible

upon request, or a combination of remote work and onsite visits.

You can see a small sample of programs that we have developed below. Additional

samples can be seen on our consulting webpage.190

Anything developed under private consulting will be kept confidential and will not be

disclosed to others. You will retain full IP ownership of anything developed for you.

Most of our revenue comes from returning or long-time clients. We will be happy to

provide references of satisfied clients in US or Europe. With such an impressive track

record, you probably already know some of them.

Contact us by email (info@UndocumentedMatlab.com) to discuss your needs or to

receive a proposal.

190 http://undocumentedmatlab.com/consulting

mailto:info@UndocumentedMatlab.com
http://undocumentedmatlab.com/consulting

188 IQML User Guide

15.1 Sample program screenshots

189 IQML User Guide

190 IQML User Guide

191 IQML User Guide

15.2 About the author

With over 30 years of professional software program

development experience, Yair Altman offers top-notch

Matlab consulting and training services.

Yair has worked extensively with Matlab and many other

programming languages (Java, C#, C, C++ and others).

He has developed many programs with SQL and a variety

of databases, operating systems and hardware platforms.

Matlab community developers, and even MathWorks themselves, consider Yair a top

Matlab expert, as any simple online search will show. His UndocumentedMatlab.com

website is by far the largest and most active independent Matlab site. Yair is also

well-known from numerous submissions on the Matlab forums and File Exchange; a

MathWorks study determined191 that Yair is the third most influential submitter in the

entire Matlab community. He regularly advises MathWorks, and actively participates

in its Community Advisory Board (CAB) and MATLAB Advisory Board (MAB).

Yair has a specific experience in the finance sector, developing quality professional

Matlab programs that integrate with trading platforms (IB, CQG, CFH FIX); data-

feed providers (DTN IQFeed, Bloomberg, Reuters, EODHD, AlphaVantage, Trading

Physics); websites (Finviz, Nasdaq); databases (SQL Server, Oracle, MySQL, SQLite),

as well as Excel and raw-format data files. These programs were developed on multiple

Matlab releases and all Matlab-supported platforms: Windows, MacOS and Linux.

Yair published two extensive and highly-acclaimed Matlab

textbooks: MATLAB-Java programming192 (2011) and

Accelerating MATLAB Performance193 (2014). Both books

are considered the top references in their respective fields.

Yair provides professional, cost

effective consulting and contract

development.194 He can do stuff

that few other Matlab program-

mers know is even possible,

delivering great value: top quality

code at reasonable cost.

Yair also offers custom Matlab
training courses,195 in a variety of topics and levels.

By combining a proven track-record of quality software
programming, decades of professional experience, and
Matlab knowledge that few others possess, Yair provides
clients with superior value and cost-effectiveness.

191 http://blogs.mathworks.com/community/2013/01/15/giving-by-taking-file-exchange-acknowledgment-trees

192 http://undocumentedmatlab.com/books/matlab-java

193 http://undocumentedmatlab.com/books/matlab-performance, now in 2nd edition
194 http://undocumentedmatlab.com/consulting

195 http://undocumentedmatlab.com/training

http://undocumentedmatlab.com/
http://blogs.mathworks.com/community/2013/01/15/giving-by-taking-file-exchange-acknowledgment-trees
http://undocumentedmatlab.com/books/matlab-java
http://undocumentedmatlab.com/books/matlab-performance
http://undocumentedmatlab.com/consulting
http://undocumentedmatlab.com/training

192 IQML User Guide

16 Spread the word!

Support IQML development by spreading the word about this product to coleagues.

The more people use IQML, the better it becomes over time with improved reliability,

functionality and performance. You will directly benefit from this since you get

immediate access to each new product version as it is published, as explained in §2.4.

The following professional traders have posted a public online review of IQML:196

“Simply put, IQML just works. Having struggled with Matlab’s data feed toolbox and many

frustrated support calls, I found the IQML product. What a night and day experience! Not

only does the product allow you to easily access the entire array of IQfeed’s utility as soon as

you download it, the documentation and support have been superior to the premium enterprise-

level systems that I have worked with in the past. If you use his IB-Matlab product, IQML is

the perfect companion. This is absolutely the gold standard for working with market data.”

– Albert Zhang, professional trader and partner, Auric Investments, USA

“Fantastic product that works flawlessly and has saved me a lot of work, time and money on

developing my trading systems! well done Yair!”

– Rodney Ngone, Data Scientist and Quant Trader, UK

“Yair has been doing a fantastic job implementing the IQfeed API for Matlab, a challenging

API which needed some thorough testing at the beginning (which I was part of, being one of

the first clients). The product has become mature and excellent for algo development for

traders who don’t mind to work in details. Many features are making IQML computationally

attractive and competitive with regards to other options. Mostly, Yair support is first class

and allows to digest the little subtleties of the IQfeed API. With Yair being supportive and

flexible in terms of improvements, updating IQML regularly to fix bugs and implement the

latest API features, I strongly recommend the use of IQML.”

– Pierre R., trading systems researcher, Australia

 “We have been cooperating with Yair for 3 years now and he has always been professional

and efficient. Regarding in particular the IQFeed-Matlab interaction, he was able to deeply

understand our needs and to quickly consign us perfectly tuned codes, granting us the

possibility of exploiting the maximum potential of these two platforms combined.”

– Stefano Peron, Chief Investment Officer, Emergent Quant, Italy

“Before IQML, I spent an inordinate amount of time working on code to consistently retrieve

IQFeed data via Matlab, with limited success. IQML works flawlessly, allowing me to focus

on strategy development.”

– Jeff Busse, Emory University, USA

“It would surprise you how many systems out there are still legacy-like. They seem to work

with a few data-points as advertised, but once you want to scale up the whole thing you hit

the wall. And then comes IQML for Matlab: Works out of the box like a charm; uses parallel

execution; and with a few wrapper lines of Matlab code I can send the data I need to a

database. This enabled me to get my project stockmoneyflows.com up and running in a

fraction of the planned time. Yair has been very helpful and responds to requests very fast

and what is even more important, he fixes it!”

– Georgios Karas, owner, Stock Money Flows, Netherlands

196 https://UndocumentedMatlab.com/IQML/reviews

https://auric-investments.com/
http://emergentquant.com/
https://stockmoneyflows.com/
https://undocumentedmatlab.com/IQML/reviews

193 IQML User Guide

“I find IQML intuitive and easy to use. I really love your simple intuitive interface! ***

started to build something like this but stopped and left us with nothing (they have a lot more

adapters than they have documentation for but these are mostly non-functioning basic

connections to the third party softwares). IQML blends perfectly into my MATLAB

environment. I am getting 40 quotes per 10 ms using the real time method. The time and

careful consideration you spent on IQML’s development show clearly. I will definitely help

spread the word about your products!”

– Joe Galbraith, Director, Quantitative Asset Management, USA

“IQML, a robust and seamless interface between Matlab and DTN IQFeed’s realtime

financial market data, is the latest automated trading offering from Yair Altman. Yair is a

leading authority on Matlab and the author of two books devoted to Matlab’s technical

intricacies. His IB-Matlab software, which interfaces Matlab with Interactive Broker’s

trading and data platforms, has for many years earned the number one spot among client

reviewed third party software on Interactive Broker’s web site.

IQML builds upon the capacities of IB-Matlab by leveraging the more robust data feed of IQ-

Feed to meet institutional level trading expectations for financial market data coverage, low

latency, and easy reference. Having personally struggled with Matlab’s Datafeed Toolbox

and Trading Toolbox to the point I doubted Matlab’s viability as a trading platform, I have

been overjoyed to find that IB-Matlab and IQML provide the missing pieces of the puzzle.

The interfaces do not require any understanding of the associated API’s and do provide

intuitive and easy to understand Matlab commands and references to the Interactive Brokers

and IQ-Feed platforms. In addition to rock solid code performance, both products are

accompanied by robust documentation and Yair is available to personally tailor their

implementation to client needs. Well done, Mr. Altman!”

– David M., proprietary trading firm, USA

“IQML saved us hundreds of hours in “busy work”. It’s so well designed that it works every

time with the same simplicity and brilliance of execution. Our systems are fully automated

and very sophisticated and to get IQML working so quickly and simply, with such an easy

integration, is truly a gift. Yair is very smart and the most responsive engineer I have seen –

and I have seen a lot. Big companies should learn from Yair’s approach to design and

customer service.”

– Theo Koutras, Chief Investment Officer, OneBrain Technologies, USA

“This year my switch to use your IQML and IB-Matlab connectors was a milestone for my

work. It took me just two days to be fully productive with your connectors. No more messing

with technical details of IQFEED or IBKR for me, I can focus on the essentials. Thanks!”

– Pietro P., trader, Austria

“With IQML/IQFeed and IB-Matlab/Interactive-Brokers, you will be able to build a complete

trading tool from backtesting of the historical data to executing your trading strategies.

These connectors are robust and compatible with the Parallel Toolbox of Matlab. The full

integrated system will allow you to deal with large amounts of data. On top of that, Yair is

always keen to help and provide effective functional and technical support”.

– Jean-Claude H. and Mathieu L., algorithmic trading firm, France

“We first started using Yair’s Matlab-based finance add-ons a number of years ago and it

has been a huge benefit to our trading. Added to this, Yair is always quick to respond to

queries and provide helpful suggestions to assist us in solving any issues we encounter. I

cannot recommend his products and services more highly!”

– Brett Venter, principal, Neural Capital, UK

https://www.neuralcapital.com/

194 IQML User Guide

Appendix A – online resources

A.1 Official DTN IQFeed resources

 IQFeed homepage – http://iqfeed.net

 IQFeed API homepage – http://www.iqfeed.net/dev/api/docs

 IQFeed symbol guide –

http://iqfeed.net/symbolguide/index.cfm?symbolguide=guide&displayaction=support

§ion=guide&web=iqfeed

 IQFeed symbol lookup –

http://iqfeed.net/symbolguide/index.cfm?symbolguide=lookup&displayaction=support

§ion=guide&web=iqfeed

 IQFeed users forum – http://forums.iqfeed.net

 IQFeed live chat –

http://iqfeed.net/Fibonacci/index.cfm?displayaction=support§ion=chat

 API customer service and technical support – support@iqfeed.net or

http://iqfeed.net/Fibonacci/index.cfm?displayaction=support§ion=contact

(please let them know that you are using IQML)

A.2 MathWorks webinars/presentation

 MathWorks algorithmic-trading portal –

http://mathworks.com/discovery/algorithmic-trading.html,

http://mathworks.com/financial-services/algorithmic-trading.html

(includes Yair’s webinar “Real-Time Trading System in MATLAB”)

 Algorithmic Trading Strategies with MATLAB Examples –

https://mathworks.com/videos/algorithmic-trading-strategies-with-matlab-

examples-92899.html

 Energy Trading & Risk Management with MATLAB –

https://mathworks.com/videos/energy-trading-risk-management-with-matlab-

81745.html

 Cointegration and Pairs Trading with the Econometrics Toolbox –

https://mathworks.com/videos/cointegration-and-pairs-trading-with-econometrics-

toolbox-81799.html

 Commodities Trading with MATLAB –

https://mathworks.com/videos/commodities-trading-with-matlab-81986.html

 Creating professional-quality applications with MATLAB –

(Yair’s keynote presentation in the 2016 Munich MATLAB Expo using IQFeed)

https://undocumentedmatlab.com/blog/upcoming-public-matlab-presentations

A.3 Additional open-source Matlab resources

 Spatial Econometrics Toolbox for Matlab – http://spatial-econometrics.com

 Algorithmic trading code in the Matlab File Exchange –

http://www.mathworks.com/matlabcentral/fileexchange/?term=trading

http://iqfeed.net/
http://www.iqfeed.net/dev/api/docs
http://iqfeed.net/symbolguide/index.cfm?symbolguide=guide&displayaction=support§ion=guide&web=iqfeed
http://iqfeed.net/symbolguide/index.cfm?symbolguide=guide&displayaction=support§ion=guide&web=iqfeed
http://iqfeed.net/symbolguide/index.cfm?symbolguide=lookup&displayaction=support§ion=guide&web=iqfeed
http://iqfeed.net/symbolguide/index.cfm?symbolguide=lookup&displayaction=support§ion=guide&web=iqfeed
http://forums.iqfeed.net/
http://iqfeed.net/Fibonacci/index.cfm?displayaction=support§ion=chat
mailto:support@iqfeed.net
http://iqfeed.net/Fibonacci/index.cfm?displayaction=support§ion=contact
http://mathworks.com/discovery/algorithmic-trading.html
http://mathworks.com/financial-services/algorithmic-trading.html
https://mathworks.com/videos/algorithmic-trading-strategies-with-matlab-examples-92899.html
https://mathworks.com/videos/algorithmic-trading-strategies-with-matlab-examples-92899.html
https://mathworks.com/videos/energy-trading-risk-management-with-matlab-81745.html
https://mathworks.com/videos/energy-trading-risk-management-with-matlab-81745.html
https://mathworks.com/videos/cointegration-and-pairs-trading-with-econometrics-toolbox-81799.html
https://mathworks.com/videos/cointegration-and-pairs-trading-with-econometrics-toolbox-81799.html
https://mathworks.com/videos/commodities-trading-with-matlab-81986.html
https://undocumentedmatlab.com/blog/upcoming-public-matlab-presentations
http://spatial-econometrics.com/
http://www.mathworks.com/matlabcentral/fileexchange/?term=trading

195 IQML User Guide

Appendix B – change log
Changelog

The following table lists changes done to this document and IQML. Depending on the

date that you have installed IQML, your version may be missing some features

discussed in this document. You can always update to the latest version – see §2.4.

B.1 Complete change log (functional + documentation)

The table below lists both functional changes (in the IQML program) and also

documentation changes (in this User Guide). See §B.2 below for a table of only the

functional change.

* In this table the last column indicates change type: F=fix; I=improvement; D=documentation:

Version Date Section Description *

0.80 2017-10-17 - Beta integration of IQML in a user trading program I

1.00 2018-02-26 - First commercial release of IQML I

1.01 2018-03-11 8.1
Enabled message-specific user callbacks;

Added additional information to callback eventData
I

1.02 2018-03-12

4.3.2 Clarified filtering meta-symbols such as 'BZRatings' D

4.3.3 Added relevant symbols list in returned news story data I
7.1, 11 Clarified automatic connection re-establishment D

1.03 2018-03-19

3.2 Enabled Symbol and Symbols as synonymous params I

4.1, 6.1 Improved ticks request logic & the returned data fields I

6.1
Enabled requesting streaming ticks/quotes for multiple
symbols at once, in a single IQML command

I

1.04 2018-04-01

1, 2.1
Clarified that IQFeed client can run on Linux/Mac via
Parallels/Wine, as well as natively on Windows/Mac

D

2.1 Added support for native Mac IQFeed client (untested) I

3.2
Added new MsgParsingLevel general parameter, for
improved callback run-time performance

I

5 MaxDataItems input parameter is renamed MaxItems F

6.1

Some result output fields renamed for consistency;
BufferSize input parameter is renamed MaxItems for
consistency; clarified the documentation text

F

6.2 Added new streaming regional updates functionality I

4.37 Moved the news functionality into a new chapter (§7) D

7.3
Added newline characters between separate paragraphs

in the reported news-story text, for better readability
I

7.4
Clarified that default Date is today; clarified that story
count also includes non-subscribed news sources

D

7.5 Added new streaming news functionality I

8-13
Renumbered chapters 7-12 as 8-13, to make room for
the new chapter (§7) on the news functionality (Pro)

D

8.2 Added new section on callback run-time performance D

10 Added timestamp and channel info to debug printouts I

A.2 Added an online MathWorks resource D

196 IQML User Guide

Version Date Section Description *

1.05 2018-04-05

2.1
Added note that in some cases users may need/want to
specify the IQFeed connection Username, Password

D

3.1, 8
Added new symbols and numeric market codes lookup
functionality

I

3.2, 4.1

5, 7.2
Modified the default Timeout value from 3 to 5 [secs] F

3.5 Added new section on handling returned data format D

5.5
Clarified that micro-sec time resolution depends on the

IQFeed client version, the market, and the security type
D

8.2, 10.3
Added basic support for options-chain and futures-chain
symbol lookup (better support is planned for next version)

I

9-14
Renumbered chapters 8-13 as 9-14, to make room for
the new chapter (§8) on the lookup functionality

D

9.1
Enabled specifying IQFeed Username and Password;
Added a 10-sec timeout on IQFeed connection attempts

I

9.3 Added extra port-specific stats when AddPortStats=1 I

1.06 2018-04-08 8.2 Added options/futures chain lookup functionality I

1.07 2018-04-10 9.1 Added info msgs on server connections/disconnections I

1.08 2018-04-11
4.1, 6.1 Added the Symbol field to returned quotes data struct I

10.4 Added usage example of realtime quotes user callback D

1.09 2018-04-16 6.3 Added Interval Bars functionality I

1.10 2018-05-04 2.4 Added example of update notification on a new version D

1.11 2018-05-16

4.3, 6.4,

10.5
Added Market Depth (Level 2) functionality I

6.3

Indicated that IQFeed server may possibly limit reported
interval bars depending on exchange, data subscriptions;
Clarified that IntervalSize must be >1 for volume/ticks

D

1.12 2018-05-23

3.4, 4.3,

6.2, 6.4,

7, 8.2,

10.5, 12

Clarified that news, level 2 (market depth), alerts,
options/futures chain lookup, and regional updates are
only available in the Professional license and free trial

D

12 Added alerts functionality I

13-15
Renumbered chapters 12-14 as 13-15, to make room
for a new chapter on the alerts functionality

D

1.13 2018-05-25

7.2
Enabled auto-fetch of full story in news headlines query
(streaming/blocking) using GetStory parameter (Pro)

I

11-12 Switched between sections 11,12 in the User Guide D

11.2
Enabled reporting the full news story (in addition to
headline) in news alerts using GetStory parameter

I

11.1,

11.2

Added regional updates alert functionality (in addition

to news/quote/intervalbar alerts)
I

1.131 2018-05-28

3.1 Fixed bug in accepting struct-based input parameters F

5.4 Clarified that IntervalSize must be >1 for vol/tick bars D

6.2 Fixed typo in regional update action (should be 'regional') D

7.2 Fixed bug in news headlines functionality (Pro license) F

197 IQML User Guide

Version Date Section Description *

1.14 2018-05-30

4.2
Enabled specifying multiple Symbols in a single

Fundamental-data query
I

6.2
Enabled specifying multiple Symbols in a single

streaming Regional updates query
I

7.3
Enabled specifying multiple news headline ID values

in a single news story query (Pro license)
I

1.15 2018-07-08

Cover Updated compatibility notice for Matlab release R2018b D

4.1, 6.1,

14

Enabled querying snapshot (top of market) & streaming

data of multiple symbols at once, in a single IQML query
I

4.2
Fixed: querying multi-symbol fundamental data

sometimes returned empty results
F

6.1-6.3
Fixed: debug data was displayed when streaming queries

were requested (now only displayed if Debug=1)
F

8.2
Enabled querying fundamental data of all symbols in an

options/futures chain at once, in a single IQML query
I

8.2
Enabled querying snapshot (top of market) data of

entire options/futures chain at once, in a single query
I

9.1
Fixed: IQML query during IQFeed connection

sometimes returned empty/error results
F

1.16 2018-07-09

3.6 Added new section on general run-time performance D

5 Improved performance (speed) of historical data queries I

10.2 Updated the section on callback-related performance D

1.17 2018-07-30

5.4, 5.5
Clarified that IQFeed limits ticks/interval data to 8 days

during US trading hours, 180 calendar days outside them
D

6.1
Clarified that IQFeed allows up to 500 concurrently-

streaming symbols, unless you pay DTN for more symbols
D

6.3
Clarified that IntervalSize must be >1 for interval bars

that use IntervalType = 'ticks' or 'volume'
D

6
Enabled retrieval and cancellation of streaming data for

multiple/all streamed symbols in a single IQML command
I

8.2
Clarified that option/future chain name might change

when corporate actions (such as splits) occur
D

1.18 2018-08-03

3.1, 3.5 Added optional errorMsg output for IQML commands I

9.1 Fixed problem of duplicate fields during initial connection F

9.1
Improved the reliability of a programmatic IQFeed

disconnect/reconnect
I

1.19 2018-08-06

3.2, 12
Added the RaiseErrorMsgs parameter to control

whether IQFeed errors should raise a Matlab error
I

4.1, 5.1,

7.2, 8.1

Message about partial data received due to Timeout is

now a Matlab warning message, not an error message
F

1.20 2018-08-07

5, 14
Enabled requesting history data for multiple symbols in

a single IQML command
I

5.1, 5.4,

5.5

Automatically convert BeginDateBeginDateTime,

EndDateEndDateTime (i.e. try to fix usage error) I

198 IQML User Guide

Version Date Section Description *

1.21 2018-08-10

8.1 Enabled looking up symbols by market(s), sec-type(s) I

8.2

Clarified that IQFeed only enables lookup of active

(non-expired) options; a list of expired options is

available separately as a downloadable text file.

D

1.22 2018-08-13
8.2

Enabled NearMonths values of 0-12, not just 0-4, for

options/futures chain. Note: this is based on undocumented

IQFeed functionality, so might not work in some cases.

I

3.2 etc. Limited the Timeout parameter values to 0-3000 [secs] I

1.23 2018-08-14

5.4

Clarified regarding historical intervals data limitations;

Clarified that IQFeed’s interval data typically exclude

irregular “O” trades (see §5.5).
D

9.1
Fixed a problem of possible bad connection to IQFeed

during the initial connection by IQML
F

1.24 2018-08-31

3.2 etc.
Limited the Timeout parameter values to 0-9000 [secs],

with 0 indicating infinite (i.e. no-limit) timeout
F

5.5

Clarified that while IQFeed typically limits historic tick

data to 180 days (outside trading hours), extended (older)

tick data can possibly be purchased from DTN

D

8.2

Enabled NearMonths values of 0-99, not just 0-12, for

options/futures chain. Note: this is based on undocumented

IQFeed functionality, so might not work in some cases.

I

9.1
Enabled multiple Matlab processes on the same computer

to run IQML concurrently (Beta)
I

199 IQML User Guide

Version Date Section Description *

2.00

(major

update)

2018-09-05

This is a major update. Highlights: query parallelization
and multiple usability/functionality fixes/improvements

(all)

Enabled parallel processing of IQML commands within
parfor/spmd blocks, and parallel internal processing via
the UseParallel parameter (Professional license only)

I

2 Added the license type to the output of IQML('version') I

3.1 Clarified the actions available in Pro vs. non-Pro license D

3.5 All returned data arrays are now column vectors F

3.5
Using the 2nd (optional) output of IQML (errorMsgs)
now implies a default value of false for RaiseErrorMsgs I

3.5,
8.2-8.7

Fixed various typos in code snippets, that would have
resulted in errors or bad data if used as-is

D

4 Modified reported data format when NumOfEvents >1 I

4.1, 8.2
Issued a warning when requesting more symbol quotes
than your IQFeed account limit I

4.3 Added new section on blocking interval bars functionality I

4.3, 5.4,

6.3

Clarified that IntervalSize must be ≥100 for volume
bars (a new limitation of IQFeed) I

4.3, 5,

6.3, 7.4

Enabled specifying dates and date-times using Matlab
datetime objects (in addition to datenums and strings) I

4.34.4 Moved the blocking market-depth section to §4.4 D

5.1, 5.4,

5.5

Clarified that MaxItems has precedence over BeginDate
/Time when more data items are available than MaxItems

D

5.4, 5.5 Clarified that in IQFeed and IQML, 'ticks' = 'trades' D

6 Added Symbol field to returned streaming data struct I

7.4
Story count for symbols that have no related news story
is reported as 0 (such symbols were previously skipped)

I

9.3
Added Exchanges, ServerVersion, ServiceType fields to
the returned client stats data

I

11 Fixed various issues with the Alerts functionality F

11.2 Reorganized & clarified the Alerts Configuration section D

2.02 2018-09-13

4.3, 5.4,

6.3

Clarified that IntervalSize must be < 86400 for secs
bars (a new limitation of IQFeed); added warning when
user attempts to use an invalid IntervalSize value.

I

4.3, 6.3
Clarified that streaming/latest interval bars are subject to
the same limitations as those imposed on historical bars

D

5.4
Clarified that full-minute interval bars are excempt from
the 8/180-day limitation imposed by IQFeed’s servers

D

9.1
Added detection & report for a case of a non-
communicative background IQConnect process I

2.03 2018-09-30 9.1
Fixed a problem with the license check that caused
IQFeed disconnections

F

2.04 2018-10-02

5 Improved download speed of historical data queries I

6, 7.5,

9.2

LatestEventTimestamp is now reported in seconds (not
msecs) resolution by default, unless Debug is 1 or true

F

200 IQML User Guide

Version Date Section Description *

2.05 2018-10-13 4.1, 6.1 Added Fields parameter to enable dynamic fields-set I

2.06 2018-10-15
4.1 Added some clarifications on the new Fields parameter D

6.1 Minor fixes, performance speedup of streaming quotes F

2.07 2018-10-21

3.4 Minor text clarifications; added timestamp examples D

4.3, 5.4,

6.3

Clarified that IQFeed’s limitations on live 'secs' interval
bars are stricter than limitations on historical intervals

D

5.4
Enabled using MaxDays as synonym for the Days
parameter in historic interval queries

I

9.1
Fixed a problem with the license validation that
prevented connection in certain cases

F

9.4
Fixed a few small edge-cases with sending custom
commands to IQFeed

F

2.08 2018-10-28

3.6 Added clarifications on the use of query parallelization D

5.1, 5.4,

5.5

Enabled parallelized historic data queries (daily/interval/
ticks) that have date/time range (Professional license only)

I

A.1 Added IQFeed’s users forum to list of online resources D

2.09 2018-11-07

3.1 Fixed a bug in parsing input parameters in struct format F

3.6
Added explanation on how to use a customized Fields

parameter to improve the query speed of market quotes
D

2.10 2018-11-14

2.4
Added ability to revert back to the previous IQML

version at any time.
I

4.1
Added a table listing all the available quote data fields

(customizable via the Fields parameter)
D

4.1

Added description fields for the Bid_Market_Center,

Ask_Market_Center and Last_Market_Center fields,

when reported in a quotes message from IQFeed.
I

4.5

Added a new 'Greeks' action, to calculate Greeks, fair

value price and implied volatility for options

(Professional license only)
I

5.1

Clarified that DTN limits historical data retrieval in

IQFeed’s trial account. Historical data queries in such

accounts may yield fewer data points than requested.
D

6.1
Clarified that tick (update/quote) messages are streamed

whenever any of the requested Fields gets updated.
D

2.11 2018-11-22 4.5

DaysPerYear parameter was renamed AnnualFactor;

Duration parameter was renamed DaysToExpiration;

Vega, Rho, Veta, Ultima are no longer divided by 100

(compatibility with Matlab Financial Toolbox, Maple &

NAG); minor fix for Veta (negative value);

Added new fields in the reported data struct: Omega +

Lambda (synonyms), CRho, Color, Annual_Factor_Used.

Clarified differences of IQML’s Greek values vs.

Matlab’s Trading Toolbox, NAG, and Maple.

Added a table explaining all the reported Greek values.

F

201 IQML User Guide

Version Date Section Description *

2.12 2019-01-16

2.2 Added cross-check for IB-Matlab connector I

2.2 Clarified some license variants; mentioned IB-Matlab bundle D

2.4
Added a new 'revert' action, to revert back to a

previous IQML version
I

3.1
Fixed: display this User Guide using IQML('doc') even

when the document is not on the Matlab path
F

4.5
Clarified that Greek Vomma is sometimes called Volga;

minor clarifications regarding the foreign (carry) rate.
D

6.2 Clarified the functionality of streaming regional updates D

2.13 2019-02-28

2, etc.

Clarified that https://UndocumentedMatlab.com/IQML

can be used interchangably with http://iqml.net for any

IQML document or file resource

D

2.1
Updated licensing alternatives (short-term, bundle);

mentioned option of using the Matlab pathtool command
D

2.2 Updated and clarified the license reactivation process D

3.4
Clarified that IQML’s timestamp data fields use either

local or New York time, not the exchange time
D

3.6, 4.5 Clarified documentation, improved readability D

6.1-6.3

Added the ClearBuffer parameter for streaming data;

fixed bug with streaming data when NumOfEvents=inf;

fixed the documentation of NumOfEvents default value

I

F

6.4
Clarified that the streaming market depth mechanism

does not store an internal buffer of quote updates
D

13.15 Clarified FAQ #15 on business continuity alternatives D

2.14 2019-03-14

3.1 Fixed a problem specifying parameters via Matlab table F

3.1
Added ability to specify parameters using Matlab class

object properties, similar to struct fields
I

3.1
Removed misleading reference to struct array (only a

scalar struct is currently supported, not a struct array)
D

3.1, 14
Invalid parameter names are now ignored (a warning is

displayed), rather than raising a Matlab error/exception
F

3.4 Clarified IQFeed’s sensitivity to valid symbol names D

4.1 etc. Improved handling of multi-symbol queries F

4-7,

11.1

Symbols, Fields, and news Sources can now be separated

by ':' or ',' (for example, 'IBM:HP' or 'IBM,HP')
I

6.1
Clarified that the TST$Y symbol can be used to test the

streaming data functionality outside trading hours
D

https://undocumentedmatlab.com/IQML
http://iqml.net/

202 IQML User Guide

Version Date Section Description *

2.15 2019-03-24

General
Made all the internal cross-references (e.g. “§4.1”) in the

User Guide linkable, for easier navigation/referencing
D

4.1

Clarified that a reported Bid/Ask Time of 99:99:99 may

indicate an invalidated quote after extended trading hours;

IQFeed renamed ‘Last Trade Date’ field ‘Last Date’

D

5.1 - 5.5
Clarified that IQFeed limits the historic data provided

to its trial accounts vs. regular IQFeed accounts
D

7.2 Clarified IQFeed only stores news items of past 180 days D

12
Split chapter 12 into two sections: IQML messages (12.1),

IQFeed logging (12.2)
D

12.1
Added display of a few types of IQFeed system messages

(excluding the periodic stats messages) in Debug mode
I

12.2 Added programmatic control of IQFeed logging I

B.2 Added new section listing just functional IQML changes D

2.16 2019-04-17 5.2, 5.3
Added the ability to specify BeginDate for historic

weekly/monthly data requests, in addition to MaxItems
I

2.17 2019-05-07

3.4, 5.4

Added clarifications on possible causes of run-time error;

Display an explanatory message upon an IQFeed

account authorization error
I

4.1, 4.3,

5.1, 7.2,

8.1, 14

Clarified warning message in case of partial results

returned due to timeout, by including a suggestion to

decrease NumOfEvents parameter value, when relevant
I

4.2 Clarified splits data aspects in Fundamental info reports D

4.4, 6.4

Added support for equity Level 2 data (in addition to

futures Level 2 which was already supported); Added ID

fields to all returned Level 2 data (futures and equities);

changed default NumOfEvents from inf to 10; IQML

now connects to IQFeed L2 servers only as needed, not in

startup; Issue error message for each separate failure to

access L2 data, not just during initial connection

attempt; Added the IncludeEmptyQuotes parameter

I

5.4
Clarified that daily/weekly/monthly interval data is

available for the past 15+ years (except in IQFeed trial)
D

5.4, 5.5
Fixed parallelization when only one of BeginDateTime/

EndDateTime is specified but not the other
F

6.3
Clarified that there is no EndDateTime parameter for

streaming interval bars, unlike for historic bars (§5.4)
D

9.1

Improved behavior for users with multiple IQFeed

accounts using the Username/Password parameters;

Improved startup speed in case of multiple connects/

disconnects during the day

I

203 IQML User Guide

Version Date Section Description *

2.18 2019-05-14

1, 2.1

Clarified that on Mac/Linux, while Matlab and IQML

can indeed run in native mode, some features (§9.5 etc.)

are only available if Matlab runs under Parallels/Wine
D

9.1
Added an informative alert when another process is

using one of IQFeed’s expected connection ports
I

3.1, 9.5
Added the 'registry' action and functionality, to enable

convenient access to IQFeed’s registry settings
I

12.2
Clarified that IQML('log') uses the Windows registry, so

will not work if Matlab runs in Mac/Linux native mode
D

2.19 2019-07-07

Cover Updated compatibility of supported Matlab releases D

-
Added an online HTML version of this User Guide:
http://UndocumentedMatlab.com/files/IQML/User_Guide

D

-
Added functionSignatures.json file for easier IQML

usage in Live Editor
I

- Fixed compatibility issue with Matlab R2008a - R2012b F

3.1, 5.6
Added 'summary' action and functionality, to fetch his-

toric end-of-day market summary (Professional license)
I

4
Improved query responsivity in case of IQFeed error;

improved performance of single-symbol queries
I

4.1
Support for IQFeed client 6.1: new optional Fields (Most

Recent Trade Aggressor, Most Recent Trade Day Code)
I

4.2

Support IQFeed client 6.1: new fundamental data fields

(Session_Open_Time, Session_Close_Time, Base_Currency,

Contract_Size, Contract_Months, Minimum_Tick_Size,

FIGI, First_Delivery_Date, and Security_SubType).

Added a table describing all the available data fields.

I

5.1-5.3
Included today’s partial daily trading data in day/week/

month history queries, in IQFeed client 6.1 or newer.
I

5.4
Added LabelAtBeginning parameter for historic interval

data queries (requires IQFeed client version 6 or newer)
I

5.4
Clarified that sub-daily data may report data from non-

trading days (e.g. Sunday night, when ES starts trading)
D

6.1-6.3
Clarified that when using ClearBuffer, some streaming

data events may be lost
D

8.2 Default value for IncludeBinary parameter is now false F

9.1 Added Protocol parameter to customize initial connection I

2.20 2019-07-10

4.2 Added example of new data fields in IQFeed client 6.1 D

5.6
Added the ReportEmptyFields, Filter parameters and

functionality (scanning based on multiple filter criteria)
I

8.2 Fixed the description of the IncludeBinary parameter D

9.1 Improved IQConnect startup on Linux/Mac via wine I

http://undocumentedmatlab.com/files/IQML/User_Guide

204 IQML User Guide

Version Date Section Description *

2.21 2019-07-14

4.6
Enabled fetching latest (current) market summary/scanner

via a 'summary' query (Professional license)
I

5.2, 5.3 Clarified the latest bar has today’s data only in IQFeed 6.1+ D

5.6
Moved most of the 'summary' query description to §4.6

and clarified the text; left only the history aspects in §5.6
D

5.6 Default Date parameter value changed (yesterdaynow) F

2.22 2019-07-17

-
Fixed bug that caused a “Duplicate field name Reserved”

error for some queries on some Matlab releases
F

3.6
Added reference to §10.2 for suggested ways to speed-

up callback processing overhead on data fetches
D

4.2 Added Underlying_Contract field for continuous futures I

4.6
Fixed bug in change % fields of 'top' scanner queries;

reordered 'top' results volume fields for better readability
F

9.3
Added information on the client stats port fields and the

importance of KBsQueued field for runtime performance
D

2.23 2019-09-18

-
Improved collection of parallelized results, in case

some of the results returned an error or empty data
F

4.2 Clarified that Common_Shares_Outstanding is in thousands D

4.3 Added UseParallel parameter feature to IntervalBars I

5
Fixed the implementation of MaxItems=-1, due to an

IQFeed API behavior change
F

2.24 2019-10-05

- Increased processing speed & streaming data throughput I

5.5 Added TradeAggressor, DayOfMonth tick fields (IQFeed 6.1+) I

8.* Fixed duplicate lookup entries after an IQML reconnect F

8.1
Indicated that IQFeed has an internal bug that prevents

searching for symbols with SIC/NAICS < 10
D

8.5, 8.6
Indicated that IQFeed has an internal bug that does not

report some SIC and NAICS codes
D

9.4 Enabled multiple custom commands in each IQML query I

12.2 Clarified the usage of redirecting IQFeed log file Path D

2.25 2019-10-06

- Clarified a few error messages F

5.* Fixed bug in historic data introduced in release 2.24 F

9.1 Improved detection of port conflicts with other programs I

2.26 2019-10-26

2.1 Improved reporting of missing program components I

4.*
Fixed bug when multiple symbols are queried together

and some symbols have no data (e.g., bad ticker)
F

4.*
Fixed bug of not distinguishing between symbols with

'.' and '-' (e.g., AGM.A, AGM-A) when both are queried
F

4.2 Improved fundamental data query using caching I

4.5 Automatically infer UnderlyingSymbol for future option I

4.*, 5.* Small performance speedup of multi-symbol queries I

205 IQML User Guide

Version Date Section Description *

2.27 2019-11-08

Cover Updated compatibility notice for Matlab release R2020a D

2.1 Improved reporting of a missing IQFeed installation I

2.4
Added display of extra clarification messages upon

successful completion of IQML version update or revert
I

4.1
Added Exchange_Description field if Exchange_Id field

is reported by IQFeed and MsgParsingLevel=2 I

4.1, 4.2 Fixed bug in Exchange_Description of some exchanges F

4.5
Improved auto-infer of UnderlyingSymbol for options;

added Underlying_Asset_Name field to the returned data
I

8.2

Added clarifications on filtering parameters limitations;

Added warning when trying to use the Years parameter

in an index/equity chain query
I

9.1 Improved detection of port conflicts with other programs I

2.28 2019-11-09 2.2
Fixed activation issue with compiled IQML on some

deployed computers (requires reactivation) F

2.29 2019-11-21

2.2

Clarified activation error messages in deployed programs;

Improved activation resiliency to short network hickups

and MacOS-induced hostname changes
I

2.4 Skip version update check in deployed (compiled) envs I

4.1
Improved processing speed of quotes queries having a

Fields parameter I

4.2
Added SIC and NAICS sector classification data in

fundamental data queries I

9.1 Improved detection of port conflicts with other programs I

2.30 2019-12-08

4.2 Improved processing speed of fundamental data queries I

4.5 Improved resiliency of Greeks query to some data errors I

4.5

Clarified that Greeks data are subject to the most recent

setting of the Fields parameter value; Clarified cases in

which IQML cannot auto-infer the UnderlyingSymbol
D

5.* Improved processing speed of all historic data queries I

8.1 Improved processing speed of symbol lookup queries I

8.2
Clarified that returned chain quotes data is subject to

the most recent setting of the Fields parameter value D

9.3 Fixed an edge-case problem with some client stats queries F

11.2

Added support for 'regional' data type in alert Trigger;

Added support for 'contains' operator in all alert types;

Added warning when user requests a trigger field that

is not included in the latest setting of the quotes Fields

I

11.2
Clarified on setting email alerts from a Google account

and on potential clashes with antivirus/firewall
D

206 IQML User Guide

Version Date Section Description *

2.31 2019-12-12

. Fixed incompatibility of Matlab releases R2009a or older F

4.2 Fixed a bug in parsing of reported date fields F

4.5
Added UseImpliedVolatility optional Greeks parameter;

Added Volatility_Used_By_Greeks field to reported data
I

2.311 2019-12-13
5.* Fixed bug in parsing of reported history Datestamp field F

7.2 Fixed bug parsing reported news Timestamp field (Pro) F

2.32 2019-12-16

2.4 Modified the hyperlinks in the new-version message F

4.1
Fixed bug in accumulating multiple quotes when some

fields data is missing/empty in some quotes but not others
F

5.* Improved processing speed of all historic data queries I

13 Clarified a few FAQ sections D

2.33 2019-12-31

3.5
Added explanation about IQML’s automatic merging of

results for queries of multiple symbols (where relevant)
D

4.5
Displayed warning message when Greeks are requested

for expired contracts or with contracts with missing data
I

4.6 Identified casses of missing summary data from IQFeed I

5.4, 5.5

Clarified that BeginDateTime/EndDateTime have

precedence over (override) Days parameter; displayed a

warning message when trying to use Days in such cases
I

8.2
Clarified the warning message when querying a chain

with DataType='options' and non-default Years
I

2.34 2020-01-16

2.2 Minor text clarifications on short and long-term licenses D

4.3
Fixed bug in parsing the am time in a BeginDateTime

parameter that is specified in numeric format
F

6.*

Clarified that a real-time IQFeed data subscription is

needed for true live streaming quotes, otherwise IQFeed

delays the streamed data by 10+ minutes
D

6.3
Added MaxUpdateDuration parameter for streaming

intervalbars queries
I

16 Added new “Spread the word!” section D

2.35 2020-02-05 9.1 Fixed connection conflict with IQFeed’s Excel connector F

2.36 2020-03-06
7.2

Set Timeout to minimum 60 secs for GetStory queries;

Mentioned that IQFeed has an undocumented limit of

only up to 4000 news headlines per query (Pro).
F

7.3 Report only unique symbols in a news story query (Pro) F

2.37 2020-03-30

3.1
When an invalid parameter is specified, a list of all valid

action parameters is displayed in the warning message
I

7.2 Improved performance of news headlines query (Pro) I

10.1
Improved reporting of errors in user-specified callback

function for an IQFeed message event
I

207 IQML User Guide

Version Date Section Description *

2.38 2020-04-14

.
Improved UseParallel robustness in some scenarios /

edge-cases (Professional license)
F

6.1 Clarified the streaming quotes mechanism explanation D

2.2
Removed IB-Matlab connector cross-check in deployed

programs
I

7.2 Avoided error when IQFeed sends empty news headlines F

2.39 2020-04-16

.
Added informative message when the user specifies an

invalid Symbol format
I

4.1
Fixed bug when using custom Fields in UseParallel

mode for multiple Symbols
F

9.3
IQConnect’s Diagnostics utility now displays IQML

version and parallel workers in its Client Stats tab
I

2.40 2020-04-20

.
Fixed: enabled "symbol" in addition to 'symbol' in the

Symbol parameter (broken in version 2.39)
F

3.6
Explained how using the new Fields parameter in

history queries can speed up run-time processing
D

4.1
Fixed bad results from parallel quotes query of

duplicate symbols
F

5.1-5.5
Added Fields parameter to history queries for improved

processing speed and memory usage (Pro license)
I

5.1-5.5
Fixed error when parallel historic query of multiple

symbols returns non-matching data sizes
F

2.41 2020-05-03

3.4
Detect & handle case of a missing 'Symbol' parameter,

e.g. IQML('quotes','IBM')
F

4.1
Clarified that Bid/Ask fields in returned quotes data are

typically NBBO (National Best Bid and Offer) quotes
D

5.1-5.5 Improved performance of history queries I

6.*

Improved speed of IQML commands that start streaming;

Added AssignTo parameter to enable assigning stream

data to base Matlab workspace variables with live update
I

6.2 Fixed a bug in fetching streaming Regional quotes F

6.3
Added BarTypeCode, EventDatenum, EventTimestamp fields to

intervalbars data; expanded and clarified documentation
I

9.1
Faster initial connection to IQFeed; Added extra debug

printouts to assist diagnosing IQFeed connection issues
I

2.42 2020-05-04
4.2 Fixed bug in fundamental data query F

5.1-5.5 Fixed bug in history query of multiple symbols at once F

2.43 2020-05-10

5.1-5.5
When IQFeed has no history data for a query, IQML

now returns [], not a 'NO_DATA' error F

9.1 Fixed bug when disconnecting a non-connected IQFeed F

9.1 Faster initial connection to IQFeed (cached lookups etc.) I

208 IQML User Guide

Version Date Section Description *

2.44 2020-06-05

3.6 Expanded documentation on parallelization (Pro license) D

5.1-5.5 Fixed empty results in some parallel history queries (Pro) F

7.2 Fixed a few edge-cases with news headlines query (Pro) F

9.3
Explained how to differentiate between delayed and

real-time subscriptions in the results of IQML('stats')
D

2.45 2020-06-23

Cover Updated compatibility notice for Matlab release R2020b D

5.1, 5.4,

5.5
Added input parameter checks: BeginDate < EndDate,

BeginDateTime < EndDateTime
I

8.* Fixed duplicate lookup entries reported by IQFeed F

8.1
Speedup of symbols lookup; enabled searching all

symbols (empty Name parameter) per Market/SecType I

8.3
Added reference to listed market’s time-zone and delay

amount information based on a DTN ProphetX webpage D

B.1
Differentiated between modified functionality (Fixes)

and new functionality (Improvements) in the change-log D

2.46 2020-06-30

5.1
Fixed single-day history query (BeginDate=EndDate),

broken in version 2.45
F

5.1-5.5 Added the Progress input parameter to history queries I

8.3-8.7 Added the ID filtering parameter to lookup queries I

2.47 2020-11-29

3.6
Fixed occasional errors during the initial connection of

parallel workers to IQFeed (Professional license)
F

3.6 Clarified the issue of maximal parallel pool size D

3.6, 12.2
Clarified the effects of IQFeed’s log file on run-time

performance, and ways to mitigate these effects
D

4.2

Added Fiscal_Year_End_Description field to the

fundamental data results – a textual description of the

numeric Fiscal_Year_End field
I

4.2
Clarified that the Short_Interest field carries valid

information values only for some exchanges/sec-types.
D

5.5
Clarified that some rare tick types (basis codes) are not

reported by IQFeed
D

5.6
Clarified error message when market summary data is

unavailable (Professional license)
F

5.6 Clarified that summary data is only available for trading days D

6.*
Improved the performance of fetching streaming quotes

during live (real-time) streaming
I

8.2
Handled cases of IQFeed server error when requesting

options chain (Professional license)
F

12.2
Fixed error in case the IQFeed client has not yet set a

logging-level registry value
F

209 IQML User Guide

Version Date Section Description *

2.48 2020-12-02

. Fixed bug when trying to display PDF docs on MacOS F

.
Fixed edge-case when retrieving data in parallel with

the UseParallel parameter (Professional license)
F

3.6, 4.1,

4.3, 4.5,

5.1-5.5,

7.2, 8.2

Added MaxWorkers input parameter to limit the

number of active parallel workers when using the

UseParallel parameter for parallel queries (Pro license)
I

5.1-5.5
Increased default maximal number of parallel workers

in parallelized history queries from 1415 (Pro license)
F

5.6
Fixed bug in filtering numeric summary data when

MsgParsingLevel = 0 (Professional license)
F

2.49 2021-01-03

3.2, 3.5
Added new OutputFormat parameter to enable easy

reporting of results in cell/struct/table/timetable formats
I

3.6,

5.1-5.5

Clarified that IQFeed changed its throttling mechanism

of historical data queries in Dec. 2020 to 50 queries/sec.

To avoid the new limit and a throttling error, use Max-

Workers param to limit the number of parallel workers.

D

4.2
Clarified the calculation that IQFeed uses for the

Historic Volatility field in Fundamental data queries
D

5.1-5.5
Fixed certain problems with parallel download of

historic data (Pro license)
F

5.6, 8.2

Clarified that IQFeed provides static downloadable text

files for both expired IEOPTION contracts and delisted

EQUITY symbols
D

12.1 Added display of context information in run-time errors I

2.50 2021-01-24

4.6 Added reference link for 'top' summary data D

8.1 Fixed symbols lookup query with empty/unspecified

Name filter parameter
F

8.1 Added new Progress parameter to display lookup query

progress (same as in history queries)
I

8.1
Added ability to filter symbols lookup query by Market

group (e.g. 'NYSE') not just specific market names/ids
I

8.2
Fixed: chain symbols query did not report some equity

options unless NearMonths param was set (Pro license)
F

2.51 2021-02-03

7.*
Fixed a problem with news query without a Symbol
filter due to a DTN server-side change (Pro license) F

7.2
Added Datenum field to news headlines query;
Fixed Timestamp field to standard format (Pro license) I

9.1
Auto-reconnect IQML to IQFeed when IQConnect is
not communicating for a long time I

9.3
Added Datenum, Timestamp, TotalMsgsRcv fields to

client stats data
I

210 IQML User Guide

Version Date Section Description *

2.52 2021-02-23

4.4, 6.4

Added support for new IQFeed client 6.2, including

new Level 2 functionality (Market-by-price/order);

Added BidSizeRatio, AskSizeRatio fields to results;

Added Detailed, MaxLevels parameters. (Pro license)

I

4.6
Fetch previous day's summary data if data for requested

date is unavailable (Pro license)
I

7.2
Handled edge case of news headlines that are reported

with missing/invalid timestamp F

9.1
Avoid repeated attempts to launch the IQFeed client on

startup, in case it is not detected in the expected location F

9.1
Added alert in case the installed IQFeed client appears

to be older than the latest available stable IQFeed client I

9.1, 9.5 Added support for IQFeed client 6.2’s new registry hive I

2.53 2021-04-06

3.6, 6.1
Added new OverflowMode, MaxEventsBacklog

parameters for message overflow handling I

4.1 Sorted the fields table by alphabetical field-name order D

4.4, 6.4
Improved support for new IQFeed client 6.2 Level 2

functionality; added market-maker description (Pro license) I

4.6
Added description fields for Exchange/Markets/SIC/

NAICS codes in summary query results (Pro license) I

5.5
Clarified that IQFeed does not report some trade types

as separate tick events, and just updates TotalVolume
D

9.3 Added messages overflow data to reported client stats I

11 Fixed: alert ID was not properly returned in alert queries F

2.54 2021-05-03

4.5 Fixed: implied volatility was sometimes reported as ±inf F

5.2, 5.3
Added EndDate parameter for weekly/monthly history

queries, as in daily/interval history queries I

5.1-5.4
Fixed some BeginDate/EndDate/MaxItems parameter

inconsistencies in history queries F

2.55 2021-05-10

2.1 Added Filepath field to the output of IQML('version') I

4.6 Clarified some aspects about the data staleness D

5.1-5.4 Fixed issue of empty data reported when MaxItems = -1 F

9.1 Added Timeout parameter to IQML('reconnect') actions I

2.56 2021-06-23

.
Fixed occasional “corrupt P-file” errors in parallel

setups (Pro license)
F

2.4
Automatically disconnect from IQFeed when installing

an IQML update
I

4.6
Fixed: summary data query sometimes reported

missing data (Pro license)
F

12.1 Simplified error message in case of IQML run-time error I

211 IQML User Guide

Version Date Section Description *

2.57 2021-07-11

7.2
Fixed: Timeout parameter was not used by news story

queries when GetStory=true (Pro license) F

7.3
Fixed edge cases of some news stories reported as

errors by IQFeed client version 6.1 (Pro license) F

7.3
Added URL field to reported news stories, if a URL is

detected in the story text (Pro license)
I

7.*
Improved performance (reduced run-time) of news

story queries, especially story texts (Pro license) I

9.1
Removed some harmless warning messages when

connecting IQML to IQConnect in certain cases I

2.58 2021-11-21

.
Replaced all references to iqml.net with

undocumentedmatlab.com F

4.1
Clarified difference between “Last”, “Most recent trade”.

See http://forums.dtn.com/?page=topic&topicID=5906 D

4.4 Fixed duplicate section number 4.4.2 D

4.4
Fixed display of the market-maker description in

MarketDepth (Level2) queries (Pro license) F

6.1
Clarified warning when requesting streaming quotes for

more symbols than IQFeed allows I

9.1
Added display of client and protocol versions in

connection success message I

9.1
Handled unsolicited changes of MacBookPro computer

name by MacOS, affecting IQML's activation I

9.3
Added NumOfAvailableSymbols, ProtocolInUse,

IQFeedAccountExpiryDate fields to client stats data
I

2.59 2021-12-14

2.2
Added 'validate' action: returns true if IQML license is

ok, and an error (or an error message) if it is not. I

4.3, 5.*,

6.3

Added support for additional formats of date parameters,

such as '21/11/15', 'Nov 15', '15-Nov-2021' I

4.5, 8.2 Fixed incorrect reference to quotes query section (4.1) D

7.2
Fixed: News headlines request returned partial results

on Matlab R2021b (Pro license) F

2.60 2021-12-31

4.1
Added the reported field names column to the fields

table; added the auto-generated description fields D

4.3, 5.*,

6.3

Fixed bug in parsing default BeginDate parameter value;

Improved reporting of invalid date/time parameter values F

8.2

Added settable Fields parameter to option chains query

(Pro license); Clarified that requesting options quotes

data requires a corresponding DTN data subscription
I

http://forums.dtn.com/?page=topic&topicID=5906

212 IQML User Guide

Version Date Section Description *

2.61 2022-02-07

2.2 Fixed IQML activation problem on a Matlab pre-release F

2.4
Removed harmless warning message during version

update about overwriting files
F

8.2
Added clarification about performance of options-chain

queries with market market data
D

9.1
Automatically reconnect bad IQFeed connection

(misleading “no data for query” error)
I

2.62 2022-02-27

4.3, 5.*,

6.3, 7.4

Fixed processing of various non-standard date

parameters formats/variants
F

5.*
Fixed the reported symbol in error message about a

failed history query
F

3.4, 9.1
Noted that in the few seconds following an initial con-

nection to IQFeed, some queries may return empty data
D

5.2, 5.3
Fixed weekly/monthly historic data when MaxItems=-1

(all data points) and non-default BeginDate
F

8.3-8.7 Added ForcedRefresh parameter to most lookup queries I

8.*
Fixed: lookup queries sometimes returned cell array

instead of struct array
F

2.63 2022-03-26

4.3, 5.4,

5.5, 6.3

Fixed a parsing problem with DateTime parameters that

contain spaces (e.g. '20220324 123456')
F

5.6
Clarified that IQFeed market summary data is only

available for dates after May 20, 2018
D

5.6, 8.2
Updated download locations of files on DTN’s website;

Added references to DTN’s updated symbology guide.
D

6.1
Fixed a possible error when requesting streaming quotes

with non-default Fields during IQML connection
F

2.64 2022-10-11

4.3, 6.3 Fixed field name typo CummlativeVolumeCumulativeVolume F

4.6
Added explanation about IQFeed’s market indices and

calculated breadth/indicator stats
D

6.1
Added warning when setting Fields in an ongoing data-

fetch query instead of in the initial streaming request.
I

8.1
Fixed: symbol lookup query returned empty when

IQFeed reported just a single result
F

. Small speedup of IQFeed messages processing I

2.65 2022-11-30

9.1
Improved initial connection time of parallel workers

(Pro license)
I

.
Improved rendering of images in online documentation:
https://undocumentedmatlab.com/files/IQML/User_Guide D

2.66 2023-03-26

2.2 Improved license fingerprint stability for MacOS users I

5.5 Clarified the difference between “C” and “E” trades D

13 Clarified a few FAQ sections; added FAQ #20 D

https://undocumentedmatlab.com/files/IQML/User_Guide

213 IQML User Guide

Version Date Section Description *

2.67 2023-08-16

3.6
Explained the effect of memory reallocations and

MaxItems on query performance
D

4.6
Scanner Filter now accepts 'or', 'and' as criteria

operators (in addition to '|', '&'); clarified documentation
I

9.1 Improved initial connection of parallel workers (Pro) I

12.1

Clarified that the default value of RaiseErrorMsgs is

true when the errorMsg output argument is not requested

in the query, and false when it is requested
D

2.68 2023-11-06

2.2
Fixed missing timeout when checking IQML license on

Matlab R2023b
F

9.1
Avoid messages about missing registry on non-Windows

computers
F

214 IQML User Guide

B.2 Functional change log (excluding documentation changes)

The table below is a subset of the table in §B.1, listing just functional IQML changes:

Version Date Section Description

0.80 2017-10-17 - Beta integration of IQML in a user trading program

1.00 2018-02-26 - First commercial release of IQML

1.01 2018-03-11 8.1
Enabled message-specific user callbacks;

Added additional information to callback eventData

1.02 2018-03-12 4.3.3 Added relevant symbols list in returned news story data

1.03 2018-03-19

3.2 Enabled Symbol and Symbols as synonymous params

4.1, 6.1 Improved ticks request logic & the returned data fields

6.1
Enabled requesting streaming ticks/quotes for multiple

symbols at once, in a single IQML command

1.04 2018-04-01

2.1 Added support for native Mac IQFeed client (untested)

3.2
Added new MsgParsingLevel general parameter, for

improved callback run-time performance

5 MaxDataItems input parameter is renamed MaxItems

6.1

Some result output fields renamed for consistency;
BufferSize input parameter is renamed MaxItems for

consistency; clarified the documentation text

6.2 Added new streaming regional updates functionality

7.3
Added newline characters between separate paragraphs in
reported news-story text, for better readability (Pro license)

7.5 Added new streaming news functionality (Pro license)

10 Added timestamp and channel info to debug printouts

1.05 2018-04-05

3.1, 8
Added new symbols and numeric market codes lookup
functionality

3.2, 4.1

5, 7.2
Modified the default Timeout value from 3 to 5 [secs]

8.2, 10.3
Added basic support for options-chain and futures-chain
symbol lookup (better support is planned for next version)

9.1
Enabled specifying IQFeed Username and Password;

Added a 10-sec timeout on IQFeed connection attempts

9.3 Added extra port-specific stats when AddPortStats=1

1.06 2018-04-08 8.2 Added options/futures chain lookup functionality

1.07 2018-04-10 9.1 Added info msgs on server connections/disconnections

1.08 2018-04-11 4.1, 6.1 Added the Symbol field to returned quotes data struct

1.09 2018-04-16 6.3 Added Interval Bars functionality

1.11 2018-05-16
4.4, 6.4,

10.5
Added Market Depth (Level 2) functionality

1.12 2018-05-23 12 Added alerts functionality

215 IQML User Guide

Version Date Section Description

1.13 2018-05-25

7.2
Enabled auto-fetch of full story in news headlines query

(streaming/blocking) using GetStory parameter (Pro)

11.2
Enabled reporting the full news story (in addition to
headline) in news alerts using GetStory parameter

11.1,

11.2

Added regional updates alert functionality (in addition to

news/quote/intervalbar alerts)

1.131 2018-05-28
3.1 Fixed bug in accepting struct-based input parameters

7.2 Fixed bug in the news headlines functionality (Pro license)

1.14 2018-05-30

4.2
Enabled specifying multiple Symbols in a single

Fundamental-data query

6.2
Enabled specifying multiple Symbols in a single

streaming Regional updates query

7.3
Enabled specifying multiple news headline ID values in a

single news story query (Pro license)

1.15 2018-07-08

4.1, 6.1,

14

Enabled querying snapshot (top of market) & streaming

data of multiple symbols at once, in a single IQML query

4.2
Fixed: querying multi-symbol fundamental data

sometimes returned empty results

6.1-6.3
Fixed: debug data was displayed when streaming queries

were requested (now only displayed if Debug=1)

8.2
Enabled querying fundamental data of all symbols in an

options/futures chain at once, in a single IQML query

8.2
Enabled querying snapshot (top of market) data of entire

options/futures chain at once, in a single query

9.1
Fixed: IQML query during IQFeed connection sometimes

returned empty/error results

1.16 2018-07-09 5 Improved performance (speed) of historical data queries

1.17 2018-07-30 6
Enabled retrieval and cancellation of streaming data for

multiple/all streamed symbols in a single IQML command

1.18 2018-08-03

3.1, 3.5 Added optional errorMsg output for IQML commands

9.1 Fixed problem of duplicate fields during initial connection

9.1
Improved the reliability of a programmatic IQFeed

disconnect/reconnect

1.19 2018-08-06

3.2, 12
Added the RaiseErrorMsgs parameter to control whether

IQFeed errors should raise a Matlab error

4.1, 5.1,

7.2, 8.1

Message about partial data received due to Timeout is

now a Matlab warning message, not an error message

1.20 2018-08-07

5, 14
Enabled requesting history data for multiple symbols in a

single IQML command

5.1, 5.4,

5.5

Automatically convert BeginDateBeginDateTime,

EndDateEndDateTime (i.e. try to fix usage error)

216 IQML User Guide

Version Date Section Description

1.21 2018-08-10 8.1 Enabled looking up symbols by market(s), sec-type(s)

1.22 2018-08-13
8.2

Enabled NearMonths values of 0-12, not just 0-4, for
options/futures chain. Note: this is based on undocumented
IQFeed functionality, so might not work in some cases.

3.2 etc. Limited the Timeout parameter values to 0-3000 [secs]

1.23 2018-08-14 9.1
Fixed a problem of possible bad connection to IQFeed
during the initial connection by IQML

1.24 2018-08-31

3.2 etc.
Limited the Timeout parameter values to 0-9000 [secs],
with 0 indicating infinite (i.e. no-limit) timeout

8.2
Enabled NearMonths values of 0-99, not just 0-12, for
options/futures chain. Note: this is based on undocumented
IQFeed functionality, so might not work in some cases.

9.1
Enabled multiple Matlab processes on the same computer to
run IQML concurrently (Beta)

2.00

(major

update)

2018-09-05

This is a major update. Highlights: query parallelization
and multiple usability/functionality fixes/improvements

(all)

Enabled parallel processing of IQML commands within
parfor/spmd blocks, and parallel internal processing via
the UseParallel parameter (Professional license only)

2 Added the license type to the output of IQML('version')

3.5 All returned data arrays are now column vectors

3.5
Using the 2nd (optional) output of IQML (errorMsgs) now

implies a default value of false for RaiseErrorMsgs

4 Modified reported data format when NumOfEvents >1

4.1, 8.2
Issued a warning when requesting more symbol quotes
than your IQFeed account limit

4.3 Added new section on blocking interval bars functionality

4.3, 5.4,

6.3
Clarified that IntervalSize must be ≥100 for volume bars
(a new limitation of IQFeed)

4.3, 5,

6.3, 7.4

Enabled specifying dates and date-times using Matlab
datetime objects (in addition to datenums and strings)

6 Added Symbol field to returned streaming data struct

7.4
Story count for symbols that have no related news story is

reported as 0 (such symbols were previously skipped; Pro)

9.3
Added Exchanges, ServerVersion, ServiceType fields to
the returned client stats data

11 Fixed various things with the Alerts functionality

2.02 2018-09-13

4.3, 5.4,

6.3

Clarified that IntervalSize must be < 86400 for secs bars
(a new limitation of IQFeed); added warning when user
attempts to use an invalid IntervalSize value.

9.1
Added detection & report for a case of a non-
communicative background IQConnect process

2.03 2018-09-30 9.1
Fixed a problem with the license check that caused
IQFeed disconnections

217 IQML User Guide

Version Date Section Description

2.04 2018-10-02

5 Improved download speed of historical data queries

6, 7.5,

9.2

LatestEventTimestamp is now reported in seconds (not
msecs) resolution by default, unless Debug is 1 or true

2.05 2018-10-13 4.1, 6.1 Added Fields parameter to enable dynamic fields-set

2.06 2018-10-15 6.1 Minor fixes, performance speedup of streaming quotes

2.07 2018-10-21

5.4
Enabled using MaxDays as synonym for the Days
parameter in historic interval queries

9.1
Fixed a problem with the license validation that prevented
connection in certain cases

9.4
Fixed a few small edge-cases with sending custom
commands to IQFeed

2.08 2018-10-28
5.1, 5.4,

5.5
Enabled parallelized historic data queries (daily/interval/
ticks) that have date/time range (Professional license only)

2.09 2018-11-07 3.1 Fixed a bug in parsing input parameters in struct format

2.10 2018-11-14

2.4
Added ability to revert back to the previous IQML version

at any time.

4.1

Added description fields for the Bid_Market_Center,

Ask_Market_Center and Last_Market_Center fields, when

reported in a quotes message from IQFeed.

4.5

Added a new 'Greeks' action, to calculate Greeks, fair

value price and implied volatility for options (Professional

license only)

2.11 2018-11-22 4.5

DaysPerYear parameter was renamed AnnualFactor;

Duration parameter was renamed DaysToExpiration;

Vega, Rho, Veta, Ultima are no longer divided by 100

(compatibility with Matlab Financial Toolbox, Maple &

NAG); minor fix for Veta (negative value);

Added new fields in the reported data struct: Omega +

Lambda (synonyms), CRho, Color, Annual_Factor_Used.

Clarified differences of IQML’s Greek values vs. Matlab’s

Trading Toolbox, NAG, and Maple.

Added a table explaining all the reported Greek values.

2.12 2019-01-16

2.2 Added cross-check for IB-Matlab connector

2.4
Added a new 'revert' action, to revert back to a previous

IQML version

3.1
Fixed: display this User Guide using IQML('doc') even

when the document is not on the Matlab path

2.13 2019-02-28 6.1-6.3

Added the ClearBuffer parameter for streaming data;

fixed bug with streaming data when NumOfEvents=inf;

fixed the documentation of NumOfEvents default value

218 IQML User Guide

Version Date Section Description

2.14 2019-03-14

3.1 Fixed a problem specifying parameters via Matlab table

3.1
Added ability to specify parameters using Matlab class

object properties, similar to struct fields

3.1, 14
Invalid parameter names are now ignored (a warning is

displayed), rather than raising a Matlab error/exception

4.1 etc. Improved handling of multi-symbol queries

4-7,

11.1

Symbols, Fields, and news Sources can now be separated

by ':' or ',' (for example, 'IBM:HP' or 'IBM,HP')

2.15 2019-03-24
12.1

Added display of a few types of IQFeed system messages

(excluding the periodic stats messages) in Debug mode

12.2 Added programmatic control of IQFeed logging

2.16 2019-04-17 5.2, 5.3
Added the ability to specify BeginDate for historic

weekly/monthly data requests, in addition to MaxItems

2.17 2019-05-07

3.4, 5.4
Display an explanatory message upon an IQFeed account

authorization error

4.1, 4.3,

5.1, 7.2,

8.1, 14

Clarified warning message in case of partial results returned

due to timeout, by including a suggestion to decrease the

NumOfEvents parameter value, where this is relevant

4.4, 6.4

Added support for equity Level 2 data (in addition to

futures Level 2, which was already supported); Added ID

fields to all returned Level 2 data (futures and equities);

changed default NumOfEvents from inf to 10; IQML now

connects to IQFeed L2 servers only as needed, not in startup;

Issue an error message for each separate failure to access

L2 data, not just during the initial connection attempt;

Added the IncludeEmptyQuotes parameter

5.4, 5.5
Fixed parallelization when only one of BeginDateTime /

EndDateTime is specified but not the other

9.1

Improved behavior for users with multiple IQFeed

accounts using the Username/Password parameters;

Improved startup speed in case of multiple connects/

disconnects during the day

2.18 2019-05-14

9.1
Added an informative alert when another process is using

one of IQFeed’s expected connection ports

3.1, 9.5
Added the 'registry' action and functionality, to enable

convenient access to IQFeed’s registry settings

219 IQML User Guide

Version Date Section Description

2.19 2019-07-07

-
Added functionSignatures.json file for easier IQML usage

in Live Editor

-
Fixed compatibility problem with old Matlab releases

(R2008a - R2012b)

3.1, 5.6
Added the 'summary' action and functionality, to fetch

historic end-of-day market summary (Professional license)

4
Improved query responsivity in case of IQFeed error;

improved performance of single-symbol queries

4.1
Support IQFeed client 6.1: new quotes data Fields (Most

Recent Trade Aggressor, Most Recent Trade Day Code)

4.2

Support IQFeed client 6.1: new fundamental data fields

(Session_Open_Time, Session_Close_Time, Base_Currency,

Contract_Size, Contract_Months, Minimum_Tick_Size,

FIGI, First_Delivery_Date, and Security_SubType)

5.1-5.3
Included today’s partial daily trading data in day/week/

month history queries, in IQFeed client 6.1 or newer.

5.4
Added LabelAtBeginning parameter for historic interval

data queries (requires IQFeed client version 6 or newer)

8.2 Default value for IncludeBinary parameter is now false

9.1 Added Protocol parameter to customize initial connection

2.20 2019-07-10
5.6

Added the ReportEmptyFields, Filter parameters and

functionality (scanning based on multiple filter criteria)

9.1 Improved IQConnect startup on Linux/Mac via wine

2.21 2019-07-14
4.6

Enabled fetching latest (current) market summary/scanner

via a 'summary' query (Professional license)

5.6 Default Date parameter value changed (yesterdaynow)

2.22 2019-07-17

-
Fixed a bug that caused a “Duplicate field name Reserved”

error for some queries on some Matlab releases

4.2 Added Underlying_Contract field for continuous futures

4.6
Fixed bug in change % fields of 'top' scanner queries;

reordered 'top' results volume fields for improved readability

2.23 2019-09-18

-
Improved collection of parallelized results, in case some

of the results returned an error or empty data

4.3 Added UseParallel parameter functionality to IntervalBars

5
Fixed the implementation of MaxItems=-1, due to an

IQFeed API behavior change

2.24 2019-10-05

- Improved processing speed and streaming data throughput

5.5
Added TradeAggressor, DayOfMonth fields to reported ticks

data (IQFeed client 6.1 or newer)

8.* Fixed duplicate lookup entries after an IQML reconnect

9.4 Enabled multiple custom commands in single IQML query

220 IQML User Guide

Version Date Section Description

2.25 2019-10-06

- Clarified a few error messages

5.* Fixed bug in historic data that was introduced in release 2.24

9.1 Improved detection of port conflicts with other programs

2.26 2019-10-25

2.1 Improved reporting of missing program components

4.*
Fixed bug when multiple symbols are queried together

and some symbols have no data (e.g., bad ticker)

4.*
Fixed bug of not distinguishing between symbols with '.'

and '-' (e.g., AGM.A, AGM-A) when they are both queried

4.2 Added fundamental data caching for improved performance

4.5 Automatically infer UnderlyingSymbol for future options

4.*, 5.* Small performance speedup of multi-symbol queries

2.27 2019-11-08

2.1 Improved reporting of a missing IQFeed installation

2.4
Added display of extra clarification messages upon

successful completion of IQML version update or revert

4.1
Added Exchange_Description field if Exchange_Id field is

reported by IQFeed and MsgParsingLevel=2

4.1, 4.2 Fixed bug decoding Exchange_Description of some markets

4.5
Improved auto-infer of UnderlyingSymbol for options;

added Underlying_Asset_Name field to the returned data.

8.2
Added warning when trying to use the Years parameter in

an index/equity chain query

9.1 Improved detection of port conflicts with other programs

2.28 2019-11-09 2.2
Fixed activation issue with compiled IQML on some

deployed computers (requires reactivation)

2.29 2019-11-21

2.2

Clarified activation error messages in deployed programs;

Improved activation resiliency to short network hickups

and MacOS-induced hostname changes

2.4 Skip version update check in deployed (compiled) program

4.1 Improved processing speed of quotes queries using Fields

4.2
Added SIC and NAICS sector classification data in

fundamental data queries

9.1 Improved detection of port conflicts with other programs

2.30 2019-12-08

4.2 Improved processing speed of fundamental data queries

4.5 Improved resiliency of Greeks query to some data errors

5.* Improved processing speed of all historic data queries

8.1 Improved processing speed of symbol lookup queries

9.3 Fixed an edge-case problem with some client stats queries

11.2

Added support for 'regional' data type in the alert Trigger;

Added support for 'contains' operator in all alert types;

Added warning when user requests a trigger field that is

not included in the latest setting of the quotes Fields

221 IQML User Guide

Version Date Section Description

2.31 2019-12-12

. Fixed incompatibility with Matlab releases R2009a or older

4.2 Fixed a bug in parsing of reported date fields

4.5
Added UseImpliedVolatility optional Greeks parameter;

Added Volatility_Used_By_Greeks field to reported data

2.311 2019-12-13
5.* Fixed bug in parsing of reported history Datestamp field

7.2 Fixed bug in parsing reported news Timestamp field (Pro)

2.32 2019-12-16

2.4 Modified the hyperlinks in the new-version message

4.1
Fixed bug in accumulating multiple quotes when some

fields data is missing/empty in some quotes but not others

5.* Improved processing speed of all historic data queries

2.33 2019-12-31

4.5
Displayed warning message when Greeks are requested

for expired contracts or with contracts with missing data

4.6 Identified casses of missing summary data from IQFeed

5.4, 5.5

Clarified that BeginDateTime/EndDateTime have

precedence over (override) the Days parameter; displayed

a warning message when trying to use Days in such cases

8.2
Clarified the warning message when querying a chain

with DataType='options' and non-default Years

2.34 2020-01-16

4.3
Fixed bug in parsing the am time part in a BeginDateTime

parameter that is specified in numeric format

6.3
Added MaxUpdateDuration parameter for streaming

intervalbars queries

2.35 2020-02-05 9.1 Fixed a connection conflict with IQFeed’s Excel connector

2.36 2020-03-06
7.2 Minimal Timeout of 60 secs for GetStory queries (Pro)

7.3 Report only unique symbols in a news story query (Pro)

2.37 2020-03-30

3.1
When an invalid parameter is specified, the list of all valid

action parameters is displayed in the warning message

7.2 Improved performance of news headlines query (Pro)

10.1
Improved reporting of errors in user-specified callback

function for an IQFeed message event

2.38 2020-04-14

.
Improved UseParallel robustness in some scenarios/edge-

cases (Professional license)

2.2 Removed IB-Matlab connector cross-check in deployed apps

7.2 Fixed error when IQFeed sends empty news headlines (Pro)

2.39 2020-04-16

.
Added informative message when the user specifies an

invalid Symbol format

4.1
Fixed bug when using custom Fields in UseParallel mode

for multiple Symbols

9.3
IQConnect’s Diagnostics utility now displays IQML

version and parallel workers in its Client Stats tab

222 IQML User Guide

Version Date Section Description

2.40 2020-04-20

.
Fixed: enabled "symbol" in addition to 'symbol' in the

Symbol parameter (broken in version 2.39)

4.1 Fixed bad data in parallel quotes query of duplicate symbols

5.1-5.5
Added Fields parameter to history queries for improved

processing speed and memory usage (Professional license)

5.1-5.5
Fixed error when parallel historic query of multiple

symbols returns non-matching data sizes

2.41 2020-05-03

3.4
Detect & handle case of a missing 'Symbol' parameter,

e.g. IQML('quotes','IBM')

5.1-5.5 Improved performance of history queries

6.*

Improved speed of IQML commands that start streaming;

Added AssignTo parameter to enable assigning streaming

data to base Matlab workspace variables, with live updates

6.2 Fixed a bug in fetching streaming Regional quotes

6.3
Added BarTypeCode, EventDatenum, EventTimestamp

fields to streaming intervalbars data

9.1
Faster initial connection to IQFeed; Added extra debug

printouts to assist diagnosing IQFeed connection problems

2.42 2020-05-04
4.2 Fixed bug in fundamental data query

5.1-5.5 Fixed bug in history query of multiple symbols at once

2.43 2020-05-10

5.1-5.5
When IQFeed has no history data for a query, IQML now

returns [], not a 'NO_DATA' error

9.1 Fixed bug when disconnecting from non-connected IQFeed

9.1 Faster initial connection to IQFeed (cached lookups etc.)

2.44 2020-06-05
5.1-5.5 Fixed empty results in some parallel history queries (Pro)

7.2 Fixed various edge-cases with news headlines query (Pro)

2.45 2020-06-23

5.1, 5.4,

5.5

Added input parameter checks: BeginDate < EndDate,

BeginDateTime < EndDateTime

8.* Fixed duplicate lookup entries reported by IQFeed

8.1
Speedup of symbols lookup; enabled searching all symbols

(empty Name parameter) for the specified Market/SecType

2.46 2020-06-30

5.1
Fixed single-day history query (BeginDate=EndDate),

broken in version 2.45

5.1-5.5 Added the Progress input parameter to history queries

8.3-8.7 Added the ID filtering parameter to lookup queries

223 IQML User Guide

Version Date Section Description

2.47 2020-11-29

3.6
Fixed occasional errors that might occur during the initial
connection of parallel workers to IQFeed (Pro license)

4.2
Added Fiscal_Year_End_Description field to the
fundamental data results – a textual description of the
numeric Fiscal_Year_End field

5.6
Clarified error message when market summary data is
unavailable (Professional license)

6.*
Improved the performance of fetching streaming quotes
during live (real-time) streaming

8.2
Handled cases of IQFeed server error when requesting
options chain (Professional license)

12.2
Fixed error in case the IQFeed client has not yet set a
logging-level registry value

2.48 2020-12-02

. Fixed bug when trying to display PDF docs on MacOS

.
Fixed edge-case when retrieving data in parallel with the
UseParallel parameter (Professional license)

3.6, 4.1,

4.3, 4.5,

5.1-5.5,

7.2, 8.2

Added MaxWorkers input parameter to limit the number
of active parallel workers when using the UseParallel
parameter for parallelized queries (Professional license)

5.1-5.5
Increased default maximal number of parallel workers in
parallelized history queries from 1415 (Pro license)

5.6
Fixed bug in filtering numeric summary data when
MsgParsingLevel = 0 (Professional license)

2.49 2021-01-03

3.2, 3.5
Added new OutputFormat parameter to enable easy
reporting of results in cell/struct/table/timetable formats

5.1-5.5
Fixed certain problems with parallel download of historic
data (Pro license)

12.1 Added display of context information in run-time errors

2.50 2021-01-24

8.1

Fixed symbols lookup query with empty/unspecified
Name filter parameter;
Added new Progress parameter to display lookup query
progress (same as in history queries);

Added ability to filter symbols lookup query by Market
group (e.g. 'NYSE'), not just specific market name(s)/id(s)

8.2
Fixed: chain symbols query did not report some equity
options unless NearMonths parameter was set (Pro license)

2.51 2021-02-03

7.*
Fixed a problem with news query without a Symbol filter
due to a DTN server-side change (Pro license)

7.2
Added Datenum field to news headlines query;
Fixed Timestamp field to standard format (Pro license)

9.1
Auto-reconnect IQML to IQFeed when IQConnect is not
communicating for a long time

9.3
Added Datenum, Timestamp, TotalMsgsRcv fields to

client stats data

224 IQML User Guide

Version Date Section Description

2.52 2021-02-23

4.4, 6.4

Added support for new IQFeed client 6.2, including new

Level 2 functionality (Market-by-Price, Market-by-Order);

Added BidSizeRatio, AskSizeRatio fields to results;

Added Detailed, MaxLevels parameters. (Pro license)

4.6
Fetch previous day's summary data if data for requested

date is unavailable (Pro license)

7.2
Handled edge case of news headlines that are reported

with missing/invalid timestamp

9.1

Avoid repeated attempts to launch the IQFeed client on

startup, in case it is not detected in the expected location;

Added alert in case the installed IQFeed client appears to

be older than the latest available stable IQFeed client.

9.1, 9.5 Added support for IQFeed client 6.2’s new registry hive

2.53 2021-04-06

3.6, 6.1
Added new OverflowMode, MaxEventsBacklog

parameters for message overflow handling

4.4, 6.4
Improved support for new IQFeed client 6.2 Level 2

functionality; added market-maker description (Pro license)

4.6
Added description fields for Exchange/Markets/SIC/

NAICS codes in summary query results (Pro license)

9.3 Added msg overflow handling data to reported client stats

11 Fixed: alert ID was not properly returned in alert queries

2.54 2021-05-03

4.5 Fixed: implied volatility was sometimes reported as ±inf

5.2, 5.3
Added EndDate parameter for weekly/monthly history

queries, as in daily/interval history queries

5.1-5.4
Fixed some BeginDate/EndDate/MaxItems parameter

inconsistencies in history queries

2.55 2021-05-10

2.1 Added Filepath field to the output of IQML('version')

5.1-5.4 Fixed problem of empty data reported when MaxItems = -1

9.1 Added Timeout parameter to IQML('reconnect') actions

2.56 2021-06-23

.
Fixed occasional “corrupt P-file” errors in parallel setups

(Pro license)

2.4
Automatically disconnect from IQFeed when installing an

IQML update

4.6
Fixed: summary data query sometimes reported missing

data (Pro license)

12.1 Simplified error message in case of IQML run-time error

225 IQML User Guide

Version Date Section Description

2.57 2021-07-11

7.2
Fixed: Timeout parameter was not used by news story

queries when GetStory=true (Pro license)

7.3
Fixed edge cases of some news stories reported as errors

by IQFeed client version 6.1 (Pro license)

7.3
Added URL field to reported news stories, if a URL is

detected in the story text (Pro license)

7.*
Improved performance (reduced run-time) of news story

queries, especially story texts (Pro license)

9.1
Removed some harmless warning messages when

connecting IQML to IQConnect in certain cases

2.58 2021-11-21

.
Replaced all references to iqml.net with

undocumentedmatlab.com

4.4
Fixed display of the market-maker description in

MarketDepth (Level2) queries (Pro license)

6.1
Clarified warning when requesting streaming quotes for

more symbols than IQFeed allows

9.1 Display client, protocol versions in connection success msg

9.1
Handled unsolicited changes of MacBookPro computer

name by MacOS, affecting IQML’s activation

9.3
Added NumOfAvailableSymbols, ProtocolInUse,

IQFeedAccountExpiryDate fields to client stats data

2.59 2021-12-14

2.2
Added 'validate' action: returns true if IQML license is ok,

and an error (or an error message) if it is not.

4.3, 5.*,

6.3, 7.4

Added support for a few additional formats of date

parameters, such as '21/11/15', 'Nov 15', '15-Nov-2021'

7.2
Fixed: News headlines request returned partial results on

Matlab R2021b (Pro license)

2.60 2021-12-31

4.3, 5.*,

6.3, 7.4

Fixed bug in parsing of default BeginDate parameter value;

Improved reporting of invalid date/time parameter values

8.2 Added Fields parameter to option chains query (Pro license)

2.61 2022-02-07

2.2 Fixed IQML activation problem on a Matlab pre-release

2.4
Removed harmless warning message during version

update about overwriting files

9.1
Automatically reconnect bad IQFeed connection

(misleading “no data for query” error)

2.62 2022-02-27

4.3, 5.*,

6.3, 7.4

Fixed processing of various non-standard date parameters

formats/variants

5.* Fixed reported symbol in error msg of a failed history query

5.2, 5.3 Fixed weekly/monthly historic data when MaxItems = -1

(all data points) and non-default BeginDate

8.3-8.7 Added ForcedRefresh parameter to most lookup queries

8.*
Fixed: lookup queries sometimes returned cell array

instead of struct array

226 IQML User Guide

Version Date Section Description

2.63 2022-03-26

4.3, 5.4,

5.5, 6.3

Fixed a parsing problem with DateTime parameters that

contain spaces (e.g. '20220324 123456')

6.1
Fixed a possible error when requesting streaming quotes

with non-default Fields during IQML connection

2.64 2022-10-11

4.3, 6.3 Fixed field name typo: CummlativeVolumeCumulativeVolume

6.1
Added warning when setting Fields in an ongoing data-

fetch query instead of in the initial streaming request

8.1
Fixed: symbol lookup query returned empty when IQFeed

reported just a single result

. Small speedup of IQFeed messages processing

2.65 2022-11-30 9.1 Improved connection time of parallel workers (Pro license)

2.66 2023-03-26 2.2 Improved license fingerprint stability for MacOS users

2.67 2023-08-16
4.6

Scanner Filter now accepts 'or', 'and' as criteria operators

(in addition to '|', '&'); clarified documentation

9.1 Improved initial connection of parallel workers (Pro)

2.68 2023-11-06

2.2
Fixed missing timeout when checking IQML license on

Matlab R2023b

9.1
Avoid messages about missing registry on non-Windows

computers

	DISCLAIMER
	1 Introduction
	2 Installation and licensing
	2.1 Installing IQML
	2.2 Licensing and activation
	2.3 Switching activated computers
	2.4 Updating the installed version

	3 Using IQML
	3.1 General usage
	3.2 Common request properties
	3.3 Blocking & non-blocking modes
	3.4 Common causes of confusion
	3.5 Returned data format
	3.6 Run-time performance

	4 Querying the latest market data
	4.1 Snapshot (top of book) quotes
	4.2 Fundamental information
	4.3 Interval bars
	4.4 Market depth (Level 2)
	4.4.1 Common functionality
	4.4.2 Detailed quotes in IQFeed 6.2 or newer
	4.4.3 Detailed quotes in IQFeed 6.1 or older
	4.4.4 Common parameters

	4.5 Greeks, fair value, and implied volatility
	4.6 Market summary data and scanner

	5 Historical and intra-day data
	5.1 Daily data
	5.2 Weekly data
	5.3 Monthly data
	5.4 Interval data
	5.5 Tick data
	5.6 Market summary data and scanner

	6 Streaming data
	6.1 Streaming quotes
	6.2 Regional updates
	6.3 Interval bars
	6.4 Market depth (Level 2)

	7 News
	7.1 Configuration
	7.2 Story headlines
	7.3 Story text
	7.4 Story count
	7.5 Streaming news headlines

	8 Lookup of symbols and codes
	8.1 Symbols lookup
	8.2 Options/futures chain
	8.3 Markets lookup
	8.4 Security types lookup
	8.5 SIC codes lookup
	8.6 NAICS codes lookup
	8.7 Trade condition codes lookup

	9 Connection, administration and other special commands
	9.1 Connecting & disconnecting from IQFeed
	9.2 Server time
	9.3 Client stats
	9.4 Sending a custom command to IQFeed
	9.5 Modifying IQFeed’s registry settings

	10 Attaching user callbacks to IQFeed messages
	10.1 Processing IQFeed messages in IQML
	10.2 Run-time performance implications
	10.3 Usage example – using callbacks to parse options/futures chains
	10.4 Usage example – using callbacks for realtime quotes GUI updates
	10.5 Usage example – using callbacks for realtime order-book GUI updates

	11 Alerts
	11.1 General Usage
	11.2 Alert Configuration
	11.3 Alerts Query
	11.4 Alert Editing or Deletion

	12 Messages and logging
	12.1 IQML messages
	12.2 IQFeed logging

	13 Frequently-asked questions (FAQ)
	1. Can IQML be used with other data-feed providers?
	2. Does IQML impose limitations on historical data or streaming quotes?
	3. Can I see a demo of IQML?
	4. How does IQML compare to alternative products?
	5. Does IQML come with an IQFeed or market subscription?
	6. Does IQML send you any information?
	7. Can I be sure IQML does not contain bugs that will affect my trading?
	8. Is IQML being maintained? supported?
	9. I saw a nice new feature in the online User Guide – can I get it?
	10. What happens when the license term is over?
	11. Can I transfer my IQML license to another computer?
	12. I have a laptop and desktop – can I use IQML on both?
	13. Can IQML be compiled and deployed?
	14. Is IQML provided in source-code format?
	15. Do you provide an escrow for IQML’s source-code? Is the source code for sale?
	16. Is feature ABC available in IQML?
	17. Can you add feature ABC into IQML for me?
	18. Can you develop a trading strategy for me?
	19. Does IQML include back-testing/charting/data analysis/algo-trading?
	20. Is IQML supported on my platform?

	14 Troubleshooting
	15 Professional services
	15.1 Sample program screenshots
	15.2 About the author

	16 Spread the word!
	Appendix A – online resources
	Appendix B – change log
	Changelog
	B.1 Complete change log (functional + documentation)
	B.2 Functional change log (excluding documentation changes)

